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HOW TO GO BSM?
➤ Many ways to go BSM 

➤ Usually:  add symmetries, 
add particles,  
add interactions 

➤ All of the above 

➤ Messy… 

➤ I will concentrate on 
masses  
and mixings 

➤ And the possibility of 
dark matter



SOME ASPECTS OF THE FLAVOUR PROBLEM

➤ Quark and charged lepton 
masses very different, very 
hierarchical 
 
 
 

➤ Neutrino masses unknown, 
only difference of squared 
masses.  

➤ Type of hierarchy (normal or 
inverted) also unknown 

➤ Higgs sector under study

me : mµ : m⌧ ⇠ 10�5 : 10�2 : 1

md : ms : mb ⇠ 10�4 : 10�2 : 1

mu : mc : mt ⇠ 10�6 : 10�3 : 1

➤ Quark mixing angles 
 
 

➤ Neutrino mixing angles 
 
 

➤ Small mixing in quarks, large 
mixing in neutrinos. 
Very different 

➤ Is there an underlying 
symmetry?

✓12 ⇡ 13.0o

✓23 ⇡ 2.4o

✓13 ⇡ 0.2o

⇥12 ⇡ 33.8�

⇥23 ⇡ 48.6�

⇥13 ⇡ 8.6�

?



HOW DO WE CHOOSE A FLAVOUR SYMMETRY?

➤ Several ways: 

➤ Look for inspiration in a high energy extension of SM, i.e. strings or 
GUTs, L-R models, etc 

➤ Look at low energy phenomenology 

➤ At some point they should intersect… 

➤ In here, look at low energy phenomenology: 

➤ Try a flavor symmetry with 2+1 structure 

➤ Explore how generally it can be applied  

➤ Lots of scalars…quarks ok, what about neutrinos? 

➤  Compare it with the data — prospects for dark matter 

➤ See how predictive it turns out 



Logarithmic plot of quark massesPlot of mass ratios

Suggests a 2⊕1 structure 
for quarks… for leptons?



WE WILL EXPLORE S3 AND Q6  
➤ S3 is the smallest non-abelian group 

➤ Has irreducible representations      2, 1S, 1A 

➤ Permutations of three objects or rotations and reflections that leave 
invariant an equilateral triangle 
 
 
 
 
 
 

➤ Q6 is double covering of S3, has irreps 
                                21, 22, 1++, 1- -, 1+-, 1-+
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2+1 STRUCTURE

➤ 2+1 structure works well for 
quarks: 
S3, S4, Q6 

➤ Neutrinos?  
Mixing angles known  
Masses? Only difference of 
squared masses 

➤ Type I seesaw works well, other 
ways? 

➤ Scalar sector? More Higgses? 
Residual symmetries possible once full 
minimization of scalar potential is done 

➤ Dark Matter?

➤ Explore  
non-minimal 
models in scalars 

➤ Neutrino masses: 
ISSM or radiatively    

➤ Quarks: 
2+1 works well 

➤ Scalars, allow for 
complex vev’s 

➤ Phenomenology



➤ S3 x Z2 U(1)B-L flavored model: 

➤ 2+1 in quarks 

➤ 1+2 in leptons ⟹ mu-tau symmetry  

➤ ISSM mechanism for neutrino masses 

➤ Cobimaximal mixing in neutrinos, with deviations from leptonic sector  
⟹ we can fit observables 

➤ Many scalars, some with complex vev’s (new in quarks) 

➤ DM sector not yet worked out 

➤ Q6 x Z4 xZ2 

➤ 2+1 in quarks, leptons and Higgs 

➤ Many scalars, some with complex vev’s 

➤ Neutrino masses radiatively generated at two-loops 

➤ Cobimaximal mixing, with deviations from leptonic sector  

➤ Higgs sector and DM worked out,  
consistent with known phenomenological constraints

S3  AND Q6 MODELS (UNDER CONSTRUCTION)



S3 X Z2 FLAVORED U(1)B-L MODEL

➤ Usual U(1)B-L has 3NR and 3S and 3s fermionic singlets and 
one Higgs 
Khalil PRD 2010  

➤ In our version we have 3NR, 3S and 3s neutrinos, plus 3 
Higgs doublets and 3 singlets (lots of exotics!) 
              Work with J.C. Gómez-Izquierdo, C. Espinoza, L. Gutiérrez-Luna, M.M  arXiv:2411.03392 

➤ Additional Z2 to forbid some Yukawa couplings

6

and 1A, and one doublet 2 [40]. Thus, there are two reducible representations 3S = 2� 1S and 3A = 2� 1A which

are useful to assign three families of particles; in this work, we will use the former assignment.

Then, the scalar and fermion sectors are augmented by three Higgs doublets (H) and singlets (�); three right-handed

(NR) and six sterile (s and S) neutrinos are added to the fermion sector. In this case, under the flavor symmetry, the

scalars and fermion fields are assigned as follows. Focusing on the quarks and scalars, the first and second family are

put together within a 2, the third one belongs to 1S . In the scalar sector we use the same assignment, and the main

motivation has to do with the results on the S3 scalar potential with three Higgs (3HD-S3), where this assignment is

used with a particular vev alignment, giving a viable SM Higgs and several exotic scalars with possibilities of detection

in future experiments [61, 62]. Moreover, in these exhaustive studies [65–68], one can find several more vev alignments

which turn out to be useful in shaping the fermion masses. On the other hand, in the lepton sector, the first family

is assigned to 1S singlet; the second and third families live in a 2 doublet (3S = 1S � 2). This assignment allows the

identification of the µ $ ⌧ [101] symmetry or the Cobimaximal pattern [77–93].

Besides the S3 symmetry, the model is supplemented by an additional symmetry, Z2. This forbids some Yukawa

couplings in the lepton sector, and as a result the charged lepton and Dirac mass matrices are almost diagonal, as

we will show. In short, the explicit assignment for the matter content is shown in Table II. Thereby, we have the

Matter QI , dIR, uI,R, HI , LJ , eJR, NJ,R, SJL, sJL L1, e1R, N1R, S1L, s1L Q3, d3R, u3R, H3,�3 �I

S3 2 1S 1S 2

Z2 1 �1 1 �1

TABLE II. Flavored B � L model. Here, I = 1, 2 and J = 2, 3.

following allowed Lagrangian for the lepton sector

�L` = y
e
1L̄1H3e1R + y

e
2

⇥
(L̄2H2 + L̄3H1)e2R + (L̄2H1 � L̄3H2)e3R

⇤
+ y

e
3

⇥
L̄2H3e2R + L̄3H3e3R

⇤
+ y

D
1 L̄1H̃3N1R

+ y
D
2

h
(L̄2H̃2 + L̄3H̃1)N2R + (L̄2H̃1 � L̄3H̃2)N3R

i
+ y

D
3

h
L̄2H̃3N2R + L̄3H̃3N3R

i
+ y

R
1 (N1R)c�3S1

+ y
R
2 (N1R)c[�1S2 + �2S3] + y

R
3 [(N2R)c�1 + (N3R)c�2]S1 + y

R
4

h
(N2R)c�3S2 + (N3R)c�3S3

i
+M1S

c
1S1

+M2

⇥
S
c
2S2 + S

c
3S3

⇤
+ h.c. (10)

Here, we want to emphasize that the allowed flavor couplings for sterile neutrinos, si, were not written for simplicity

since they are irrelevant for our purpose. We have to keep in mind, as was already commented, that the sterile neutrino

mass term was added by hand in a similar way to the minimal extension of the SM with three right-handed neutrinos.

There has been also a focused e↵ort in providing a dynamical mechanism to generate the sterile neutrino masses, see

for instance [27].

For the quark sector, we obtain

�Lq = y
d
1

⇥
Q̄1L (H1d2R +H2d1R) + Q̄2L (H1d1R �H2d2R)

⇤
+ y

d
2

⇥
Q̄1LH3d1R + Q̄2LH3d2R

⇤
+ y

d
3

⇥
Q̄1LH1 + Q̄2LH2

⇤
d3R

+y
d
4Q̄3L [H1d1R +H2d2R] + y

d
5Q̄3LH3d3R + y

u
1

h
Q̄1L

⇣
H̃1u2R + H̃2u1R

⌘
+ Q̄2L

⇣
H̃1u1R � H̃2u2R

⌘i

+y
u
2

h
Q̄1LH̃3u1R + Q̄2LH̃3u2R

i
+ y

u
3

h
Q̄1LH̃1 + Q̄2LH̃2

i
u3R + y

u
4 Q̄3L

h
H̃1u1R + H̃2u2R

i

+y
u
5 Q̄3LH̃3u3R + h.c. (11)

𝛷i, Si, si at high energies (TeV), Hi at low energies (eW)



LAGRANGIAN
➤ Lepton sector Lagrangian 

 
 
 
 
 
s not shown for simplicity, not relevant here  

➤ Quark sector Lagrangian
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SCALAR POTENTIAL 
➤ Scalar potential is of the form: 

 

➤ V(H) usual S3-3H potential, V(𝛷) of B-L sector, V(H,𝛷) 
mixing term 
 
 

7

Once the spontaneous symmetry breaking happens, the lepton mass matrices are given as

M` =

0

BB@

y
`
1hH3i 0 0

0 y
`
3hH3i+ y

`
2hH2i y

`
2hH1i

0 y
`
2hH1i y

`
3hH3i � y

`
2hH2i

1

CCA , MR =

0

BB@

y
R
1 h�3i y

R
2 h�1i y

R
2 h�2i

y
R
3 h�1i y

R
4 h�3i 0

y
R
3 h�2i 0 y

R
4 h�3i,

1

CCA ; (12)

with M2 = Diag. (M1,M2,M2). Besides this, in the quark sector we have

Mq =

0

BB@

y
q
2hH3i+ y

q
1hH2i y

q
1hH1i y

q
3hH1i

y
q
1hH1i y

q
2hH3i � y

q
1hH2i y

q
3hH2i

y
q
4hH1i y

q
4hH2i y

q
5hH3i

1

CCA . (13)

Notice that q = u, d stands for the up and down quark sector; ` = D, e denotes the Dirac neutrinos and charged

leptons. In addition, we have to keep in mind that for the up sector, H = i�2H
⇤.

On the other hand, the scalar potential is crucial to get viable mass textures which will provide the mixing matrices.

The general potential of the model is based on the following structure

V = V (H) + V (�) + V (H,�), (14)

where V (H) corresponds to the most general potential with three Higgs doublets allowed by the symmetry group S3,

and its general structure is shown below,

V (H) = M
2(H†

H) +
a

2
(H†

H)2. (15)

Notice that the three Higgs doublets scalar potential with the S3 symmetry has been extensively studied (3HD-S3)

with the usual assignment: (H1, H2) ⇠ 2 and H3 ⇠ 1S [48, 55, 60–62, 102–104]. Recently, a study of all possible

alignments that are allowed by the imposed discrete symmetry, allowing for complex vev’s, was released [65–68],

making it necessary to explore their e↵ects on the mass matrices as well as the mixings.

With respect to the rest of the potential, we have the following

V (�) = µ
2
BL(�

†
�) +

�

2
(�†

�)2

V (H,�) = �L
�
H

†
H
� �

�
†
�
�
,

(16)

where V (H,�) is an interaction between the electroweak sector and the fields � sector, allowed by the flavor symmetry.

However, in this work, we will consider the scenario where both sectors are decoupled, so we set L = 0.

Henceforth, we will concentrate on V (�), which is responsible for providing mass to the heavy right-handed neutri-

nos. It is important to note that, since in the potential the sector of the � fields and the Higgs doublets are decoupled,

the following calculations do not change any results in the low energy Higgs sector. In terms of complex fields, we

express the singlet fields �i, in the following way,

�1 =
1
p
2
(x1 + iy1) �2 =

1
p
2
(x2 + iy2) �3 =

1
p
2
(x3 + iy3). (17)

Using the natural choices of conservation of electric charge and CP invariance, we assumed a spontaneous symmetry

breaking, where only the real part of the neutral fields acquire a vev,

hx1i = w1 hx2i = w2 hx3i = w3. (18)
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Once the spontaneous symmetry breaking happens, the lepton mass matrices are given as

M` =

0

BB@
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`
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0 y
`
3hH3i+ y

`
2hH2i y

`
2hH1i

0 y
`
2hH1i y

`
3hH3i � y

`
2hH2i

1

CCA , MR =

0

BB@

y
R
1 h�3i y

R
2 h�1i y

R
2 h�2i

y
R
3 h�1i y

R
4 h�3i 0

y
R
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R
4 h�3i,

1

CCA ; (12)

with M2 = Diag. (M1,M2,M2). Besides this, in the quark sector we have
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Notice that q = u, d stands for the up and down quark sector; ` = D, e denotes the Dirac neutrinos and charged

leptons. In addition, we have to keep in mind that for the up sector, H = i�2H
⇤.

On the other hand, the scalar potential is crucial to get viable mass textures which will provide the mixing matrices.

The general potential of the model is based on the following structure

V = V (H) + V (�) + V (H,�), (14)

where V (H) corresponds to the most general potential with three Higgs doublets allowed by the symmetry group S3,

and its general structure is shown below,

V (H) = M
2(H†

H) +
a

2
(H†

H)2. (15)

Notice that the three Higgs doublets scalar potential with the S3 symmetry has been extensively studied (3HD-S3)

with the usual assignment: (H1, H2) ⇠ 2 and H3 ⇠ 1S [48, 55, 60–62, 102–104]. Recently, a study of all possible

alignments that are allowed by the imposed discrete symmetry, allowing for complex vev’s, was released [65–68],

making it necessary to explore their e↵ects on the mass matrices as well as the mixings.

With respect to the rest of the potential, we have the following
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†
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�

2
(�†
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†
H
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�
†
�
�
,

(16)

where V (H,�) is an interaction between the electroweak sector and the fields � sector, allowed by the flavor symmetry.

However, in this work, we will consider the scenario where both sectors are decoupled, so we set L = 0.

Henceforth, we will concentrate on V (�), which is responsible for providing mass to the heavy right-handed neutri-

nos. It is important to note that, since in the potential the sector of the � fields and the Higgs doublets are decoupled,

the following calculations do not change any results in the low energy Higgs sector. In terms of complex fields, we

express the singlet fields �i, in the following way,

�1 =
1
p
2
(x1 + iy1) �2 =
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p
2
(x2 + iy2) �3 =
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p
2
(x3 + iy3). (17)
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Notice that q = u, d stands for the up and down quark sector; ` = D, e denotes the Dirac neutrinos and charged

leptons. In addition, we have to keep in mind that for the up sector, H = i�2H
⇤.

On the other hand, the scalar potential is crucial to get viable mass textures which will provide the mixing matrices.

The general potential of the model is based on the following structure

V = V (H) + V (�) + V (H,�), (14)

where V (H) corresponds to the most general potential with three Higgs doublets allowed by the symmetry group S3,

and its general structure is shown below,

V (H) = M
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Notice that the three Higgs doublets scalar potential with the S3 symmetry has been extensively studied (3HD-S3)

with the usual assignment: (H1, H2) ⇠ 2 and H3 ⇠ 1S [48, 55, 60–62, 102–104]. Recently, a study of all possible

alignments that are allowed by the imposed discrete symmetry, allowing for complex vev’s, was released [65–68],

making it necessary to explore their e↵ects on the mass matrices as well as the mixings.

With respect to the rest of the potential, we have the following
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where V (H,�) is an interaction between the electroweak sector and the fields � sector, allowed by the flavor symmetry.

However, in this work, we will consider the scenario where both sectors are decoupled, so we set L = 0.

Henceforth, we will concentrate on V (�), which is responsible for providing mass to the heavy right-handed neutri-

nos. It is important to note that, since in the potential the sector of the � fields and the Higgs doublets are decoupled,

the following calculations do not change any results in the low energy Higgs sector. In terms of complex fields, we

express the singlet fields �i, in the following way,

�1 =
1
p
2
(x1 + iy1) �2 =

1
p
2
(x2 + iy2) �3 =

1
p
2
(x3 + iy3). (17)

Using the natural choices of conservation of electric charge and CP invariance, we assumed a spontaneous symmetry

breaking, where only the real part of the neutral fields acquire a vev,

hx1i = w1 hx2i = w2 hx3i = w3. (18)

Vev’s for B-L sector real, no mixing:          
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By requiring @V (�)/@xi = 0, we can minimize the potential, then solving the tree level tadpole equations with the

requirement w1, w2 6= 0, the following result is found,

w1 = w2 or h�2i = h�1i. (19)

The calculations that follow will include this alignment as a fact. Two massless scalar bosons appear when we examine

the mass spectrum generated by the potential V (�) invariant under the S3⌦Z2 symmetry with this particular solution.

One massless scalar will give mass to an extra gauge boson associated to the U(1)B�L symmetry, but we still have

an extra one due to the presence of a continuous symmetry, as found in [58]. To avoid this problem we introduce a

breaking term of the S3 symmetry, which leaves the alignment invariant. More information about the potential is

provided in appendix D.

1. Quark sector

As it was pointed out, the quark sector is a novelty in the current paper. Once the spontaneous symmetry breaking

is realized, the quark mass matrices are given by

Mq =

0

BB@

y
q
2hH3i+ y

q
1hH2i y

q
1hH1i y

q
3hH1i

y
q
1hH1i y

q
2hH3i � y

q
1hH2i y

q
3hH2i

y
q
4hH1i y

q
4hH2i y

q
5hH3i

1

CCA . (20)

The above mass matrix has been studied exhaustively in the 3HD-S3 framework [54] with special emphasis in real

vev’s. In this paper, an alternative approach is taken which is completely di↵erent to the cited work. Now, we are

interested in exploring the alignment hH1i = v1, hH2i = iv2 and hH3i = v3 that may be relevant for the masses.

This alignment comes from studies of the scalar sector in the 3HD-S3 framework [65–68]. Moreover, in ref. [65] it

was found that this alignment does not lead to spontaneous CP violation, unless there is an explicit breaking of the

S3 symmetry in the scalar sector [68]. In the latter reference it was also pointed out that this particular alignment

is interesting since it is possible to generate a complex CKM matrix via the imaginary vev, without an additional

arbitrary complex phase, although no explicit calculation is given.

To our knowledge, the alignment hH1i = v1, hH2i = iv2 and hH3i = v3 has never been used explicitly before to

calculate quark masses. In this scenario, where we assume the most general case and allow the Yukawa couplings to

be also complex, the quark mass matrices are

Md =
1
p
2

0

BB@

y
d
2v3 + iy

d
1v2 y

d
1v1 y

d
3v1

y
d
1v1 y

d
2v3 � iy

d
1v2 iy

d
3v2

y
d
4v1 iy

d
4v2 y

d
5v3

1

CCA , Mu =
1
p
2

0

BB@

y
u
2 v3 � iy

u
1 v2 y

u
1 v1 y

u
3 v1

y
u
1 v1 y

u
2 v3 + iy

u
1 v2 �iy

u
3 v2

y
u
4 v1 �iy

u
4 v2 y

u
5 v3

1

CCA . (21)

In this case, both mass matrices have many free parameters as one can see. We ought to point out that the general

mass matrix will not be diagonalized. Instead of doing that, we will work in the following benchmark:

• The following hierarchies |hH1i| < |hH2i| < |hH3i| and y
q
3, y

q
4 ⌧ y

q
1 are assumed such that the (Mq)13 ⇡ 0. As is

well known, this could have been realized by means of a transformation on the quark fields; however, we decided

to make the mentioned approximation.

• In this B � L model, there are no right-handed currents as a consequence a suitable rotation may be realized

on these fields. Thus, the quark mass matrices turn out to be Hermitian [105]. However, we will just assume

that (Mq)23 ⇡ (Mq)32.

Vev’s for eW sector complex: 

 

no residual symmetry
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an extra one due to the presence of a continuous symmetry, as found in [58]. To avoid this problem we introduce a
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In this case, both mass matrices have many free parameters as one can see. We ought to point out that the general

mass matrix will not be diagonalized. Instead of doing that, we will work in the following benchmark:
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1 are assumed such that the (Mq)13 ⇡ 0. As is

well known, this could have been realized by means of a transformation on the quark fields; however, we decided

to make the mentioned approximation.

• In this B � L model, there are no right-handed currents as a consequence a suitable rotation may be realized

on these fields. Thus, the quark mass matrices turn out to be Hermitian [105]. However, we will just assume

that (Mq)23 ⇡ (Mq)32.
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With these assumptions, the quark mass matrices are parametrized as

Md =

0

BB@

Ad bd 0

bd Bd Cd

0 Cd hd

1

CCA , Mu =

0

BB@

Au bu 0

bu Bu �Cu

0 �Cu hu

1

CCA . (22)

Both matrices are written in the polar form in order to factorize the CP-violating phases and diagonalize them. This

is M̂q = Diag. (m̃q1 , m̃q2 , 1) = U
†
qLMqUqR with Mq = PqM̄qPq where Pq = Diag.

�
e
i⌘q1 , e

i⌘q2 , e
i⌘q3

�
. As noticed, we

have normalized the quark masses by the heaviest one, mq3 , so m̃qi = mqi/mq3 , this is done for simplicity.

For the up and down sectors, these phases must satisfy the following conditions

⌘d = arg.(Ad)/2, ⌘s = arg.(Bd)/2, ⌘b = arg.(hd)/2, ⌘d + ⌘s = 2arg.(bd), ⌘s + ⌘b = 2arg.(Cd);

⌘u = arg.(Au)/2, ⌘c = arg.(Bu)/2, ⌘t = arg.(hu)/2, ⌘u + ⌘c = 2arg.(bu), ⌘c + ⌘t = 2 [arg.(Cu) + ⇡] , (23)

along with this,

M̄q =

0

BB@

|Ãq| |b̃q| 0

|b̃q| |B̃q| |C̃q|

0 |C̃q| |h̃q|

1

CCA . (24)

Then, UqL = PqOq and UqR = P
†
qOq so that M̂q = O

T
q M̄qOq. As one can notice, M̄q has six free parameters,

three of which can be fixed in terms of the physical masses, that is

|b̃q| =

vuut
⇣
1� |Ãq|

⌘⇣
m̃q2 � |Ãq|

⌘⇣
|Ãq|+ |m̃q1 |

⌘

|h̃q|� |Ãq|
;

|B̃q| = 1 + m̃q2 � |m̃q1 |� |h̃q|� |Ãq|;

|c̃q| =

vuut
⇣
1� |h̃q|

⌘⇣
|h̃q|� m̃q2

⌘⇣
|h̃q|+ |m̃q1 |

⌘

|h̃q|� |Ãq|
, (25)

where m̃q1 = �|mq1 |/mq3 and there is a hierarchy among the free parameters namely 1 > |h̃q| > m̃q2 > |m̃q1 | > |Ãq|.

Having realized that, the Oq orthogonal matrix is given as

Oq =

0

BBBBBB@

�
r

(1�|Ãq |)(m̃q2�|Ãq |)(|h̃q |+|m̃q1 |)
Dq1

r
(1�|Ãq |)(|h̃q |�m̃q2)(|m̃q1 |+|Ãq |)

Dq2

r
(1�|h̃q |)(m̃q2�|Ãq |)(|m̃q1 |+|Ãq |)

Dq3r
(|h̃q |�|Ãq |)(|h̃q |+|m̃q1 |)(|m̃q1 |+|Ãq |)

Dq1

r
(|h̃q |�|Ãq |)(|h̃q |�m̃q2)(m̃q2�|Ãq |)

Dq2

r
(1�|h̃q |)(1�|Ãq |)(|h̃q |�|Ãq |)

Dq3

�
r

(1�|h̃q |)(|h̃q |�m̃q2)(|m̃q1 |+|Ãq |)
Dq1

�
r

(1�|h̃q |)(|h̃q |+|m̃q1 |)(m̃q2�|Ãq |)
Dq2

r
(1�|Ãq |)(|h̃q |�m̃q2)(|h̃q |+|m̃q1 |)

Dq3

1

CCCCCCA
. (26)

Notice that

Dq1 = (1 + |m̃q1 |) (m̃q2 + |m̃q1 |)
⇣
|h̃q|� |Ãq|

⌘
;

Dq2 = (1� m̃q2) (m̃q2 + |m̃q1 |)
⇣
|h̃q|� |Ãq|

⌘
;

Dq3 = (1 + |m̃q1 |) (1� m̃q2)
⇣
|h̃q|� |Ãq|

⌘
. (27)

Consequently, the CKMmatrix (V = U
†
uLUdL) is written asV = O

T
u P̄qOd with P̄q = P

†
uPd ⌘ Diag.

�
e
i↵q , e

i�q , e
i�q

�
.
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⌘u = arg.(Au)/2, ⌘c = arg.(Bu)/2, ⌘t = arg.(hu)/2, ⌘u + ⌘c = 2arg.(bu), ⌘c + ⌘t = 2 [arg.(Cu) + ⇡] , (23)

along with this,

M̄q =

0

BB@
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|Ãq|+ |m̃q1 |

⌘

|h̃q|� |Ãq|
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where m̃q1 = �|mq1 |/mq3 and there is a hierarchy among the free parameters namely 1 > |h̃q| > m̃q2 > |m̃q1 | > |Ãq|.

Having realized that, the Oq orthogonal matrix is given as

Oq =

0

BBBBBB@

�
r

(1�|Ãq |)(m̃q2�|Ãq |)(|h̃q |+|m̃q1 |)
Dq1

r
(1�|Ãq |)(|h̃q |�m̃q2)(|m̃q1 |+|Ãq |)

Dq2

r
(1�|h̃q |)(m̃q2�|Ãq |)(|m̃q1 |+|Ãq |)

Dq3r
(|h̃q |�|Ãq |)(|h̃q |+|m̃q1 |)(|m̃q1 |+|Ãq |)

Dq1

r
(|h̃q |�|Ãq |)(|h̃q |�m̃q2)(m̃q2�|Ãq |)

Dq2

r
(1�|h̃q |)(1�|Ãq |)(|h̃q |�|Ãq |)

Dq3

�
r

(1�|h̃q |)(|h̃q |�m̃q2)(|m̃q1 |+|Ãq |)
Dq1

�
r

(1�|h̃q |)(|h̃q |+|m̃q1 |)(m̃q2�|Ãq |)
Dq2

r
(1�|Ãq |)(|h̃q |�m̃q2)(|h̃q |+|m̃q1 |)

Dq3

1

CCCCCCA
. (26)

Notice that

Dq1 = (1 + |m̃q1 |) (m̃q2 + |m̃q1 |)
⇣
|h̃q|� |Ãq|

⌘
;

Dq2 = (1� m̃q2) (m̃q2 + |m̃q1 |)
⇣
|h̃q|� |Ãq|

⌘
;

Dq3 = (1 + |m̃q1 |) (1� m̃q2)
⇣
|h̃q|� |Ãq|

⌘
. (27)

Consequently, the CKMmatrix (V = U
†
uLUdL) is written asV = O

T
u P̄qOd with P̄q = P

†
uPd ⌘ Diag.

�
e
i↵q , e

i�q , e
i�q

�
.
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By requiring @V (�)/@xi = 0, we can minimize the potential, then solving the tree level tadpole equations with the

requirement w1, w2 6= 0, the following result is found,

w1 = w2 or h�2i = h�1i. (19)

The calculations that follow will include this alignment as a fact. Two massless scalar bosons appear when we examine

the mass spectrum generated by the potential V (�) invariant under the S3⌦Z2 symmetry with this particular solution.

One massless scalar will give mass to an extra gauge boson associated to the U(1)B�L symmetry, but we still have

an extra one due to the presence of a continuous symmetry, as found in [58]. To avoid this problem we introduce a

breaking term of the S3 symmetry, which leaves the alignment invariant. More information about the potential is

provided in appendix D.

1. Quark sector

As it was pointed out, the quark sector is a novelty in the current paper. Once the spontaneous symmetry breaking

is realized, the quark mass matrices are given by

Mq =

0

BB@

y
q
2hH3i+ y

q
1hH2i y

q
1hH1i y

q
3hH1i

y
q
1hH1i y

q
2hH3i � y

q
1hH2i y

q
3hH2i

y
q
4hH1i y

q
4hH2i y

q
5hH3i

1

CCA . (20)

The above mass matrix has been studied exhaustively in the 3HD-S3 framework [54] with special emphasis in real

vev’s. In this paper, an alternative approach is taken which is completely di↵erent to the cited work. Now, we are

interested in exploring the alignment hH1i = v1, hH2i = iv2 and hH3i = v3 that may be relevant for the masses.

This alignment comes from studies of the scalar sector in the 3HD-S3 framework [65–68]. Moreover, in ref. [65] it

was found that this alignment does not lead to spontaneous CP violation, unless there is an explicit breaking of the

S3 symmetry in the scalar sector [68]. In the latter reference it was also pointed out that this particular alignment

is interesting since it is possible to generate a complex CKM matrix via the imaginary vev, without an additional

arbitrary complex phase, although no explicit calculation is given.

To our knowledge, the alignment hH1i = v1, hH2i = iv2 and hH3i = v3 has never been used explicitly before to

calculate quark masses. In this scenario, where we assume the most general case and allow the Yukawa couplings to

be also complex, the quark mass matrices are

Md =
1
p
2

0

BB@

y
d
2v3 + iy

d
1v2 y

d
1v1 y

d
3v1

y
d
1v1 y

d
2v3 � iy

d
1v2 iy

d
3v2

y
d
4v1 iy

d
4v2 y

d
5v3

1

CCA , Mu =
1
p
2

0

BB@

y
u
2 v3 � iy

u
1 v2 y

u
1 v1 y

u
3 v1

y
u
1 v1 y

u
2 v3 + iy

u
1 v2 �iy

u
3 v2

y
u
4 v1 �iy

u
4 v2 y

u
5 v3

1

CCA . (21)

In this case, both mass matrices have many free parameters as one can see. We ought to point out that the general

mass matrix will not be diagonalized. Instead of doing that, we will work in the following benchmark:

• The following hierarchies |hH1i| < |hH2i| < |hH3i| and y
q
3, y

q
4 ⌧ y

q
1 are assumed such that the (Mq)13 ⇡ 0. As is

well known, this could have been realized by means of a transformation on the quark fields; however, we decided

to make the mentioned approximation.

• In this B � L model, there are no right-handed currents as a consequence a suitable rotation may be realized

on these fields. Thus, the quark mass matrices turn out to be Hermitian [105]. However, we will just assume

that (Mq)23 ⇡ (Mq)32.

9

With these assumptions, the quark mass matrices are parametrized as

Md =

0

BB@

Ad bd 0

bd Bd Cd

0 Cd hd

1

CCA , Mu =

0

BB@

Au bu 0

bu Bu �Cu

0 �Cu hu

1

CCA . (22)

Both matrices are written in the polar form in order to factorize the CP-violating phases and diagonalize them. This

is M̂q = Diag. (m̃q1 , m̃q2 , 1) = U
†
qLMqUqR with Mq = PqM̄qPq where Pq = Diag.

�
e
i⌘q1 , e

i⌘q2 , e
i⌘q3

�
. As noticed, we

have normalized the quark masses by the heaviest one, mq3 , so m̃qi = mqi/mq3 , this is done for simplicity.

For the up and down sectors, these phases must satisfy the following conditions

⌘d = arg.(Ad)/2, ⌘s = arg.(Bd)/2, ⌘b = arg.(hd)/2, ⌘d + ⌘s = 2arg.(bd), ⌘s + ⌘b = 2arg.(Cd);

⌘u = arg.(Au)/2, ⌘c = arg.(Bu)/2, ⌘t = arg.(hu)/2, ⌘u + ⌘c = 2arg.(bu), ⌘c + ⌘t = 2 [arg.(Cu) + ⇡] , (23)

along with this,

M̄q =

0

BB@

|Ãq| |b̃q| 0

|b̃q| |B̃q| |C̃q|

0 |C̃q| |h̃q|

1

CCA . (24)

Then, UqL = PqOq and UqR = P
†
qOq so that M̂q = O

T
q M̄qOq. As one can notice, M̄q has six free parameters,

three of which can be fixed in terms of the physical masses, that is

|b̃q| =

vuut
⇣
1� |Ãq|

⌘⇣
m̃q2 � |Ãq|

⌘⇣
|Ãq|+ |m̃q1 |

⌘

|h̃q|� |Ãq|
;

|B̃q| = 1 + m̃q2 � |m̃q1 |� |h̃q|� |Ãq|;

|c̃q| =

vuut
⇣
1� |h̃q|

⌘⇣
|h̃q|� m̃q2

⌘⇣
|h̃q|+ |m̃q1 |

⌘

|h̃q|� |Ãq|
, (25)

where m̃q1 = �|mq1 |/mq3 and there is a hierarchy among the free parameters namely 1 > |h̃q| > m̃q2 > |m̃q1 | > |Ãq|.

Having realized that, the Oq orthogonal matrix is given as

Oq =

0

BBBBBB@

�
r

(1�|Ãq |)(m̃q2�|Ãq |)(|h̃q |+|m̃q1 |)
Dq1

r
(1�|Ãq |)(|h̃q |�m̃q2)(|m̃q1 |+|Ãq |)

Dq2

r
(1�|h̃q |)(m̃q2�|Ãq |)(|m̃q1 |+|Ãq |)

Dq3r
(|h̃q |�|Ãq |)(|h̃q |+|m̃q1 |)(|m̃q1 |+|Ãq |)

Dq1

r
(|h̃q |�|Ãq |)(|h̃q |�m̃q2)(m̃q2�|Ãq |)

Dq2

r
(1�|h̃q |)(1�|Ãq |)(|h̃q |�|Ãq |)

Dq3

�
r

(1�|h̃q |)(|h̃q |�m̃q2)(|m̃q1 |+|Ãq |)
Dq1

�
r

(1�|h̃q |)(|h̃q |+|m̃q1 |)(m̃q2�|Ãq |)
Dq2

r
(1�|Ãq |)(|h̃q |�m̃q2)(|h̃q |+|m̃q1 |)

Dq3

1

CCCCCCA
. (26)

Notice that

Dq1 = (1 + |m̃q1 |) (m̃q2 + |m̃q1 |)
⇣
|h̃q|� |Ãq|

⌘
;

Dq2 = (1� m̃q2) (m̃q2 + |m̃q1 |)
⇣
|h̃q|� |Ãq|

⌘
;

Dq3 = (1 + |m̃q1 |) (1� m̃q2)
⇣
|h̃q|� |Ãq|

⌘
. (27)

Consequently, the CKMmatrix (V = U
†
uLUdL) is written asV = O

T
u P̄qOd with P̄q = P

†
uPd ⌘ Diag.

�
e
i↵q , e

i�q , e
i�q

�
.
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As noticed, three phases appear in the CKM matrix; however, only two of them are relevant.

|Vud| =
�� (Ou)11 (Od)11 + (Ou)21 (Od)21 e

i�̄ + (Ou)31 (Od)31 e
i�̄
��;

|Vus| =
�� (Ou)11 (Od)12 + (Ou)21 (Od)22 e

i�̄ + (Ou)31 (Od)32 e
i�̄
��;

|Vub| =
�� (Ou)11 (Od)13 + (Ou)21 (Od)23 e

i�̄ + (Ou)31 (Od)33 e
i�̄
��;

|Vcd| =
�� (Ou)12 (Od)11 + (Ou)22 (Od)21 e

i�̄ + (Ou)32 (Od)31 e
i�̄
��;

|Vcs| =
�� (Ou)12 (Od)12 + (Ou)22 (Od)22 e

i�̄ + (Ou)32 (Od)32 e
i�̄
��;

|Vcb| =
�� (Ou)12 (Od)13 + (Ou)22 (Od)23 e

i�̄ + (Ou)32 (Od)33 e
i�̄
��;

|Vtd| =
�� (Ou)13 (Od)11 + (Ou)23 (Od)21 e

i�̄ + (Ou)33 (Od)31 e
i�̄
��;

|Vts| =
�� (Ou)13 (Od)12 + (Ou)23 (Od)22 e

i�̄ + (Ou)33 (Od)32 e
i�̄
��;

|Vtb| =
�� (Ou)13 (Od)13 + (Ou)23 (Od)23 e

i�̄ + (Ou)33 (Od)33 e
i�̄
��, (28)

with �̄ = �q � ↵q and �̄ = �q � ↵q being two relative phases. Thus, in this benchmark, there are six parameters

namely |hq|, |Aq| (q = u, d) and two relative CP-violating phases. Eventually, the quark mixing angles are given by

sinq ✓13 = | (V)ub |; sinq ✓23 =
| (V)cb |p

1� | (V)ub |
2
; sinq ✓12 =

| (V)us |p
1� | (V)ub |

2
. (29)

In addition, a brief analytical study is realized in order to show that the Gatto-Sartori-Tonin relations are obtained

as a limiting case. To do so, let us consider |h̃q| ⇡ 1� m̃q2 and |Ãq| ⇡ 0 2. Therefore,

Oq ⇡

0

BB@

�
p
1� ¯̃mq1

p
¯̃mq1 m̃q2

p
m̃q1p

¯̃mq1 (1� m̃q2)
p

1� m̃q2 �
¯̃mq1

p
m̃q2 (1� m̃q1)

�
p

m̃q1 (1� m̃q2) �
p

m̃q2

p
1� m̃q2

1

CCA , (30)

where ¯̃mq1 = mq1/mq2 . As a result of this,

|Vus| ⇡

����

r
md

ms
�

r
mu

mc
e
i�̄

���� ;

|Vcb| ⇡

����

r
ms

mb
e
i�̄

�

r
mc

mt
e
i�̄

���� ;

|Vub| ⇡

����
ms

mb

r
md

ms
+

r
mu

mc

ms

mb
e
i�̄

�

r
mu

mt
e
i�̄

���� ;

|Vtd| ⇡

����
mc

mb

r
mu

mb
+

r
mu

mt

md

ms
e
i�̄

�

r
md

mb
e
i�̄

���� . (31)

Thus, we do identify the above expression with the Gatto-Sartori-Toni relations. Hence, we would expect to fit

the CKM mixing matrix through a numerical study, this also will help us to find out the set of values for the

free parameters. We have to keep in mind the quark observables depend on six free parameters as it was already

2
The quark mass matrix, given in Eqn. (24), with |Aq | = 0 was studied in [106], and this kind of matrix fits quite well the CKM one.
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As noticed, three phases appear in the CKM matrix; however, only two of them are relevant.

|Vud| =
�� (Ou)11 (Od)11 + (Ou)21 (Od)21 e

i�̄ + (Ou)31 (Od)31 e
i�̄
��;

|Vus| =
�� (Ou)11 (Od)12 + (Ou)21 (Od)22 e

i�̄ + (Ou)31 (Od)32 e
i�̄
��;

|Vub| =
�� (Ou)11 (Od)13 + (Ou)21 (Od)23 e

i�̄ + (Ou)31 (Od)33 e
i�̄
��;

|Vcd| =
�� (Ou)12 (Od)11 + (Ou)22 (Od)21 e

i�̄ + (Ou)32 (Od)31 e
i�̄
��;

|Vcs| =
�� (Ou)12 (Od)12 + (Ou)22 (Od)22 e

i�̄ + (Ou)32 (Od)32 e
i�̄
��;

|Vcb| =
�� (Ou)12 (Od)13 + (Ou)22 (Od)23 e

i�̄ + (Ou)32 (Od)33 e
i�̄
��;

|Vtd| =
�� (Ou)13 (Od)11 + (Ou)23 (Od)21 e

i�̄ + (Ou)33 (Od)31 e
i�̄
��;

|Vts| =
�� (Ou)13 (Od)12 + (Ou)23 (Od)22 e

i�̄ + (Ou)33 (Od)32 e
i�̄
��;

|Vtb| =
�� (Ou)13 (Od)13 + (Ou)23 (Od)23 e

i�̄ + (Ou)33 (Od)33 e
i�̄
��, (28)

with �̄ = �q � ↵q and �̄ = �q � ↵q being two relative phases. Thus, in this benchmark, there are six parameters

namely |hq|, |Aq| (q = u, d) and two relative CP-violating phases. Eventually, the quark mixing angles are given by

sinq ✓13 = | (V)ub |; sinq ✓23 =
| (V)cb |p

1� | (V)ub |
2
; sinq ✓12 =

| (V)us |p
1� | (V)ub |

2
. (29)

In addition, a brief analytical study is realized in order to show that the Gatto-Sartori-Tonin relations are obtained

as a limiting case. To do so, let us consider |h̃q| ⇡ 1� m̃q2 and |Ãq| ⇡ 0 2. Therefore,

Oq ⇡

0

BB@

�
p
1� ¯̃mq1

p
¯̃mq1 m̃q2

p
m̃q1p

¯̃mq1 (1� m̃q2)
p

1� m̃q2 �
¯̃mq1

p
m̃q2 (1� m̃q1)

�
p

m̃q1 (1� m̃q2) �
p

m̃q2

p
1� m̃q2

1

CCA , (30)

where ¯̃mq1 = mq1/mq2 . As a result of this,

|Vus| ⇡

����

r
md

ms
�

r
mu

mc
e
i�̄

���� ;

|Vcb| ⇡

����

r
ms

mb
e
i�̄

�

r
mc

mt
e
i�̄

���� ;

|Vub| ⇡

����
ms

mb

r
md

ms
+

r
mu

mc

ms

mb
e
i�̄

�

r
mu

mt
e
i�̄

���� ;

|Vtd| ⇡

����
mc

mb

r
mu

mb
+

r
mu

mt

md

ms
e
i�̄

�

r
md

mb
e
i�̄

���� . (31)

Thus, we do identify the above expression with the Gatto-Sartori-Toni relations. Hence, we would expect to fit

the CKM mixing matrix through a numerical study, this also will help us to find out the set of values for the

free parameters. We have to keep in mind the quark observables depend on six free parameters as it was already

2
The quark mass matrix, given in Eqn. (24), with |Aq | = 0 was studied in [106], and this kind of matrix fits quite well the CKM one.

Still too many parameters



GATTO-SARTORI-TONIN LIMIT
➤ We take a particular benchmark                                

➤ We obtain Gatto-Sartori-Tonin relations as limiting case, 4 free parameters,  
fit everything correctly 

➤ If Yukawa couplings considered real not possible to fit Jarlskog invariant  

➤ We fit all 6, BFP goes to GST (as expected):
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As noticed, three phases appear in the CKM matrix; however, only two of them are relevant.
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i�̄ + (Ou)33 (Od)33 e
i�̄
��, (28)

with �̄ = �q � ↵q and �̄ = �q � ↵q being two relative phases. Thus, in this benchmark, there are six parameters

namely |hq|, |Aq| (q = u, d) and two relative CP-violating phases. Eventually, the quark mixing angles are given by

sinq ✓13 = | (V)ub |; sinq ✓23 =
| (V)cb |p

1� | (V)ub |
2
; sinq ✓12 =

| (V)us |p
1� | (V)ub |

2
. (29)

In addition, a brief analytical study is realized in order to show that the Gatto-Sartori-Tonin relations are obtained

as a limiting case. To do so, let us consider |h̃q| ⇡ 1� m̃q2 and |Ãq| ⇡ 0 2. Therefore,

Oq ⇡

0

BB@

�
p
1� ¯̃mq1

p
¯̃mq1 m̃q2

p
m̃q1p

¯̃mq1 (1� m̃q2)
p

1� m̃q2 �
¯̃mq1

p
m̃q2 (1� m̃q1)

�
p

m̃q1 (1� m̃q2) �
p

m̃q2

p
1� m̃q2

1

CCA , (30)

where ¯̃mq1 = mq1/mq2 . As a result of this,

|Vus| ⇡

����

r
md

ms
�

r
mu

mc
e
i�̄

���� ;

|Vcb| ⇡

����

r
ms

mb
e
i�̄

�

r
mc

mt
e
i�̄

���� ;

|Vub| ⇡

����
ms

mb

r
md

ms
+

r
mu

mc

ms

mb
e
i�̄

�

r
mu

mt
e
i�̄

���� ;

|Vtd| ⇡

����
mc

mb

r
mu

mb
+

r
mu

mt

md

ms
e
i�̄

�

r
md

mb
e
i�̄

���� . (31)

Thus, we do identify the above expression with the Gatto-Sartori-Toni relations. Hence, we would expect to fit

the CKM mixing matrix through a numerical study, this also will help us to find out the set of values for the

free parameters. We have to keep in mind the quark observables depend on six free parameters as it was already

2
The quark mass matrix, given in Eqn. (24), with |Aq | = 0 was studied in [106], and this kind of matrix fits quite well the CKM one.
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FIG. 1. Regions of the free parameter space where the model can fit accurately the experimental observations regarding the

CKM matrix. Dark regions are not compatible with observations at all, while the best fit point (BFP) is depicted with a star.

As one notices, in this benchmark, we are able to find a parameter space that fits the CKM observables with great

accuracy. We should remark that we have studied the quark mass matrices given in Eqn. (21) with the assumptions

mentioned but considering real Yukawa couplings. According to our results, the quark mass matrices have the Fritzsch

textures with an extra free parameter. In this parametrization, there is not enough CP-violation to reproduce the

Jarlskog invariant. As a consequence, we are analyzing the most general quark mass matrices given in Eqn.(21) with
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Besides this, M2 = Diag.(M1,M2,M2).
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with Ae = ce + ibe and Be = ce � ibe. It follows that M̂e = Diag. (me,mµ,m⌧ ) = U
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eOe where Pe is a diagonal matrix that contains phases, and Oe is an orthogonal matrix. As one can notice,

11

commented, and the dependence of the mixing angles and Jarlskog invariant on those is given by
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(32)

with 1 > |h̃q| > m̃q2 > |m̃q1 | > |Ãq| and 2⇡ � �̄, �̄ � 0. The quark masses will be considered as inputs, at the top

mass scale, these are given as [107]

m̃u = (1.33± 0.73)⇥ 10�5
, m̃c = (3.91± 0.42)⇥ 10�3;

m̃d = (1.49± 0.39)⇥ 10�3
, m̃s = (2.19± 0.53)⇥ 10�2

. (33)

In addition, the quark mixing angles and the Jarlskog invariant have the following experimental values [108]

sineq ✓13 = 0.00369± 0.00011;

sineq ✓12 = 0.22500± 0.00067;

sineq ✓23 = 0.04182+0.00085
�0.00074;

J
eq =

�
3.08+0.15

�0.13

�
⇥ 10�5

. (34)

In order to fit the experimental values, we define Gaussian likelihood functions for each CKM matrix element in

absolute value vij ⌘ |V
CKM
ij |:

Lij =
1

p
2⇡�

exp

(
�
1

2

(vij � v
exp
ij )2

�2

)
, (35)

the vij are functions of the free parameters of the model, whilst v
exp
ij and � are the corresponding experimental

value and its associated error respectively. Maximizing the log-likelihood function logL ⌘
P

i,j logLij allows us to

determine chi-squared intervals ��
2
⌘ �

2
� �

2
min by the relation:

��
2 = �2 log (L/Lmax) , (36)

where Lmax is the maximum of the likelihood function attained at the best fit point (BFP) or the point in parameter

space wherein L has its global maximum. In addition, we treat the values of the quark mass ratios as nuisance pa-

rameters and are allowed to vary within their respective experimental interval. To perform the numerical calculations

we use a publicly available optimizer [109–111], we find the BFP to have coordinates in parameter space given by:

|h̃u| = 0.8919159, |Ãu| = 6.85834⇥ 10�6
, �̄ = 1.005637;

|h̃d| = 0.8693808, |Ãd| = 4.85842⇥ 10�4
, �̄ = 0.956388. (37)

In figure (1) and appendix B we present heat maps for the visualization of the regions of parameter space where the

model can fit accurately the experimental observations. We can conclude that, in order to fit the observations, |h̃u|

and |h̃d| must be higher than ⇠ 0.85, while |Ãu| and |Ãd| have to be smaller than ⇠ 10�5 and ⇠ 6⇥10�4 respectively.

Also, the phases �̄ and �̄ have to be close to 1 radian.
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, �̄ = 1.005637;

|h̃d| = 0.8693808, |Ãd| = 4.85842⇥ 10�4
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, �̄ = 0.956388. (37)

In figure (1) and appendix B we present heat maps for the visualization of the regions of parameter space where the

model can fit accurately the experimental observations. We can conclude that, in order to fit the observations, |h̃u|
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FIG. 1. Regions of the free parameter space where the model can fit accurately the experimental observations regarding the

CKM matrix. Dark regions are not compatible with observations at all, while the best fit point (BFP) is depicted with a star.

As one notices, in this benchmark, we are able to find a parameter space that fits the CKM observables with great

accuracy. We should remark that we have studied the quark mass matrices given in Eqn. (21) with the assumptions

mentioned but considering real Yukawa couplings. According to our results, the quark mass matrices have the Fritzsch

textures with an extra free parameter. In this parametrization, there is not enough CP-violation to reproduce the

Jarlskog invariant. As a consequence, we are analyzing the most general quark mass matrices given in Eqn.(21) with

complex Higgs vev’s and real Yukawa couplings, but this work is still in progress.

2. Lepton sector

According to the previous section, the alignment hH1i = v1, hH2i = iv2 and hH3i = v3 was chosen, then the charged

leptons and Dirac neutrinos get their masses. In addition, we consider the following alignment h�2i = h�1i, which is

also a solution of the scalar potential as was shown in appendix D, to pseudo Dirac neutrinos. So that
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Besides this, M2 = Diag.(M1,M2,M2).

Here, we ought to remark that the charged Yukawa couplings are assumed to be complex. Then, Me is parametrized

as

Me =

0

BB@

ae 0 0

0 Ae de

0 de Be

1

CCA , (40)

with Ae = ce + ibe and Be = ce � ibe. It follows that M̂e = Diag. (me,mµ,m⌧ ) = U
†
eLMeUeR with UeL = PeOe and

UeR = P
†
eOe where Pe is a diagonal matrix that contains phases, and Oe is an orthogonal matrix. As one can notice,
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there is one phase in the former matrix that takes place in the PMNS one. To see this, we build the bilineal M̂eM̂
†
e =

U
†
eLMeM

†
eUeL, then MeM

†
e contains one phase that is associated to the entry 23. For this reason, UeL = PeOe

such that Pe = Diag.(1, 1, ei⌘`), and Oe is performed explicitly by means of M̂e = Diag. (me,mµ,m⌧ ) = U
†
eLMeUeR.

In short, we have
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The ✓e free parameter is related to |Ae|, and is constrained by

tan ✓e =

s
|Ae|�mµ

m⌧ � |Ae|
, (42)

as a consequence m⌧ > |Ae| > mµ.

On the other hand, in the neutrino sector, we obtain
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where |MR| denotes the determinant of MR. In consequence, one performs A = MD(MT
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Finally, the e↵ective neutrino mass matrix, that comes from the ISSM M⌫ = MD(MT )�1
R M2M
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D, is given by
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B
0
⌫ = aD (�cD � dD � ibD) [M1XY1 +M2Y2 (W + Z)] ;

C⌫ =
h
d
2
D + (cD � ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD � ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

C
0
⌫ =

h
d
2
D + (cD + ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD + ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

D⌫ = 2cDdD

⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+
�
b
2
D + c

2
D + d

2
D

� ⇥
M1Y

2
1 + 2M2WZ

⇤
. (47)

We have to highlight that the number of parameters in the matrices A, ⌘ = AA
†
/2 and M⌫ might be greatly reduced

by assuming real Yukawa couplings. In addition to this, M⌫ might exhibit a peculiar feature, as we will see below.

The above mentioned mass matrices are parametrized as
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there is one phase in the former matrix that takes place in the PMNS one. To see this, we build the bilineal M̂eM̂
†
e =

U
†
eLMeM

†
eUeL, then MeM

†
e contains one phase that is associated to the entry 23. For this reason, UeL = PeOe

such that Pe = Diag.(1, 1, ei⌘`), and Oe is performed explicitly by means of M̂e = Diag. (me,mµ,m⌧ ) = U
†
eLMeUeR.

In short, we have

Oe =

0

BB@

1 0 0

0 cos ✓e sin ✓e

0 � sin ✓e cos ✓e

1

CCA . (41)

The ✓e free parameter is related to |Ae|, and is constrained by

tan ✓e =

s
|Ae|�mµ

m⌧ � |Ae|
, (42)

as a consequence m⌧ > |Ae| > mµ.

On the other hand, in the neutrino sector, we obtain

M
�1
R =

0

BB@

X �Y1 �Y1

�Y2 W Z

�Y2 Z W

1

CCA , (43)

with

X =
c
2
R

|MR|
; Y1 =

bRcR

|MR|
; Y2 =

b
0
RcR

|MR|
; W =

aRcR � bRb
0
R

|MR|
, Z =

bRb
0
R

|MR|
, (44)

where |MR| denotes the determinant of MR. In consequence, one performs A = MD(MT
R)

�1

A =

0

BB@

aDX �aDY2 �aDY2

(�cD � dD + ibD)Y1 dDZ + (cD � ibD)W dDW + (cD � ibD)Z

(�cD � dD � ibD)Y1 dDW + (cD + ibD)Z dDZ + (cD + ibD)W

1

CCA . (45)

Finally, the e↵ective neutrino mass matrix, that comes from the ISSM M⌫ = MD(MT )�1
R M2M

�1
R M

T
D, is given by

M⌫ =

0

BB@

A⌫ B⌫ B
0
⌫

B⌫ C
0
⌫ D⌫

B
0
⌫ D⌫ C⌫

1

CCA . (46)

with the following matrix elements

A⌫ = a
2
D

⇥
M1X

2 + 2M2Y
2
2

⇤
;

B⌫ = aD (�cD � dD + ibD) [M1XY1 +M2Y2 (W + Z)] ;

B
0
⌫ = aD (�cD � dD � ibD) [M1XY1 +M2Y2 (W + Z)] ;

C⌫ =
h
d
2
D + (cD � ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD � ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

C
0
⌫ =

h
d
2
D + (cD + ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD + ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

D⌫ = 2cDdD

⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+
�
b
2
D + c

2
D + d

2
D

� ⇥
M1Y

2
1 + 2M2WZ

⇤
. (47)

We have to highlight that the number of parameters in the matrices A, ⌘ = AA
†
/2 and M⌫ might be greatly reduced

by assuming real Yukawa couplings. In addition to this, M⌫ might exhibit a peculiar feature, as we will see below.

The above mentioned mass matrices are parametrized as
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FIG. 1. Regions of the free parameter space where the model can fit accurately the experimental observations regarding the

CKM matrix. Dark regions are not compatible with observations at all, while the best fit point (BFP) is depicted with a star.

As one notices, in this benchmark, we are able to find a parameter space that fits the CKM observables with great

accuracy. We should remark that we have studied the quark mass matrices given in Eqn. (21) with the assumptions

mentioned but considering real Yukawa couplings. According to our results, the quark mass matrices have the Fritzsch

textures with an extra free parameter. In this parametrization, there is not enough CP-violation to reproduce the

Jarlskog invariant. As a consequence, we are analyzing the most general quark mass matrices given in Eqn.(21) with

complex Higgs vev’s and real Yukawa couplings, but this work is still in progress.

2. Lepton sector

According to the previous section, the alignment hH1i = v1, hH2i = iv2 and hH3i = v3 was chosen, then the charged

leptons and Dirac neutrinos get their masses. In addition, we consider the following alignment h�2i = h�1i, which is

also a solution of the scalar potential as was shown in appendix D, to pseudo Dirac neutrinos. So that

Me =

0

BB@

ae 0 0

0 ce + ibe de

0 de ce � ibe

1

CCA , MD =

0

BB@

aD 0 0

0 cD � ibD dD

0 dD cD + ibD

1

CCA , MR =

0

BB@

aR bR bR

b
0
R cR 0

b
0
R 0 cR

1

CCA ; (38)

where

ae = y
e
1v3, ce = y

e
3v3, be = y

e
2v2, de = y

e
2v1,

aD = y
D
1 v3, cD = y

D
3 v3, bD = y

D
2 v2, dD = y

D
2 v1,

aR = y
R
1 h�3i, bR = y

R
2 h�1i, b

0
R = y

R
3 h�1i, cR = y

R
4 h�3i. (39)

Besides this, M2 = Diag.(M1,M2,M2).

Here, we ought to remark that the charged Yukawa couplings are assumed to be complex. Then, Me is parametrized

as

Me =

0

BB@

ae 0 0

0 Ae de

0 de Be

1

CCA , (40)

with Ae = ce + ibe and Be = ce � ibe. It follows that M̂e = Diag. (me,mµ,m⌧ ) = U
†
eLMeUeR with UeL = PeOe and

UeR = P
†
eOe where Pe is a diagonal matrix that contains phases, and Oe is an orthogonal matrix. As one can notice,
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there is one phase in the former matrix that takes place in the PMNS one. To see this, we build the bilineal M̂eM̂
†
e =

U
†
eLMeM

†
eUeL, then MeM

†
e contains one phase that is associated to the entry 23. For this reason, UeL = PeOe

such that Pe = Diag.(1, 1, ei⌘`), and Oe is performed explicitly by means of M̂e = Diag. (me,mµ,m⌧ ) = U
†
eLMeUeR.

In short, we have

Oe =

0

BB@
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0 cos ✓e sin ✓e

0 � sin ✓e cos ✓e

1

CCA . (41)

The ✓e free parameter is related to |Ae|, and is constrained by

tan ✓e =

s
|Ae|�mµ

m⌧ � |Ae|
, (42)

as a consequence m⌧ > |Ae| > mµ.

On the other hand, in the neutrino sector, we obtain

M
�1
R =

0

BB@

X �Y1 �Y1

�Y2 W Z

�Y2 Z W

1

CCA , (43)

with

X =
c
2
R

|MR|
; Y1 =

bRcR

|MR|
; Y2 =

b
0
RcR

|MR|
; W =

aRcR � bRb
0
R

|MR|
, Z =

bRb
0
R

|MR|
, (44)

where |MR| denotes the determinant of MR. In consequence, one performs A = MD(MT
R)

�1

A =

0

BB@

aDX �aDY2 �aDY2

(�cD � dD + ibD)Y1 dDZ + (cD � ibD)W dDW + (cD � ibD)Z

(�cD � dD � ibD)Y1 dDW + (cD + ibD)Z dDZ + (cD + ibD)W

1

CCA . (45)

Finally, the e↵ective neutrino mass matrix, that comes from the ISSM M⌫ = MD(MT )�1
R M2M

�1
R M

T
D, is given by

M⌫ =

0

BB@

A⌫ B⌫ B
0
⌫

B⌫ C
0
⌫ D⌫

B
0
⌫ D⌫ C⌫

1

CCA . (46)

with the following matrix elements

A⌫ = a
2
D

⇥
M1X

2 + 2M2Y
2
2

⇤
;

B⌫ = aD (�cD � dD + ibD) [M1XY1 +M2Y2 (W + Z)] ;

B
0
⌫ = aD (�cD � dD � ibD) [M1XY1 +M2Y2 (W + Z)] ;

C⌫ =
h
d
2
D + (cD � ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD � ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

C
0
⌫ =

h
d
2
D + (cD + ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD + ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

D⌫ = 2cDdD

⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+
�
b
2
D + c

2
D + d

2
D

� ⇥
M1Y

2
1 + 2M2WZ

⇤
. (47)

We have to highlight that the number of parameters in the matrices A, ⌘ = AA
†
/2 and M⌫ might be greatly reduced

by assuming real Yukawa couplings. In addition to this, M⌫ might exhibit a peculiar feature, as we will see below.

The above mentioned mass matrices are parametrized as



NEUTRINOS - ISSM AND CONTRIBUTION FROM LEPTONS

➤ Light neutrinos acquire mass through inverted seesaw 
 
 
 
 
 
 
 
 

➤ Then in the PMNS, 𝜂 is mixing between light and heavy scalars: 
 

➤ Neutrinoless double beta decay and charged LFV get extra 
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there is one phase in the former matrix that takes place in the PMNS one. To see this, we build the bilineal M̂eM̂
†
e =

U
†
eLMeM

†
eUeL, then MeM

†
e contains one phase that is associated to the entry 23. For this reason, UeL = PeOe

such that Pe = Diag.(1, 1, ei⌘`), and Oe is performed explicitly by means of M̂e = Diag. (me,mµ,m⌧ ) = U
†
eLMeUeR.

In short, we have
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1
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The ✓e free parameter is related to |Ae|, and is constrained by

tan ✓e =

s
|Ae|�mµ

m⌧ � |Ae|
, (42)

as a consequence m⌧ > |Ae| > mµ.

On the other hand, in the neutrino sector, we obtain

M
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1
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with

X =
c
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; Y1 =
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; Y2 =

b
0
RcR

|MR|
; W =

aRcR � bRb
0
R

|MR|
, Z =

bRb
0
R

|MR|
, (44)

where |MR| denotes the determinant of MR. In consequence, one performs A = MD(MT
R)

�1

A =

0

BB@

aDX �aDY2 �aDY2

(�cD � dD + ibD)Y1 dDZ + (cD � ibD)W dDW + (cD � ibD)Z

(�cD � dD � ibD)Y1 dDW + (cD + ibD)Z dDZ + (cD + ibD)W

1

CCA . (45)

Finally, the e↵ective neutrino mass matrix, that comes from the ISSM M⌫ = MD(MT )�1
R M2M

�1
R M

T
D, is given by

M⌫ =

0

BB@

A⌫ B⌫ B
0
⌫

B⌫ C
0
⌫ D⌫

B
0
⌫ D⌫ C⌫

1

CCA . (46)

with the following matrix elements

A⌫ = a
2
D

⇥
M1X

2 + 2M2Y
2
2

⇤
;

B⌫ = aD (�cD � dD + ibD) [M1XY1 +M2Y2 (W + Z)] ;

B
0
⌫ = aD (�cD � dD � ibD) [M1XY1 +M2Y2 (W + Z)] ;

C⌫ =
h
d
2
D + (cD � ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD � ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

C
0
⌫ =

h
d
2
D + (cD + ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD + ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

D⌫ = 2cDdD

⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+
�
b
2
D + c

2
D + d

2
D

� ⇥
M1Y

2
1 + 2M2WZ

⇤
. (47)

We have to highlight that the number of parameters in the matrices A, ⌘ = AA
†
/2 and M⌫ might be greatly reduced

by assuming real Yukawa couplings. In addition to this, M⌫ might exhibit a peculiar feature, as we will see below.

The above mentioned mass matrices are parametrized as

5

decoupled from the rest of the neutrino sector; in the minimal version of this model [28], s is a candidate to dark

matter. In the current work, we will just focus on the ISSM and its implications on the masses and mixings, as well

as the related phenomenology on neutrinoless double-beta decay and CLFV processes.

As is well known, M⌫ is diagonalized by U⌫ such that U†
⌫M⌫U

⇤
⌫ = M̂⌫ with M̂⌫ = Diag.

⇣
M̂⌫ , M̂R

⌘
where M̂⌫ and

M̂R are 3 ⇥ 3 and 6 ⇥ 6 diagonal matrices that contain the active physical and heavy neutrino masses, respectively.

Assuming a hierarchy among the mass matrices MR > MD > M2, in the standard framework, we have [99, 100]

U⌫ ⇡

 �
13⇥3 �

1
2AA

†�
A

�A
† �

16⇥6 �
1
2A

†
A
�

! 
U⌫ 0

0 VR

!
, (4)

where A = MD(MR)�1 is a 3 ⇥ 6 matrix and stands for the mixing between the light and heavy neutrino sector.

From Eqn.(3), we can write explicitly A =
�
(MD(MT

R)
�1

M2M
�1
R )3⇥3 (MD(MT

R)
�1)3⇥3

�
⇡ ((0)3⇥3 (A)3⇥3)

with A = MD(MT
R)

�1.

In addition, the U⌫ matrix diagonalizes the M⌫ e↵ective mass matrix, U†
⌫M⌫U

⇤
⌫ = M̂⌫ , that is given by

M⌫ = MD

�
M

T
R

��1
M2

�
M

�1
R

�
M

T
D. (5)

The above expression is known as the inverse see-saw mechanism [16–18], and it has a double suppression due to the

MR as well as the M2 small mass that breaks lepton number, which is restored in the limit M2 ! 0 [98].

On the other hand, the weak charge-current Lagrangian in this extension is given as

�L =
gL
p
2
W

µ
L l̄L�µ⌫L + h.c. (6)

After diagonalizing the M⌫ neutrino mass matrix, in the mass basis, the above expression is replaced by

�L =
gL
p
2
W

µ
L
¯̃
lL�µ [U⌫̃L +K(ñR)

c] + h.c., (7)

where there is an extra contribution to the PMNS matrix due to the ⌘ = AA
†
/2 mixing between the active and

sterile neutrinos so that U = U
†
l (1� ⌘)U⌫ . Along with this, the neutrinoless double beta decay and the charged

lepton flavor violation processes will have also an extra term due to the heavy neutrinos, in the standard notation

K = U
†
lAVR, which is a 3⇥ 6 matrix.

As one can notice, the VR matrix diagonalizes the MR matrix such that V†
RMRV

⇤
R = M̂R. Explicitly, we have

V
†
RMRV

⇤
R = M̂R ⇡

 
V

†
1

⇥
�MR + 1

2M2

⇤
V

⇤
1 0

0 V
†
2

⇥
MR + 1

2M2

⇤
V

⇤
2

!
, (8)

where MR has been assumed to be symmetric. As it was shown in [72], VR is given as

VR ⇡
1
p
2

0

@ 1+
M2M

�1
R

4 1�
M2M

�1
R

4

�1+
M2M

�1
R

4 1+
M2M

�1
R

4

1

A
 
V1 0

0 V2

!
. (9)

B. Flavored B � L model

Having described briefly the B�L gauge model [26–28], where the ISSM gives rise to the active neutrino masses at

the TeV scale, we focus on the mixing patterns. To do this, we consider the S3 symmetry to drive mainly the mixing.

As it is well known, the mentioned non-abelian discrete group has three irreducible representations: two singlets 1S
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B. Flavored B � L model

Having described briefly the B�L gauge model [26–28], where the ISSM gives rise to the active neutrino masses at

the TeV scale, we focus on the mixing patterns. To do this, we consider the S3 symmetry to drive mainly the mixing.

As it is well known, the mentioned non-abelian discrete group has three irreducible representations: two singlets 1S

4

of thought, testable mechanisms have been proposed in the literature such as the type II see-saw, radiative, linear, and

inverse see-saw mechanisms [97]. Each one has its particular features and matter content. As we already commented,

in this paper we focus on the ISSM in the B � L gauge model [26–28]. In this framework, in addition to the SM

particles, three right-handed (NR) and six sterile (si=1,2,3 and S
i=1,2,3) neutrinos are added to the matter content.

Along with these, a � Higgs singlet field is added to provide mass to the pseudo Dirac neutrinos as well as to the six

sterile neutrinos by means of non-renormalizable terms 1. In addition, it is worth commenting that there is an extra

Z2 symmetry that prevents the s (Z = �1) sterile neutrino to couple to the rest of the particles.

Under the B � L gauge model, the complete matter content has the following charges.

Matter Quarks Leptons Sterile Neutrino (s) Sterile Neutrino (S) Higgs �

B-L 1/3 �1 �2 2 0 �1

TABLE I. Matter content in the B � L model

The Yukawa mass term in this framework is given as

�L = y
d
Q̄HdR + y

u
Q̄H̃uR + y

l
L̄HlR + y

D
L̄H̃NR + y

R(NR)c�S +
1

2
M1(s)cs+

1

2
M2(S)cS + h.c., (1)

where Q = (uL, dL)
T , L = (⌫L, lL)

T and H =
�
H

+
, H

0
�T

denote the quark, lepton, and Higgs doublet under SU(2)L,

respectively; with H̃i = i�2H
⇤
i and �2 the second Pauli matrix, and we have omitted the family indices in the Yukawa

mass terms.

Regarding Eqn.(1), notice that the last two mass terms break explicitly the B � L gauge symmetry, however, they
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Under the aforementioned assumption the following parameters are real: a1,2, a⌫ , c⌫ ; A⌫ and D⌫ . In this benchmark,

we point out that M⌫ is identified with the Cobimaximal matrix [77–93]. At the same time, the model predicts that

the ⌘ matrix has peculiar features, namely, the entries ⌘12 (⌘22) and ⌘13 (⌘33) have the same magnitude. This fact

goes against the current bounds [112, 113] as it is shown below
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Going back to the light neutrino sector, as it has been shown, M⌫ is diagonalized by U⌫ = U↵O23O13O12U� such

that M̂⌫ = Diag. (|m1|, |m2|, |m3|) = U
†
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⌫ with U↵ = Diag.
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These stand for unphysical and Majorana phases, respectively. In addition, we have explicitly
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By considering ⇢23 = ⇡/4, � = �⇡/2, ↵1 = 0 = ↵3 and ↵2 = ⇡; also, �1 = 0 and �2 = ⇡/2. With all of this, one

obtains
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In flavored models where the charged lepton mass matrix is diagonal, and the active neutrino sector is controlled

by the Cobimaximal pattern, the PMNS mixing comes from the aforementioned pattern whose predictions on the

atmospheric, reactor and the Dirac CP-violating phase are ⇡/4, 6= 0 and 3⇡/2, respectively. These values are in

tension with the current experimental data, as one can see in [114–116].

Once the Cobimaximal mixing is built, the M⌫ = U⌫M̂⌫U
T
⌫ matrix elements can be rewritten in terms of the

physical neutrino masses as

A⌫ = |m3| sin
2
⇢13 + cos2 ⇢13

⇥
|m1| cos

2
⇢12 + |m2| sin

2
⇢12

⇤
;

B⌫ =
cos ⇢13
p
2

⇥
(|m1|� |m2|) cos ⇢12 sin ⇢12 + i sin ⇢13

�
|m3|� |m1| cos

2
⇢12 � |m2| sin

2
⇢12

�⇤
;

C⌫ =
1

2

h
|m2| (cos ⇢12 � i sin ⇢13 sin ⇢12)

2 + |m1| (sin ⇢12 + i cos ⇢12 sin ⇢13)
2
� |m3| cos

2
⇢13

i
;

D⌫ =
1

2

⇥
|m2|

�
cos2 ⇢12 + sin2 ⇢13 sin

2
⇢12

�
+ |m1|

�
sin2 ⇢12 + cos2 ⇢12 sin

2
⇢13

�
+ |m3| cos

2
⇢13

⇤
. (52)

On the other hand, in the current framework, the PMNS matrix is given by U = U
†
l (1� ⌘)U⌫ where the involved

matrices have been already calculated. Let us point out that the PMNS matrix is not unitary due to the ⌘ contribution

but it is irrelevant. Nonetheless, the charged lepton sector modifies the Cobimaximal predictions on the atmospheric
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there is one phase in the former matrix that takes place in the PMNS one. To see this, we build the bilineal M̂eM̂
†
e =

U
†
eLMeM

†
eUeL, then MeM

†
e contains one phase that is associated to the entry 23. For this reason, UeL = PeOe

such that Pe = Diag.(1, 1, ei⌘`), and Oe is performed explicitly by means of M̂e = Diag. (me,mµ,m⌧ ) = U
†
eLMeUeR.

In short, we have

Oe =

0

BB@

1 0 0

0 cos ✓e sin ✓e

0 � sin ✓e cos ✓e

1

CCA . (41)

The ✓e free parameter is related to |Ae|, and is constrained by

tan ✓e =

s
|Ae|�mµ

m⌧ � |Ae|
, (42)

as a consequence m⌧ > |Ae| > mµ.

On the other hand, in the neutrino sector, we obtain

M
�1
R =

0

BB@

X �Y1 �Y1

�Y2 W Z

�Y2 Z W

1

CCA , (43)

with

X =
c
2
R

|MR|
; Y1 =

bRcR

|MR|
; Y2 =

b
0
RcR

|MR|
; W =

aRcR � bRb
0
R

|MR|
, Z =

bRb
0
R

|MR|
, (44)

where |MR| denotes the determinant of MR. In consequence, one performs A = MD(MT
R)

�1

A =

0

BB@

aDX �aDY2 �aDY2

(�cD � dD + ibD)Y1 dDZ + (cD � ibD)W dDW + (cD � ibD)Z

(�cD � dD � ibD)Y1 dDW + (cD + ibD)Z dDZ + (cD + ibD)W

1

CCA . (45)

Finally, the e↵ective neutrino mass matrix, that comes from the ISSM M⌫ = MD(MT )�1
R M2M

�1
R M

T
D, is given by

M⌫ =

0

BB@

A⌫ B⌫ B
0
⌫

B⌫ C
0
⌫ D⌫

B
0
⌫ D⌫ C⌫

1

CCA . (46)

with the following matrix elements

A⌫ = a
2
D

⇥
M1X

2 + 2M2Y
2
2

⇤
;

B⌫ = aD (�cD � dD + ibD) [M1XY1 +M2Y2 (W + Z)] ;

B
0
⌫ = aD (�cD � dD � ibD) [M1XY1 +M2Y2 (W + Z)] ;

C⌫ =
h
d
2
D + (cD � ibD)2

i ⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD � ibD)
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M1Y

2
1 + 2M2WZ

⇤
;

C
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d
2
D + (cD + ibD)2

i ⇥
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2
1 +M2

�
W

2 + Z
2
�⇤

+ 2dD (cD + ibD)
⇥
M1Y

2
1 + 2M2WZ

⇤
;

D⌫ = 2cDdD

⇥
M1Y

2
1 +M2

�
W

2 + Z
2
�⇤

+
�
b
2
D + c

2
D + d

2
D

� ⇥
M1Y

2
1 + 2M2WZ

⇤
. (47)

We have to highlight that the number of parameters in the matrices A, ⌘ = AA
†
/2 and M⌫ might be greatly reduced

by assuming real Yukawa couplings. In addition to this, M⌫ might exhibit a peculiar feature, as we will see below.

The above mentioned mass matrices are parametrized as
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and Dirac CP-violating phase, as we already commented. In broad terms U ⇡ U
†
eU⌫ with matrix elements

U11 = (U⌫)11;

U12 = (U⌫)12;

U13 = (U⌫)13;

U21 = cos ✓e(U⌫)21 � sin ✓e(U⌫)31 e
�i⌘` ;

U22 = cos ✓e(U⌫)22 � sin ✓e(U⌫)32 e
�i⌘` ;

U23 = cos ✓e(U⌫)23 � sin ✓e(U⌫)33 e
�i⌘` ;

U31 = sin ✓e(U⌫)21 + cos ✓e(U⌫)31 e
�i⌘` ;

U32 = sin ✓e(U⌫)22 + cos ✓e(U⌫)32 e
�i⌘` ;

U33 = sin ✓e(U⌫)23 + cos ✓e(U⌫)33 e
�i⌘` . (53)

Then, the mixing angles are obtained by comparing our theoretical formula with the standard parametrization of the

PMNS.

sin2 ✓13 = |(U)13|
2 = sin2 ⇢13;

sin2 ✓23 =
|(U)23|2

1� |U13|
2
=

1

2
[1 + sin 2✓e cos ⌘`] ;

sin2 ✓12 =
|(U)12|2

1� |U13|
2
= sin2 ⇢12. (54)

Also, the Jarlskog invariant can be found analytically. As one can verify in a straightforward way, using Eqs.(51)-

(54), we obtain

sin �CP =
Im [(U)23(U)⇤13(U)12(U)⇤22]

1
8 sin 2✓12 sin 2✓23 sin 2✓13 cos ✓13

;

sin �CP = �
cos 2✓ep

1� sin2 2✓e cos2 ⌘`
. (55)

Some comments are here in order: the reactor and solar angles are associated directly to the ⇢13 = ✓13 and ⇢12 = ✓12

parameters, respectively. Besides this, as one notices, the atmospheric angle and Dirac CP-violating phase are

deviated from ⇡/4 and 3⇡/2, respectively. The ✓e (or |Ae|) and ⌘` free parameters control such deviations which can

be computed numerically.

In order to do this, the charged lepton masses [117] will be considered as input, together with the reactor and Dirac

phases. At the electroweak scale, we have

me = 0.48307± 0.00045 MeV, mµ = 101.766± 0.023 MeV, m⌧ = 1728.56± 0.28 MeV. (56)

In addition, the experimental neutrino data are given as follows [114]

sin2 ✓23 = 0.434� 0.610, �CP /
� = 128� 359; Normal ordering

sin2 ✓23 = 0.433� 0.608, �CP /
� = 200� 353. Inverted ordering (57)

Taking Eqs.(55) and (54), we vary arbitrarily the free parameters in their allowed range such that these fit the

observables at 3�,

�CP (|Ae|, ⌘`) = arcsin[�
cos 2✓ep

1� sin2 2✓e cos2 ⌘`
],

sin2 ✓23 (|Ae|, ⌘`) =
1

2
[1 + sin 2✓e cos ⌘`] . (58)
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III. PHENOMENOLOGY ASPECTS

A. Charged Lepton Flavor Violation Decays

The `↵ ! `�� charged lepton violation decays [118–124] are interesting processes where the model may be tested.

Here, the light and heavy neutrinos can mediate the aforementioned decays in which the former one contribution

is suppressed by the active neutrino masses. Nonetheless, the latter ones can enhance the lepton violation decay

rates [123].

Then, for the active and heavy neutrinos, the branching ratio of `↵ ! `�� [122] is given by

BR (`↵ ! `��) ⇡
↵
3
W sin2 ✓W
256⇡2

m
4
`↵

m
4
W

m`↵

�`↵

����
3X

i=1

U↵iU
⇤
�iG�

✓
m

2
i

m
2
W

◆
+

6X

j=1

K↵jK
⇤
�jG�

 
m

2
jR

m
2
W

!����
2

(59)

where �`↵ and m`↵ stand for the total width and the mass of the `↵ decaying lepton. In here, U and K are the PMNS

and mixing matrix between heavy and light neutrinos, respectively. The function G�(x) has the following form

G�(x) = �
2x3

� 5x2
� x

4(1� x)3
�

3x3

2(1� x)4
lnx (60)

with x(i,j) = (m2
i ,m

2
jR)/m

2
W .

The U and K mixing matrices have already been calculated analytically in Eqn.(53) and Eqn.(67), respectively.

For the numerical calculations we compute equation (59) directly. At this point, it is convenient to rewrite the matrix

MD in terms of the eigenvalues of MDM
†
D, we find for the squared elements:

a
2
D = m

2
1D;

c
2
D =

1

4
(�4b2D + (m2D �m3D)2);

d
2
D =

1

4
(m2D +m3D)2. (61)

In this manner, we can numerically obtain the K matrix as well as the predicted active neutrino masses, which are

obtained from the e↵ective neutrino mass matrix (5). Using the results from appendix A we can now substitute all

expressions for the free parameters in (45) to find the matrix A, with its elements written as functions of the mass

parameters. Since Ul depends on the lepton free parameters, we see that the branching ratios are functions of the set

of free parameters {|Ae|, ⌘`,mjR,miD, bR, bD}, (j = 1� 4, i = 1� 3), so that they are correlated with the observables

discussed in the lepton sector section. To take into account these correlations, we define a log likelihood function as:

logL = logL�CP + logL✓23 + logL�m2
21

+ logL�m2
31

+ logLmtot + logLµ!e� + logL⌧!e� + logL⌧!µ� (62)

We take the first five terms as Gaussian likelihoods centered at their experimental values with widths equal to their

corresponding experimental errors, here mtot refers to the sum of the active neutrino masses which are obtained from

the e↵ective neutrino mass matrix (5), and we take for this observable the interval 0.06 eV < mtot < 0.12 eV reported

in [108] based on current experiments and cosmological observations. On the other hand, since we have experimental

upper limits on the decaying branching ratios, the likelihoods for the lepton flavor violation observables are defined

as:

Lµ!e� =

8
<

:

1p
2⇡�µ!e�

, if BR (µ ! e�) < BR
exp (µ ! e�)

1p
2⇡�µ!e�

exp
h
�

1
2

(BRµ!e��BRexp
µ!e�)

2

�2
µ!e�

i
, if BR (µ ! e�) > BR

exp (µ ! e�) .
(63)
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Lµ!e� =
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2⇡�µ!e�
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2⇡�µ!e�
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exp (µ ! e�) .
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Parameter Normal ordering Inverted ordering

|Ae| 0.1879305GeV 0.1075106GeV

⌘` 1.472408deg 5.065276deg

M1 1.48956GeV 1.307211GeV

M2 0.08534454GeV 0.07308043GeV

m1R 8478.9329⇥ 106GeV 506.9580⇥ 103GeV

m2R 916.4922GeV 865.4204GeV

m4R 8478.933⇥ 106GeV 506.9589⇥ 103GeV

m1D 7.860081GeV 0.1260918GeV

m2D 9.345837GeV 1.53258GeV

m3D 6.32177GeV 8.889641GeV

bR �2484.761⇥ 106GeV �3429.706⇥ 106GeV

bD 0.5637148GeV 3.023898GeV

sin2 ✓23 0.522 0.5205012

�CP 243.5deg 276.4deg

✓e 13.3deg 3.4deg

m⌫1 0.01749147eV 0.04912271eV

m⌫2 0.01949462eV 0.04986874eV

m⌫3 0.05301888eV 10�13eV

BR (µ ! e�) 1.155⇥ 10�25 2.492⇥ 10�45

BR (⌧ ! e�) 2.626⇥ 10�26 4.216⇥ 10�46

BR (⌧ ! µ�) 4.444⇥ 10�27 2.485⇥ 10�23

TABLE III. Numerical values of the free and derived parameters, and some observables at the best fit point.

with similar expressions for the rest of the CLFV observables. Our results for the values of the free parameters and

some observables at the best fit point are shown in table III.

We present our main results in figures (2) and (3), other plots can be found in appendix (C).

B. Neutrinoless Double Beta Decay

An observable that can be calculated straight away is the mee mass that takes place in the neutrinoless double

beta decay [125–129]. The observation of such process would be a direct signal that active neutrinos are Majorana

fermions. So far, there is an upper limit |mee| < 0.06� 0.2 eV given by the GERDA collaboration [130].

In the ISSM framework, the heavy neutrinos contribute to the e↵ective neutrino mass [126] as follows

��mee

�� ⇡
����

3X

i=1

(U)2ei mi +
6X

i=1

(K)2ei p
2 miR

p2 �m
2
iR

����;

⇡

����
3X

i=1

(U)2ei mi � p
2

6X

i=1

(K)2ei
miR

����, (64)

where U and K have been already defined. Here, p2 ⇡ �(125 MeV)2 stands for the virtual momentum of the neutrino,

and we have assumed that miR � p
2 in the second term.

In the above expression, the first term is the usual contribution due to the lightest neutrinos, explicitly we have

m
⌫
ee = cos2 ✓13

�
|m1| cos

2
✓12 + |m2| sin

2
✓12

�
+ |m3| sin

2
✓13, (65)
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FIG. 2. Regions of the free parameters where the model can fit accurately the experimental observation regarding the

observables in the lepton sector (left panels), the right panels show the values of sin2 ✓23 and �CP predicted by the model that

are most compatible with current observations. Top (bottom) panel is for Inverted (Normal) Hierarchy. Dark regions are not

compatible with observations at all, while the best fit point (BFP) is depicted with a star.

which can be calculated knowing the absolute value of the neutrino masses, as well as the solar and reactor mixing

angles. The available information on the neutrino masses are given by the squared mass di↵erence �m
2
21 = |m2|

2
�

|m1|
2 and �m

2
31 = |m3|

2
� |m1|

2 (�m
2
13 = |m1|

2
� |m3|

2) for the normal (inverted) ordering [114, 115]. Fixing two

neutrino masses in terms of the lightest one, we get for the normal and inverted ordering, respectively

|m3|
2 = �m

2
31 + |m1|

2
, |m2|

2 = �m
2
21 + |m1|

2;

|m2|
2 = �m

2
21 +�m

2
13 + |m3|

2
, |m1|

2 = �m
2
13 + |m3|

2
. (66)

The second term, in the |mee| e↵ective neutrino expression (64), has the contribution of the heavy sector. As was

shown in section II, K = U
†
`AVR so that

K ⇡
1
p
2
U

†
`A

⇣
�V1 V2

⌘
, (67)

NO

IO

charged leptons neutrinos
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FIG. 3. Predicted branching fractions as functions of ✓e. Dark regions are not compatible with observations at all, while the

best fit point (BFP) is depicted with a star.

where V(1,2) have been obtained in appendix A. In addition to this, U` and A were obtained in II B 2.

Notice that in the expression for |mee| only the matrix elements (K)ei occur, therefore this observable does not

depend on the lepton sector free parameters discussed in the previous section. For the numerical evaluation of equation

(64) we again use the results of appendix A and calculate the value of this observable for every point of the set of data

obtained in the previous subsection. This is done in order to check that the region of the parameter space consistent

with the CLFV observables and equation (62) is also compatible with the GERDA interval. In figure 4 we show these

regions for both neutrino hierarchies. We can see that the numerical results are fully compatible with the GERDA

limit.

IV. CONCLUSIONS

The S3 ⌦ Z2 discrete symmetry has been studied in several models beyond the SM to accommodate the fermion

mixings. In this work, said symmetry was explored in the B �L gauge model which has the peculiarity of explaining

the small active neutrino masses by means of the testable ISSM. To attempt to understand the CKM and PMNS

patterns, a scalar extension was realized such that three Higgs doublets and singlets were included in the matter

content, and under the flavor symmetry, the quark and the scalar sectors are treated in a di↵erent manner than the

leptons. Along with this, by considering complex vev’s on the Higgs doublets and certain assumptions on the Yukawa

couplings for the quark and lepton sector, our findings are the following.

In the quark sector, we considered a benchmark where the mass matrices acquire adequate textures which provide

a theoretical CKM matrix with six free parameters. An analytical study allows us to obtain the Gatto-Sartori-Toni

relations as a limiting case for specific values of the free parameters. Motivated by this, a numerical calculation
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To derive the cobimaximal leptonic mixing pattern, non-Abelian discrete groups with irreducible triplet representa-

tions—such as A4 [87, 88] and �(27) [78–80, 89] have been employed in extensions of the SM. Besides, discrete groups

having doublets as irreducible representations such as S3 [23, 33, 90, 91] have also been used to derive the cobimaximal

mixing pattern. In this work we demonstrate that the Q6 flavor symmetry can successfully reproduce the cobimaximal

leptonic mixing pattern within the framework of a two loop level radiative seesaw neutrino mass model. To the best of

our knowledge our model corresponds to the first implementation of the cobimaximal leptonic mixing pattern within

the framework of a Q6 discrete flavor group. Then, we propose an extended 3 + 1 Higgs doublet model featuring

the cobimaximal mixing pattern for the lepton mixings. Our theory is based on the spontaneously broken Q6 family

symmetry, which is suplemmented by the Z2 ⇥Z4 symmetry. The Q6 and Z4 symmetries are sponetaneously broken,

whereas the Z2 symmetry is preserved. We also assume that the spontaneous breaking of the Z4 symmetry gives

rise to a preserved eZ2 symmetry. In the model under consideration, the tiny active neutrino masses are radiatively

generated at two loop level, thanks to preserved Z2 and eZ2 discrete symmetries which guarantee the stability of dark

matter candidates as well as the radiative nature of the two loop seesaw mechanism.

The content of this paper goes as follows. In section II we explain the proposed model specifying its symmetry

and particle content. The implications of the model in quark masses and mixings are described in section III. In

section IV we discuss the consequences of the model in lepton masses and mixings. The model scalar potential is

analyzed in section V, which also provides a discussion about the quasialignment limit. The dark scalar sector and

the consequences of the model in Dark Matter are analyzed in section VI. We state our conclusions in section VII.

II. THE MODEL

Our proposed model corresponds to an extended 4HDM theory where the SM gauge symmetry is enlarged by the

inclusion of the Q6 family symmetry [53–64] and the Z2 ⇥ Z4 discrete group. The SM particle content of the model

under consideration is augmented by the inclusion of right handed Majorana neutrinos and several electrically neutral

gauge singlet scalars. In our proposed model, Q6 is completely broken, Z2 is preserved and the Z4 symmetry is

spontaneously broken down to a remnant conserved eZ2 symmetry. The full symmetry of the model experiences the

following spontaneous symmetry breaking scheme:

G = SU(3)C ⇥ SU (2)
L
⇥ U (1)

Y
⇥Q6 ⇥ Z4 ⇥ Z2

v�,v⇢,v⇠
�����!

SU(3)C ⇥ SU (2)
L
⇥ U (1)

Y
⇥ eZ2 ⇥ Z2

v1,v2,v3
�����!

SU(3)C ⇥ U (1)
Q
⇥ eZ2 ⇥ Z2, (4)

We assume that the Z4 symmetry is spontaneously broken to a preserved matter parity symmetry eZ2 defined with

charges given as (�1)QZ4+2s where QZ4 and s are the Z4 charge (in additive notation) and spin of the particle under

consideration, respectively. The preserved eZ2 ⇥ Z2 symmetry ensures the radiative nature of the radiative seesaw

mechanism at two loop level that generates the tiny masses of the active neutrinos.

In order to generate three level masses for the SM charged fermions and two loop level masses for light active

neutrinos, the scalar sector of our proposed is composed of three active SU(2) scalar doublets, namely Hi (i = 1, 2, 3),

one inert SU(2) scalar doublet H4 and six electrically neutral scalar singlets '
n
, ⇠

n
(n = 1, 2), �, ⇢. Moreover,

the implementation of the radiative seesaw mechanism that produces the tiny neutrino masses requires to extend the

fermionic spectrum of the SM by including the right handed Majorana neutrinos in singlet and doublet representations

of the Q6 discrete group, as shown in Table I which displays the fermionic particle content with their transformations

under the SU(3)C ⇥ SU (2)
L
⇥ U (1)

Y
⇥ Q6 ⇥ Z4 ⇥ Z2 group. It is worth mentioning that the scalar fields Hn and

⇠
n
are grouped in the Q6 doublets H = (H1, H2), ⇠ = (⇠

1
, ⇠

2
), whereas the remaining scalar fields are assigned as Q6

singlets. The scalar particle content and their assignments under the SU(3)C⇥SU (2)
L
⇥U (1)

Y
⇥Q6⇥Z4⇥Z2 group

are displayed in Table II. As shown in Table II, the scalar fields H4 and '
2
are charged under under the preserved Z2

symmetry, whereas H4 and '
1
have Z4 charges corresponding to non trivial charges under the remnant eZ2 symmetry.

4

qL q3L uR u3R dR d3R l1L lL e1R eR N1R NR

SU(3)C 3 3 3 3 3 3 1 1 1 1 1 1

SU(2)L 2 2 1 1 1 1 1 2 1 1 1 1

U(1)Y 1
6

1
6

2
3

2
3 � 1

3 � 1
3

1
2

1
2 �1 �1 0 0

Q6 22 1�+ 22 1�+ 22 1�+ 1�+ 22 1�+ 22 1�+ 22

Z2 0 0 0 0 0 0 0 0 0 0 1 1

Z4 0 0 0 0 0 0 0 0 0 0 1 1

Table I: Fermion content with the SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥Q6 ⇥ Z2 ⇥ Z4 assignments.

H H3 H4 '1 '2 � ⇠ ⇢

SU(3)C 1 1 1 1 1 1 1 1

SU(2)L 2 2 2 1 1 1 1 1

U(1)Y 1
2

1
2

1
2 0 0 0 0 0

Q6 21 1++ 1++ 1++ 1++ 1++ 21 1��

Z2 0 0 1 0 1 0 0 0

Z4 0 0 1 1 2 2 2 2

Table II: Scalar content with the SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥Q6 ⇥ Z2 ⇥ Z4 assignments.

Thus, the scalar fields H4, '1
and '

2
do not acquire vacuum expectation values then forbidding tree and one loop

level masses for active neutrinos and allowing these masses to be generated at two loop level. Furthermore, as follows

from Table I, the right handed Majorana neutrinos are also charged under the preserved Z2 ⇥
eZ2. Consequently, due

to the preserved Z2 ⇥
eZ2 symmetry, our model has stable dark matter candidates, one will be the lightest among the

Z2 fields, the second one will be the lightest among the eZ2 fields and third one will correspond to the particle with

non trivial Z2 ⇥
eZ2 charge and lowest mass. Thus our model have a multicomponent dark matter which implies that

the resulting relic density will be the sum of the relic densities generated by these three DM candidates. A detailed

analysis of the consequences in the model in dark matter will be performed in section DM. In order to get a nearly

cobimaximal mixing pattern of lepton mixings, we consider the following VEV configuration for the Q6 doublet scalar:

h⇠i = v⇠

�
e
i✓
, e

�i✓
�
, (5)

which is shown in Appendix B to be consistent with the scalar potential minimization conditions for a large region of

parameter space.

With the above specified particle content and symmetries, the following Yukawa terms arise:

LY = y1u

⇣
q
L
eH3uR

⌘

1++

+ y2u

⇣
q
L
eH
⌘

1�+

u3R + y3uq3L

⇣
eHuR

⌘

1�+

+ y4uq3L
eH3u3R

+y1d (qLH3dR)1++
+ y2d (qLH)1�+

d3R + y3dq3L (HdR)1�+
+ y4dq3LH3d3R

+y
l

1
l1LH3e1R + y

l

2
l1L (HeR)1�+

+ y
l

3

�
lLH

�
1�+

e1R + y
l

4

�
lLH3eR

�
1++

+y1⌫ l1L
eH4N1R + y2⌫

⇣
lL

eH4NR

⌘

1++

+y1NN1R�N
C

1R
+ y2N

⇣
NRN

C

R

⌘

21

⇠ + y3N

⇣
NRN

C

R

⌘

1��
⇢+ y4N

h
(NR⇠)1�+

N
C

1R
+ h.c.

i
(6)

After the spontaneous breaking of the Q6 ⇥ Z4 symmetry, the above given Yukawa interactions take the following

Z2,Z2 will allow for 
3 DM candidates

3 Hi doublets + 1H4 inert doublet + 6 scalar neutral singlets + 3NR

←

→

→

High energies

High energies←
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form:

LY = y1u

h
q
1L

eH3u2R � q
2L

eH3u1R

i
+ y2u

h
q
1L

eH1u3R + q
2L

eH2u3R

i
+ y3uq3L

h
eH1u1R + eH2u2R

i
+ y4uq3L

eH3u3R

+y1d [q1LH3d2R � q
2L
H3d1R] + y2d [q1LH1d3R + q

2L
H2d3R] + y3dq3L [H1d1R +H2d2R] + y4dq3LH3d3R

+y
l

1
l1LH3e1R + y

l

2
l1L [H1e2R +H2e3R] + y

l

3

⇥
l2LH1 + l3LH2

⇤
e1R + y

l

4

⇥
l2LH3e3R � l3LH3e2R

⇤

+y1⌫ l1L
eH4N1R + y2⌫

h
l2L

eH4N3R � l3L
eH4N2R

i
+ y1NN1R�N

C

1R
+ y2N

h
N2RN

C

2R
⇠
2
+N3RN

C

3R
⇠
1

i

+y3N

h
N2R⇢N

C

3R
+N3R⇢N

C

2R

i
+ y4N

h
(N2R⇠1 +N3R⇠2)N

C

1R
+ h.c.

i
, (7)

To close this section we provide a concise and qualitative discussion of the implications of our model in charged lepton

flavor violation. Charged lepton flavor violating decays like for instance µ ! e� will receive radiative contributions

at one loop level mediated by neutral scalars and charged leptons as well as by charged scalars (arising from the inert

doublet H4) and right handed neutrinos. For an appropiate region of parameter space, which will imply small values

of the flavor changing neutral Yukawa couplings involving electron and muon, not larger than about 10�6 [92, 93]

and masses of the charged scalars arising from inert doublet H4 larger than several TeVs [94, 95], the charged lepton

flavor violating decay µ ! e� will acquire rates below its current experimental limit of 3.1 ⇥ 10�13 [96]. A detailed

numerical analysis of the implications of the model in charged lepton flavor violation is beyond the scope of this work

and will be presented elsewhere.

III. QUARK MASSES AND MIXINGS.

From the quark Yukawa interactions, we find that the up and down quark mass matrices have the following form

Md =

0

B@
0 y

d

1
hH

0

3
i y

d

2
hH

0

1
i

�y
d

1
hH

0

3
i 0 y

d

2
hH

0

2
i

y
d

3
hH

0

1
i y

d

3
hH

0

2
i y

d

4
hH

0

3
i

1

CA , Mu =

0

B@
0 y

u

1
hH̃

0

3
i y

u

2
hH̃

0

1
i

�y
u

1
hH̃

0

3
i 0 y

u

2
hH̃

0

2
i

y
u

3
hH̃

0

1
i y

u

3
hH̃

0

2
i y

u

4
hH̃

0

3
i

1

CA . (8)

The above mass matrices possess implicitly the NNI textures, to show it, we take the VEV alignment hH
0

1
i = 0,

hH
0

2
i = v2p

2
and hH

0

3
i = v3p

2
, which is consistent with the scalar potential minimization conditions for a large region

of parameter space, as shown in Appendix B. Then, the quark mass matrices are parameterized as follows

Mq =

0

B@
0 Aq 0

�Aa 0 bq

0 cq Fq

1

CA , (9)

where q = u, d. Both mass matrices are diagonalized by the Uq(L,R) unitary matrices such that U
†
qL
MqUqR = M̂q

with M̂q = Diag. (mq1 ,mq2 ,mq3) being the physical quark masses. In order to obtain the CKM matrix, let us calculate

the UqL matrix by means the bilineal form M̂qM̂
†
q
= U

†
qL
MqM

†
q
UqL. As it is shown in the Appendix, UqL = PqOqL

where Pq = diag.
�
1, ei⌘q2 , e

i⌘q3

�
and the OqL orthogonal matrix is parametrized as follows:

OqL =

0

BBBBBBBBB@

�

s
m̃q2(⇢

q

� �R
q)Kq

+

4yq�
q

1

q

1

�

s
m̃q1(�

q

+
�R

q)Kf

+

4yq�
q

2

q

2

s
m̃q1m̃q2(�

q

� +R
q)Kq

+

4yq�
q

3

q

3

�

s
m̃q1

q

1
K

q

�
�
q

1
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q
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K

q
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q
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(�q

+
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s
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q
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K

q
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q
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(�q
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q

1
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q
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CCCCCCCCCA
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To close this section we provide a concise and qualitative discussion of the implications of our model in charged lepton

flavor violation. Charged lepton flavor violating decays like for instance µ ! e� will receive radiative contributions

at one loop level mediated by neutral scalars and charged leptons as well as by charged scalars (arising from the inert

doublet H4) and right handed neutrinos. For an appropiate region of parameter space, which will imply small values

of the flavor changing neutral Yukawa couplings involving electron and muon, not larger than about 10�6 [92, 93]

and masses of the charged scalars arising from inert doublet H4 larger than several TeVs [94, 95], the charged lepton
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NEUTRINOS
➤ Active neutrino masses generated at two-loops

8

Figure 1: Two loop Feynman diagram contribution to neutrino masses.
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As one can notice, the e↵ective neutrino mass matrix can be parameterized as
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where the Cobimaximal pattern is clearly exhibited. As it is well known, M⌫ is diagonalized by the mixing matrix
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In order to get the correct charged lepton masses, the unfixed parameter should satisfy |m⌧ | > |al| ⇡ (|m⌧ |/|mµ|)|me|.

As a result of this, UlL must be almost the identity matrix as one can verify in the Appendix B.

B. Neutrino sector
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loop level. These masses are only generated at two loop level. From the neutrino Yukawa interactions we find that

the mass matrix for active neutrinos takes the form:

M⌫ =

0

B@
y
2

1⌫
F ((MN )

11
,mR,mI) y1⌫y2⌫F ((MN )

12
,mR,mI) y1⌫y2⌫F ((MN )

13
,mR,mI)

y1⌫y2⌫F ((MN )
12

,mR,mI) y
2

2⌫
F ((MN )

22
,mR,mI) �y

2

2⌫
F ((MN )

23
,mR,mI)

y1⌫y2⌫F ((MN )
13

,mR,mI) �y
2

2⌫
F ((MN )

23
,mR,mI) y

2

2⌫
F ((MN )

33
,mR,mI)

1

CA , (18)

The above given neutrino mass matrix can also be written as:
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As a result of this, UlL must be almost the identity matrix as one can verify in the Appendix B.

B. Neutrino sector

Due to the preserved eZ2 ⇥ Z2 symmetry, the tiny masses of active neutrinos are forbidden at tree as well as at one

loop level. These masses are only generated at two loop level. From the neutrino Yukawa interactions we find that

the mass matrix for active neutrinos takes the form:
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2

2⌫
F ((MN )

23
,mR,mI) y

2

2⌫
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The above given neutrino mass matrix can also be written as:
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where mR = mReH
0
4
, mI = mImH

0
4
and fk is a loop function. It is worth mentioning that the mass splitting between

ReH0

4
and ImH

0

4
is generated at one loop level. Furthermore, the Majorana neutrino mass matrix takes the form:
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v⇠p
2
e
i✓

y2N
v⇠p
2
e
�i✓

y3N
v⇢p
2

y4N
v⇠p
2
e
�i✓

y3N
v⇢p
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Figure 1: Two loop Feynman diagram contribution to neutrino masses.

For the sake of simplicity, we consider the benchmark scenario where (MN )
ij
<< m

2

R
, m2

I
. In that scenario allows the

cobimaximal pattern [23, 65–83, 90] of the light active neutrino mass matrix gets manifested since the mass matrix

for active neutrinos takes the form:
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As one can notice, the e↵ective neutrino mass matrix can be parameterized as

M⌫ =

0
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⇤
⌫
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⇤
⌫
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D⌫ C̃⌫
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where the Cobimaximal pattern is clearly exhibited. As it is well known, M⌫ is diagonalized by the mixing matrix

U⌫ , this is, U†
⌫
M⌫U

⇤
⌫
= M̂⌫ with M̂⌫ = Diag.(|m1|, |m2|, |m3|). Explicitly, we have
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As one can notice, the e↵ective neutrino mass matrix can be parameterized as
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where the Cobimaximal pattern is clearly exhibited. As it is well known, M⌫ is diagonalized by the mixing matrix

U⌫ , this is, U†
⌫
M⌫U

⇤
⌫
= M̂⌫ with M̂⌫ = Diag.(|m1|, |m2|, |m3|). Explicitly, we have
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where the eigenvectors are written explicitly

X1 =

0

BBB@

�

q
2|me|(|m⌧ ||mµ|�|al||me|)2[|al|(|m⌧ |2+|mµ|2+|me|2�|al|2+Re)�2|m⌧ ||mµ||me|]

Deq
4|m⌧ ||mµ|(|m⌧ ||mµ|�|al||me|)(|mµ||al|�|m⌧ ||me|)(|m⌧ ||al|�|mµ||me|)

Deq
|al||me|[2|m⌧ ||mµ||al|�|me|(|m⌧ |2+|mµ|2�|me|2+|al|2�Re)]

2
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1
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;
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0
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|mµ|(|mµ||al|�|m⌧ ||me|)(|m⌧ |2�|mµ|2+|me|2�|al|2+Re)
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D⌧q
4|mµ||me|(|m⌧ ||mµ|�|al||me|)(|mµ||al|�|m⌧ ||me|)(|m⌧ ||al|�|mµ||me|)
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�
|m⌧ |

2
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� �
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2
� ⇥
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�
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2 +Re

�
+ 2|mµ||me||al|

⇤
. (17)

In order to get the correct charged lepton masses, the unfixed parameter should satisfy |m⌧ | > |al| ⇡ (|m⌧ |/|mµ|)|me|.

As a result of this, UlL must be almost the identity matrix as one can verify in the Appendix B.

B. Neutrino sector

Due to the preserved eZ2 ⇥ Z2 symmetry, the tiny masses of active neutrinos are forbidden at tree as well as at one

loop level. These masses are only generated at two loop level. From the neutrino Yukawa interactions we find that

the mass matrix for active neutrinos takes the form:
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The above given neutrino mass matrix can also be written as:
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where mR = mReH
0
4
, mI = mImH

0
4
and fk is a loop function. It is worth mentioning that the mass splitting between

ReH0

4
and ImH

0

4
is generated at one loop level. Furthermore, the Majorana neutrino mass matrix takes the form:
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q
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⌘ yq � m̃q1m̃q2 ;

R
q
⌘

q
⇢
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+
� 4(m̃2
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+ m̃2
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q1
� 2m̃q1m̃q2yq), K

q

± ⌘ yq(⇢
q

+
±R

q)� 2m̃q1m̃q2 . (11)

We have to point out that the parameters have been normalized by themq3 heaviest physical quark mass. Additionally,

there are two unfixed parameters (yq ⌘ |Fq|/mq3) which are constrained by the condition 1 > yq > m̃q2 > m̃q1 . Finally,

the CKM mixing matrix is written as

VCKM = O
T

uL
P̄qOdL, Pq = P

†
u
Pd = diag.

�
1, ei⌘̄q2 , e

i⌘̄q3

�
. (12)

This CKM mixing matrix has four free parameters namely yu yd, and two phases ⌘̄
q1

and ⌘̄
q2

which could be obtained

numerically. In addition to this, the expression for the mixing angles are given as follows:

sin2 ✓q
13

=
��(VCKM )13

��2 =
��(Ou)11(Od)13 + (Ou)21(Od)23e
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i⌘̄q3

��2;
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=
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��2

1�
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��2
=
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��2
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��(VCKM )13

��2
;

sin2 ✓q
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=
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��2
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��2
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i⌘̄q3

��2
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��(VCKM )13

��2
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IV. LEPTON MASSES AND MIXINGS

A. Charged lepton sector

The charged lepton mass matrix is obtained directly from the Yukawa mass term, it has the following form
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0
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y
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2
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y
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0

1
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As one can notice, in the quark sector, the NNI textures were obtained by using the following vev alignment�
hH

0

1
i, hH

0

2
i
�
=

�
0, v2/

p
2
�
and hH

0

3
i = v3/

p
2. This choice implies, in the charged lepton, the following textures

Ml =

0

B@
al 0 bl

0 0 dl

cl �dl 0

1

CA ,

where the matrix elements can be easily read o↵ the above equation. Analogously to the quark sector, the afore-

mentioned matrix is diagonalized by U
†
lL
MlUlR = M̂l with M̂l = Diag. (me,mµ,m⌧ ). Then, we build the bilineal

M̂lM̂
†
l
= U

†
lL
MlM

†
l
UlL in order to obtain the relevant mixing matrix that takes place in the PMNS one. In the

appendix, we show that UlL = PlOl where Pl = Diag.(1, ei⌘µ , e
i⌘⌧ ) and the latter matrix is real and orthogonal such

that is parametrized as

Ol = (X1 X2 X3) , (15)
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where the eigenvectors are written explicitly
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2|me|(|m⌧ ||mµ|�|al||me|)2[|al|(|m⌧ |2+|mµ|2+|me|2�|al|2+Re)�2|m⌧ ||mµ||me|]
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|m⌧ ||me|[|mµ|(|m⌧ |2�|mµ|2+|me|2+|al|2+Re)�2|m⌧ ||me||al|]
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In order to get the correct charged lepton masses, the unfixed parameter should satisfy |m⌧ | > |al| ⇡ (|m⌧ |/|mµ|)|me|.

As a result of this, UlL must be almost the identity matrix as one can verify in the Appendix B.

B. Neutrino sector

Due to the preserved eZ2 ⇥ Z2 symmetry, the tiny masses of active neutrinos are forbidden at tree as well as at one

loop level. These masses are only generated at two loop level. From the neutrino Yukawa interactions we find that

the mass matrix for active neutrinos takes the form:
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The above given neutrino mass matrix can also be written as:
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where mR = mReH
0
4
, mI = mImH

0
4
and fk is a loop function. It is worth mentioning that the mass splitting between
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4
and ImH

0

4
is generated at one loop level. Furthermore, the Majorana neutrino mass matrix takes the form:

MN =

0

BB@

y1N
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y4N
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i✓
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v⇠p
2
e
�i✓
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e
�i✓

y3N
v⇢p
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y2N
v⇠p
2
e
i✓

1

CCA , (20)
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C. PMNS mixing matrix

Once the lepton masses were calculated, the PMNS mixing matrix is given by U = U
†
l
U⌫ = O

T

l
P

†
l
U⌫ . Consequently,

the reactor, solar and atmospheric angles are give as follows

sin2 ✓13 =
�� (U)

13
|
2 = | (Ol)11 (U⌫)13 + (Ol)21 (U⌫)23 e

�i⌘µ + (Ol)31 (U⌫)33 e
�i⌘⌧

��2;

sin2 ✓12 =

�� (U)
12

��2

1�
�� (U)

13

��2
=

�� (Ol)11 (U⌫)12 + (Ol)21 (U⌫)22 e
�i⌘µ + (Ol)31 (U⌫)32 e

�i⌘⌧

��2

1�
�� (U)

13

��2
;

sin2 ✓23 =

�� (U)
12

��2

1�
�� (U)

13

��2
=

�� (Ol)12 (U⌫)13 + (Ol)22 (U⌫)23 e
�i⌘µ + (Ol)32 (U⌫)33 e

�i⌘⌧

��2

1�
�� (U)

13

��2
. (24)

Besides this, we can obtain the �CP Dirac CP-violating phase which comes from the Jarlskog invariant.

sin �CP =
Im [(U)23(U)⇤

13
(U)12(U)⇤

22
]

1

8
sin 2✓12 sin 2✓23 sin 2✓13 cos ✓13

(25)

Notice that there are still free parameters in the PMNS matrix, these are �
12
, �

13
and |al|. In addition to those, two

phases ⌘
µ
and ⌘

⌧
. Nevertheless, these might be irrelevant because of there is region of the parameters space where

the Ul is near to identity matrix (See Appendix C). Consequently, the PMNS matrix is controlled mainly by the

Cobimaximal one.

Let us calculate the mixing angles and the Dirac CP violating phases in the limit |al| = (|m⌧ |/|mµ|)|me|, then,

Ul ⇡

0

B@
�1 0 |m̄e|e

i⌘⌧

0 e
i⌘µ 0

|m̄e| 0 e
i⌘⌧

1

CA , (26)

where |m̄e| = |me|/|mµ| ⇠ O
�
10�3

�
. In consequence, the involved matrix elements are

(U)
13

⇡ sin �
13

�
i
p
2
|m̄e| cos �13

e
�i⌘⌧ ;

(U)
12

⇡ � sin �
12

cos �
13
;

(U)
23

⇡
i
p
2
cos �

13
e
�i⌘µ ;

(U)
22

⇡
1
p
2
(cos �

12
� i sin �

12
sin �

13
) e�i⌘µ . (27)

As noticed, in this limit, the ⌘
µ
phase does not play an important role in the mixing parameters and the Dirac

CP-violating phase as one can verify by using the above expressions. Then, we obtain

sin ✓13 ⇡ sin �
13


1�

|m̄e|
p
2

cot �
13

sin ⌘
⌧

�
;

sin ✓12 ⇡ sin �
12


1 +

|m̄e|
p
2

tan �
13

sin ⌘
⌧

�
;

sin ✓23 ⇡
1
p
2


1 +

|m̄e|
p
2

tan �
13

sin ⌘
⌧

�
;

sin �CP ⇡ �1 +
|m̄e|
p
2

tan �
13

sin ⌘
⌧
. (28)

Therefore, we realized that the charged lepton sector modifies the Cobimaximal predictions such that the solar angle

and Dirac CP-violating phase are deviated from ⇡/4 and 3⇡/2, respectively. This deviation is tiny, in this limit, as a

result of this ✓13 ⇡ �
13

and ✓12 ⇡ �
12
. In short, this brief analytical study exhibits that the current model might fit
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As noticed, in this limit, the ⌘
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Therefore, we realized that the charged lepton sector modifies the Cobimaximal predictions such that the solar angle

and Dirac CP-violating phase are deviated from ⇡/4 and 3⇡/2, respectively. This deviation is tiny, in this limit, as a

result of this ✓13 ⇡ �
13

and ✓12 ⇡ �
12
. In short, this brief analytical study exhibits that the current model might fit
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sin �CP =
Im [(U)23(U)⇤

13
(U)12(U)⇤

22
]

1

8
sin 2✓12 sin 2✓23 sin 2✓13 cos ✓13

(25)

Notice that there are still free parameters in the PMNS matrix, these are �
12
, �

13
and |al|. In addition to those, two

phases ⌘
µ
and ⌘

⌧
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As noticed, in this limit, the ⌘
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phase does not play an important role in the mixing parameters and the Dirac

CP-violating phase as one can verify by using the above expressions. Then, we obtain
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Therefore, we realized that the charged lepton sector modifies the Cobimaximal predictions such that the solar angle

and Dirac CP-violating phase are deviated from ⇡/4 and 3⇡/2, respectively. This deviation is tiny, in this limit, as a

result of this ✓13 ⇡ �
13

and ✓12 ⇡ �
12
. In short, this brief analytical study exhibits that the current model might fit

9

C. PMNS mixing matrix

Once the lepton masses were calculated, the PMNS mixing matrix is given by U = U
†
l
U⌫ = O

T

l
P

†
l
U⌫ . Consequently,

the reactor, solar and atmospheric angles are give as follows

sin2 ✓13 =
�� (U)

13
|
2 = | (Ol)11 (U⌫)13 + (Ol)21 (U⌫)23 e

�i⌘µ + (Ol)31 (U⌫)33 e
�i⌘⌧

��2;

sin2 ✓12 =

�� (U)
12

��2

1�
�� (U)

13

��2
=

�� (Ol)11 (U⌫)12 + (Ol)21 (U⌫)22 e
�i⌘µ + (Ol)31 (U⌫)32 e

�i⌘⌧

��2

1�
�� (U)

13

��2
;

sin2 ✓23 =

�� (U)
12

��2

1�
�� (U)

13

��2
=

�� (Ol)12 (U⌫)13 + (Ol)22 (U⌫)23 e
�i⌘µ + (Ol)32 (U⌫)33 e

�i⌘⌧

��2

1�
�� (U)

13

��2
. (24)

Besides this, we can obtain the �CP Dirac CP-violating phase which comes from the Jarlskog invariant.
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Notice that there are still free parameters in the PMNS matrix, these are �
12
, �

13
and |al|. In addition to those, two

phases ⌘
µ
and ⌘

⌧
. Nevertheless, these might be irrelevant because of there is region of the parameters space where

the Ul is near to identity matrix (See Appendix C). Consequently, the PMNS matrix is controlled mainly by the

Cobimaximal one.

Let us calculate the mixing angles and the Dirac CP violating phases in the limit |al| = (|m⌧ |/|mµ|)|me|, then,
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As noticed, in this limit, the ⌘
µ
phase does not play an important role in the mixing parameters and the Dirac

CP-violating phase as one can verify by using the above expressions. Then, we obtain
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Therefore, we realized that the charged lepton sector modifies the Cobimaximal predictions such that the solar angle

and Dirac CP-violating phase are deviated from ⇡/4 and 3⇡/2, respectively. This deviation is tiny, in this limit, as a

result of this ✓13 ⇡ �
13

and ✓12 ⇡ �
12
. In short, this brief analytical study exhibits that the current model might fit

9

C. PMNS mixing matrix

Once the lepton masses were calculated, the PMNS mixing matrix is given by U = U
†
l
U⌫ = O

T

l
P

†
l
U⌫ . Consequently,

the reactor, solar and atmospheric angles are give as follows

sin2 ✓13 =
�� (U)

13
|
2 = | (Ol)11 (U⌫)13 + (Ol)21 (U⌫)23 e

�i⌘µ + (Ol)31 (U⌫)33 e
�i⌘⌧

��2;

sin2 ✓12 =

�� (U)
12

��2

1�
�� (U)

13

��2
=

�� (Ol)11 (U⌫)12 + (Ol)21 (U⌫)22 e
�i⌘µ + (Ol)31 (U⌫)32 e

�i⌘⌧

��2

1�
�� (U)

13

��2
;

sin2 ✓23 =

�� (U)
12

��2

1�
�� (U)

13

��2
=

�� (Ol)12 (U⌫)13 + (Ol)22 (U⌫)23 e
�i⌘µ + (Ol)32 (U⌫)33 e

�i⌘⌧

��2

1�
�� (U)

13

��2
. (24)

Besides this, we can obtain the �CP Dirac CP-violating phase which comes from the Jarlskog invariant.
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As noticed, in this limit, the ⌘
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phase does not play an important role in the mixing parameters and the Dirac

CP-violating phase as one can verify by using the above expressions. Then, we obtain
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Therefore, we realized that the charged lepton sector modifies the Cobimaximal predictions such that the solar angle

and Dirac CP-violating phase are deviated from ⇡/4 and 3⇡/2, respectively. This deviation is tiny, in this limit, as a

result of this ✓13 ⇡ �
13

and ✓12 ⇡ �
12
. In short, this brief analytical study exhibits that the current model might fit

The limit gives t
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quite well the PMNS matrix. To finish this section, an �
2 analysis would allow to scan the allowed region for the free

parameters.

To fit the parameters of the e↵ective neutrino sector and successfully reproduce the experimental values of the neutrino

mass-squared splittings, the leptonic mixing angles, and the leptonic Dirac CP phase, we minimize the following �
2

function:

�
2 =

⇣
�m

2 exp

21
��m

2 th

21

⌘2

�
2

�m
2
21

+

⇣
�m

2 exp

31
��m

2 th

31

⌘2

�
2

�m
2
31

+

⇣
sin2 ✓(l) exp

12
� sin2 ✓(l)th

12

⌘2

�
2

sin2 ✓
(l)
12

(29)

+

⇣
sin2 ✓(l) exp

23
� sin2 ✓(l)th

23

⌘2

�
2

sin2 ✓
(l)
23

+

⇣
sin2 ✓(l) exp

13
� sin2 ✓(l)th

13

⌘2

�
2

sin2 ✓
(l)
13

+

⇣
�
exp

CP
� �

th

CP

⌘2

�
2

�CP

,

where �m
2

i1
(with i = 2, 3) are the neutrino mass squared di↵erences, sin ✓(l)

jk
is the sine function of the mixing angles

(with j, k = 1, 2, 3) and �CP is the CP violation phase. The supra indices represent the experimental (“exp”) and

theoretical (“th”) values, and the 1� are the experimental errors.

After performing the fit of the e↵ective parameters and obtaining the best-fit point, we obtained the values shown

in Table III, alongside the experimental values of neutrino oscillation parameters within the 1� and 3� ranges, as

reported in Refs. [97, 98]. In Table III, we see that the neutrino mass-squared di↵erences (�m
2

21
, �m

2

31
) and the

solar and reactor mixing angles (sin2 ✓(l)
12
, sin2 ✓(l)

13
) lie within the 1� range. The atmospheric mixing angle (sin2 ✓(l)

23
)

and the leptonic Dirac CP-violating phase (�CP) are within the 2� range.

Fig. 3a shows the correlation between the neutrino mixing angles , where the green and red background fringes

represent the 1� range of the experimental values and the black bands the dotted lines represent our best-fit point

for each observable. In Fig. 3a, we see that for the mixing angles, we can get values in the 1� range, while for the

CP violating phase, we obtain values up to 3�, where each lepton sector observable is obtained in the following range

of values: 0.279  sin2 ✓(l)
12

 0.366, 0.538  sin2 ✓(l)
23

 0.613.

In addition to the previously discussed observables from the neutrino sector, our model also predicts another observ-

able, the e↵ective Majorana neutrino mass parameter relevant for neutrinoless double beta decay, which serves as a

probe of the Majorana nature of neutrinos. This e↵ective mass parameter is defined as follows:

mee =

�����
X

i

U
2

ei
m⌫i

����� , (30)

where Uei and m⌫i are the matrix elements of the PMNS leptonic mixing matrix and the light active neutrino

masses, respectively. From the equation (30), we can see that the neutrinoless double beta (0⌫��) decay amplitude

is proportional to mee. Fig. 3b shows the correlation between the e↵ective Majorana neutrino mass parameter mee

and the sum of the masses of the active neutrinos
P

mi, where the neutrino sector model parameters were randomly

generated in a range of values where the neutrino mass squared splittings and the mixing parameters are inside the

3� experimentally allowed range. As seen from Fig. 3b, our models predict an e↵ective Majorana neutrino mass

parameter in the range 3.73 meV . mee . 8.19 meV for the scenario of normal neutrino mass hierarchy. The current

most stringent experimental upper bound on the e↵ective Majorana neutrino mass parameter, i.e., mee  50 meV

arises from the KamLAND-Zen limit on the 136
Xe 0⌫�� decay half-life T

0⌫��

1/2
(136Xe) > 2.0⇥ 1026 yr [99].
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Figure 2: Correlation plot between mixing angle, e↵ective Majorana mass, and sum lightest mass neutrino.

Figure 3: Correlation plot between mixing angles and CP violation phase, for di↵erent values of sin2
✓13.
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�0.20 2.55+0.02
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Value [98] 3� 6.92� 8.05 2.451� 2.578 2.75� 3.45 2.03� 2.388 4.35� 5.85 124� 364

Fit 1� � 3� 7.69 2.54 3.41 2.24 5.73 219.7

Table III: Model predictions for the scenario of normal order (NO) neutrino mass.
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V. SCALAR POTENTIAL

A. Scalar spectrum

v1 es cero. Invariant scalar potential under Q6
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where �6 = �7 = �8 = �12 = 0 as required by CP conservation. Having �12 real will yield mixing between CP even

and CP odd scalar states.

The minimization conditions of the scalar potential are given by:
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Therefore, the scalar mass matrices of the CP-even neutral, CP-odd neutral and electrically charged fields are given

by:
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Comentario cualitativo espectro escalar.

B. Quasialignment limit

As shown in Section III, where v1 = 0, we can achieve the alignment limit in a 2HDM in a general way according to

[100]. Let us perform a rotation of the basis of the interaction states  i to an intermediate basis formed by the states

13

hi (i = 2, 3) through an orthogonal rotation [100].
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. (40)

The physical basis (h,H0) can be obtained using another orthogonal rotation,:
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, (41)

Therefore,
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The alignment boundary will be when h2 overlaps with h, i.e. O11 = 1, with,

O = OrO
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(43)

The alignment limit will be the relations of the quartic couplings of the potential, so let’s first look at the mass matrix

of the CP-even sector to low energy, which we can diagonalize with the rotation matrix (41):
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Inverting the relationship, we obtain
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where we can get the following results:
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VI. DARK MATTER PHENOMENOLOGY

A. Dark matter sector

In the dark sector, the scalar potential contains the following terms:
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here �
2

SM
refers to the total chi-square of the LHC rate measurements of the observed Higgs boson

while �
2

Q6
is the prediction of the model under study here, both of these quantities are calculated with

HiggsTools/HiggsPredictions/HiggsSignals [121]. In this manner, the scan of the parameter space yields model

predictions that are ensured to be contained mostly on an interval close to the SM prediction which is well in agree-

ment with the LHC measurements. Figure 4 shows the result of the numerical scan concerning the mass spectra of the

CP-even scalars, where L is defined below. The corresponding mass spectra for the pseudo-scalars and the charged

scalars is shown in figure 5. From the numerical analysis we are able to find a relatively small region of parameter

space where the model correctly predicts a SM-like Higgs satisfying all the aforementioned constraints. The mass

spectra resulting from these findings contains one light CP-even scalar of mass mh ⇡ 98 GeV and one light charged

scalar of mass mh+ ⇡ 101 GeV. The rest of the scalars are heavier than ⇠ 340 GeV but up to 825 GeV.

To proceed with the DM sector, we construct a log-likelihood function involving the observables in the (visible) scalar

sector and the DD and relic abundance observables:

logL = logLscalar + logLDD + logL⌦h2 . (53)

For the numerical calculation of the relic density, as well as the DM-nucleon scattering cross sections, we use the

capabilities of Micromegas [122–125]. We construct L⌦h2 as a basic Gaussian likelihood with respect to the PLANCK

[126] measured value, while the likelihood LDD involves publicly available data from the direct detection experiment

LZ [127]. We use the numerical tool DDCalc to compute the Poisson likelihood given by

LDD =
(b+ s)o exp {�(b+ s)}

o!
(54)

where o is the number of observed events in the detector and b is the expected background count. From the model’s

predicted DM-nucleon scattering cross sections as input, DDCalc computes the number of expected signal events s

for given DM local halo and velocity distribution models (we take the tool’s default ones, for specific details on

the implementation such as simulation of the detector e�ciencies and acceptance rates, possible binning etc. see

[128, 129]). Finally, we perform the scan of the parameter space and construct the likelihood profiles using Diver

[130–132] (in standalone mode).

Figure 6 shows the values of the masses of the DM candidates for which the model predicts a DM abundance within

the experimental PLANCK interval. Also shown are the corresponding fractions per DM candidate with which each of

them contribute to the total abundance. We observe from the bottom panel of this figure that for masses of the right

handed neutrino DM candidate below ⇠ 600 GeV the model is not capable to account for the observed DM abundance.

This desert region also corresponds to the intervals of the scalar DM candidates around m�1
⇠ (200 � 1000) GeV,

m�2
⇠ (600 � 1000) GeV and m�2 ⇠

< 200 GeV. This is also seen in Figure 7 which shows the likelihood profiles for

the three DM candidates with respect to the predicted fraction of DM abundance of each of the candidates and their

masses. For visual aid1 these profiles are shown with respect to the likelihood defined by:

logL0 = logL� logL⌦h2 . (55)

The panels of this figure also portrait that in the interval of masses below ⇠ 600 GeV the DM candidates N1R and

�
2
are underabundant for the most part of the region while �

1
is slightly both underabundant and overproduced.

Other characteristics that can be inferred from these plots are, for instance, that the fermion DM candidate is almost

entirely overproduced in the mass region below ⇠ 3 TeV (but above 600 GeV). In this same mass region the scalar �
1

appears to have been annihilated out of existence. For masses of the DM candidates above 3 TeV all three of them

1 In this case the profiles with respect to the total likelihood L which includes the relic density constraint is of course just a horizontal
slim bright band around the PLANCK experimental value.
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note the soft symmetry breaking term driven by the parameter µ
SB

which induces a mass gap between the components

of the field '
1
in order to have non-zero neutrino masses. As before, we consider the vev alignment v1 = 0 and define

tan� = v2/v3. We keep assuming the masses of the components of the scalar doublet H4 to be greater than the right

handed neutrino masses, so that the lightest of these is a DM candidate. The other DM candidates are one component

of '
1
and one of '

2
, which we denote by �

1
and �

2
respectively. We analyze the DM phenomenology in the region of

masses of the DM candidates where the standard cold DM freeze-out scenario describes the DM abundance.

Concerning direct detection (DD), the scattering amplitudes of right handed neutrinos o↵ nucleons vanish at the

leading order, so that this DM candidate is out of the reach of current DD experiments and we analyze only the

constraints on the scalar DM candidates in this respect.

B. Numerical results

We implement the model in SARAH [101–104] for which we first find the analytical expressions for the left and right

mixing matrices of charged leptons and quarks following a similar procedure outline previously. This in order to

write the Yukawa lagrangian in the mass eigenstate basis. To simplify the calculations, we neglect o↵-diagonal

terms and also the masses of the first and second generation of fermions. No other simplifications are made in the

implementation, from which we generate corresponding model files for some of the other tools using the SARAH-SPheno

framework [105–107].

The theoretical and experimental constraints are divided into two categories: hard cuts and likelihoods. When testing

a given point of parameter space, for positivity and stability of the scalar potential we employ the public tool EVADE

[108, 109], which features the minimization of the scalar potential through polynomial homotopy continuation [110],

and an estimation of the decay rate of a false vacuum [111, 112]. Tree level large energy LQT [113] unitarity conditions

over the quartic couplings and conditions at finite energy
p
s over the trilinear scalar couplings [114, 115] are calculated

numerically with SPheno. Exclusion limits from scalar searches at Tevatron, LEP and the LHC are implemented with

the aid of HiggsTools/HiggsPredictions/HiggsBounds [116, 117]. To generate the input needed by HiggsTools

we employ the CalcHEP/Micromegas [118, 119] framework.

We impose hard cuts discarding points not complying with the above constraints. For points not filtered by the

previous hard cuts we calculate numerically the model predicted observables that are used to construct a compos-

ite likelihood function. We calculate the couplings and decay branching ratios of the scalars with the help of the

HiggsTools/HiggsPredictions code. We use the above predictions of the model to construct the composite likeli-

hood function:

logLscalar = logLHiggs + logLH0!�� (49)

The likelihood logLH0!�� regarding the branching ratio of the 125 GeV SM-like Higgs into two photons is constructed

using the experimental value [120]:

BRexp

h!��
= (2.5± 0.20)⇥ 10�3 (50)

to construct a simple chi-square function �2 log
�
LH0!��/L

max

H0!��

�
= �

2

H0!��
. The likelihood logLHiggs that mea-

sures how well the couplings of H0 resemble that of the already discovered SM Higgs is computed through the

equation:

�2 log
�
LHiggs/L

max

Higgs

�
= �

2

Higgs
(51)

where �
2

Higgs
is constructed to minimize the quantity:

���2

SM
� �

2

Q6

�� (52)
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Figure 4: Mass spectra of CP-even Higgs scalars. The best fit point (BFP) is signaled by the respective tags with masses

(mh,mH0 ,mH0) = (98.7, 125.1, 825) GeV and tan� = 1.73.
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Figure 5: Mass spectra of CP-odd Higgs scalars (top panel) and the corresponding spectra for the charged Higgses (bottom

panel). The best fit point (BFP) is signaled by the respective tags with masses

(mA,mA0 ,mh+ ,mH0+) = (348.3, 795.6, 101.4, 795) GeV and tan� = 1.73.

contribute to the DM abundance but the scalar ones are mostly underproduced while the fermion one can also be

overproduced some ⇠ 3 orders of magnitude above the measured value of the DM abundance.

Finally, figure 8 shows the likelihood profiles concerning the values of the spin independent scattering cross section

consistent with all constraints in the model. The plots in both panels show the dependence of the likelihood on the

DM mass and the DM-proton spin independent (SI) cross section, for each of the scalar DM candidates. We also

depict the 90% CL upper limit on the SI cross section from the XENONnT [133] and the LZ [127, 134] experiments,

alongside with the DARWIN experiment from the projections of reference [135] 2 and an estimation of the neutrino

floor [136]. We observe that the LZ experiment improved considerably their limits in just 2 years since the release

of their first results. LZ is already able to exclude about half of the allowed parameter space for the case of the �
1

DM candidate, but still is far from excluding a sizable portion for the case of the �
2
DM candidate. On the other

hand, the capabilities of the DARWIN experiment will be able to probe the entire region for �
1
and around 80% of

2 For better comparison with the other curves we extrapolated linearly the data available from this reference from 1 TeV up to ⇠ 10 TeV
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panel). The best fit point (BFP) is signaled by the respective tags with masses

(mA,mA0 ,mh+ ,mH0+) = (348.3, 795.6, 101.4, 795) GeV and tan� = 1.73.

contribute to the DM abundance but the scalar ones are mostly underproduced while the fermion one can also be

overproduced some ⇠ 3 orders of magnitude above the measured value of the DM abundance.

Finally, figure 8 shows the likelihood profiles concerning the values of the spin independent scattering cross section

consistent with all constraints in the model. The plots in both panels show the dependence of the likelihood on the

DM mass and the DM-proton spin independent (SI) cross section, for each of the scalar DM candidates. We also

depict the 90% CL upper limit on the SI cross section from the XENONnT [133] and the LZ [127, 134] experiments,

alongside with the DARWIN experiment from the projections of reference [135] 2 and an estimation of the neutrino

floor [136]. We observe that the LZ experiment improved considerably their limits in just 2 years since the release

of their first results. LZ is already able to exclude about half of the allowed parameter space for the case of the �
1

DM candidate, but still is far from excluding a sizable portion for the case of the �
2
DM candidate. On the other

hand, the capabilities of the DARWIN experiment will be able to probe the entire region for �
1
and around 80% of

2 For better comparison with the other curves we extrapolated linearly the data available from this reference from 1 TeV up to ⇠ 10 TeV

BFP signals out a neutral scalar at ~ 98 GeV 
and a pseudoscalars at ~ 348 and 795 GeV 

CMS new scalar at ~ 95 GeV ?              
pseudoscalar ~ 365 GeV ?        pbbly toponium 
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Figure 7: DM relic abundance weighted by the respective DM fractions as a function of the masses of the DM candidates.

The profiles are with respect to the partial likelihood L0 in Eq. (55)
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Figure 8: DM-proton spin-independent elastic scattering cross section as a function of the masses of the scalar DM

candidates. Brightest areas are most consistent with all imposed constraints, dark areas are excluded by the analysis. The

best fit point (BFP) is marked with a small star. For comparison, exclusion limits of the XENONnT, LZ 2022 and LZ 2024

experiments are shown, alongside with the projection of the DARWIN experiment and the neutrino floor.
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Appendix A: Q6 multiplication rules

The Q6 has four singlets, 1++, 1+�, 1�+, and 1��, and two doublets, 21 and 22. The tensor products for the Q6

representations are given by [3]
 

a

b

!

22

⌦

 
c

d

!

21

= (ac� bd)1+�
� (ac+ bd)1�+

�

 
ad

bc

!

21

, (A1)
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, (A2)

for k, k0 = 1, 2 and k
0
6= k,
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00
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, (A4)

where s
00
1
= s1s

0
1
and s

00
2
= s2s

0
2
.
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here �
2

SM
refers to the total chi-square of the LHC rate measurements of the observed Higgs boson

while �
2

Q6
is the prediction of the model under study here, both of these quantities are calculated with

HiggsTools/HiggsPredictions/HiggsSignals [121]. In this manner, the scan of the parameter space yields model

predictions that are ensured to be contained mostly on an interval close to the SM prediction which is well in agree-

ment with the LHC measurements. Figure 4 shows the result of the numerical scan concerning the mass spectra of the

CP-even scalars, where L is defined below. The corresponding mass spectra for the pseudo-scalars and the charged

scalars is shown in figure 5. From the numerical analysis we are able to find a relatively small region of parameter

space where the model correctly predicts a SM-like Higgs satisfying all the aforementioned constraints. The mass

spectra resulting from these findings contains one light CP-even scalar of mass mh ⇡ 98 GeV and one light charged

scalar of mass mh+ ⇡ 101 GeV. The rest of the scalars are heavier than ⇠ 340 GeV but up to 825 GeV.

To proceed with the DM sector, we construct a log-likelihood function involving the observables in the (visible) scalar

sector and the DD and relic abundance observables:

logL = logLscalar + logLDD + logL⌦h2 . (53)

For the numerical calculation of the relic density, as well as the DM-nucleon scattering cross sections, we use the

capabilities of Micromegas [122–125]. We construct L⌦h2 as a basic Gaussian likelihood with respect to the PLANCK

[126] measured value, while the likelihood LDD involves publicly available data from the direct detection experiment

LZ [127]. We use the numerical tool DDCalc to compute the Poisson likelihood given by

LDD =
(b+ s)o exp {�(b+ s)}

o!
(54)

where o is the number of observed events in the detector and b is the expected background count. From the model’s

predicted DM-nucleon scattering cross sections as input, DDCalc computes the number of expected signal events s

for given DM local halo and velocity distribution models (we take the tool’s default ones, for specific details on

the implementation such as simulation of the detector e�ciencies and acceptance rates, possible binning etc. see

[128, 129]). Finally, we perform the scan of the parameter space and construct the likelihood profiles using Diver

[130–132] (in standalone mode).

Figure 6 shows the values of the masses of the DM candidates for which the model predicts a DM abundance within

the experimental PLANCK interval. Also shown are the corresponding fractions per DM candidate with which each of

them contribute to the total abundance. We observe from the bottom panel of this figure that for masses of the right

handed neutrino DM candidate below ⇠ 600 GeV the model is not capable to account for the observed DM abundance.

This desert region also corresponds to the intervals of the scalar DM candidates around m�1
⇠ (200 � 1000) GeV,

m�2
⇠ (600 � 1000) GeV and m�2 ⇠

< 200 GeV. This is also seen in Figure 7 which shows the likelihood profiles for

the three DM candidates with respect to the predicted fraction of DM abundance of each of the candidates and their

masses. For visual aid1 these profiles are shown with respect to the likelihood defined by:

logL0 = logL� logL⌦h2 . (55)

The panels of this figure also portrait that in the interval of masses below ⇠ 600 GeV the DM candidates N1R and

�
2
are underabundant for the most part of the region while �

1
is slightly both underabundant and overproduced.

Other characteristics that can be inferred from these plots are, for instance, that the fermion DM candidate is almost

entirely overproduced in the mass region below ⇠ 3 TeV (but above 600 GeV). In this same mass region the scalar �
1

appears to have been annihilated out of existence. For masses of the DM candidates above 3 TeV all three of them

1 In this case the profiles with respect to the total likelihood L which includes the relic density constraint is of course just a horizontal
slim bright band around the PLANCK experimental value.

Direct detection

DM relic abundance weighed by respective DM 
fractions of N1R, 𝜙1 and 𝜙2
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Figure 6: Top panel: Scattered plot of points in parameter space that lie inside the experimental Planck interval for the DM

abundance, bright/red points are most consistent with the global constraints (all masses are in GeV). Bottom panel: The

fraction of the relic density contributed by each DM candidate. The corresponding masses and fractions for the best fit point

(BFP) are marked in red and have values (mN1 ,m�1
,m�2

) = (9991, 9323, 6045) GeV and

(fN1 , f�1
, f�2

) = (0.2867077, 0.2200167, 0.4932755).

the respective region for �
2
, setting strong constrains on the model.

VII. CONCLUSIONS

We have proposed an extended 3 + 1 extended Higgs doublet model where the tiny masses of active neutrinos are

radiatively generated at two loop level. In the model under consideration, the SM gauge symmetry is enlarged by

the inclusion of the Q6 ⇥ Z2 ⇥ Z4 discrete group, whereas the SM fermionic spectrum is augmented by the inclusion

of right handed Majorana neutrinos. In addition to the four SU(2) scalar doublets, the scalar sector also include

several gauge singlet scalars. Such extended particle content and symmetries allows for a successfull implementation

of the 2 loop level radiative seesaw mechanism that yields the tiny active neutrino masses. In addition, it also yields a

predictive cobimaximal pattern for the leptonic mixing, which successfully complies with current neutrino oscillation

experimental data. In our proposed model, the Q6 symmetry is spontaneously broken, whereas the Z4 symmetry

breaks spontaneously down to a residual preserved Z̃2 symmetry. Furthermore, the Z2 symmetry is preserved. The

preserved Z2 and Z̃2 discrete symmetries ensures two-loop induced masses for active neutrinos and also allow for stable

dark matter candidates. We have analyzed in detail the implications of our model in fermion masses and mixings and

dark matter. We have found that our model successfully reproduces the low energy SM fermion flavor data and is

compatible with current dark matter constraints.



RECAP Q6
➤ 2+1 in quarks and leptons works well 

➤ 2-loop generated neutrino masses 
➤ again cobimaximal pattern “corrected” by lepton sector 

➤ Number of effective parameters 4 in quark sector and 5 in 
neutrino sector 

➤ Higgs sector with interesting new possibilities  
and passes all known constraints 

➤ Viable DM sector with three candidates 

➤ To do: more phenomenology…



SUMMARY AND CONCLUSIONS
➤ 2+1 structure as S3 and Q6 works well for quarks and leptons in 

different settings 
➤ S3 complex vev’s, 1+2 quarks, 2+1 leptons, ISSM 

➤ Q6 1+2 quarks + leptons, 2-loop for neutrinos 

➤ Both models have cobimaximal mixing “corrected/broken” by 
leptonic sector 

➤ Symmetries drives the form of the mass matrices and predictions 

➤ Allows for defining few(er) effective parameters despite large number 
of scalars 

➤ Scalar potential plays crucial role in the shaping of the mass matrices  

➤ DM candidates:  S3 not yet studied 
                 Q6, 2 scalars + 1 NR with possibilities of future detection 

➤ Small symmetries can go a long way
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and attention!


