

Southampton School of Physics and Astronomy

Quark and Lepton Mass Hierarchies from Modular Flavour Symmetry with Weightons

Steve King, June 2025

Fitus Flavius Vespasianus (69-79 AD)

First emperor of Flavion Dynasty

11TH WORKSHOP

Flavor Symmetries and Consequences in Accelerators and Cosmology

Standard Model Gauge $SU(3)_C \times SU(2)_L \times U(1)_Y$ bosons

$$L_e = \begin{pmatrix} v_{eL} \\ e_L \end{pmatrix}, \quad e_R, \quad \begin{pmatrix} u_L \\ d_L \end{pmatrix}^{r,b,g},$$

$$L_{\mu} = \begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix}, \quad \mu_R, \quad \begin{pmatrix} C_L \\ S_L \end{pmatrix}^{r,b,g},$$

$$L_{\tau} = \begin{pmatrix} v_{\tau L} \\ \tau_L \end{pmatrix}, \quad \tau_R, \quad \begin{pmatrix} t_L \\ b_L \end{pmatrix}^{r,b,g}$$

Hypercharges

$$Y = -\frac{1}{2}, -1, \frac{1}{6},$$

Yukawa couplings $y_{ij}H\psi_{Lj}\psi_{Rj}$ H ψ_{Rj} ψ_{Li} *Yij*

Ideally we would like all Yukawas to be of order unity, so what is going on? Is there a flavour symmetry at work? (Maybe not! See Talk by Avelino Vicente)

Pati-Salam, 1974

 $SU(4)_C$ $e_R)$ $SU(2)_L \quad SU(2)_R$

SU(5), Georgi-Glashow, 1974

$$F = \begin{pmatrix} d_r^c \\ d_b^c \\ d_g^c \\ e^- \\ -\nu_e \end{pmatrix}_L, \qquad T = \begin{pmatrix} 0 & u_g^c & -u_b^c & u_r & d_r \\ . & 0 & u_r^c & u_b & d_b \\ . & . & 0 & u_g & d_g \\ . & . & 0 & e^c \\ . & . & . & 0 \end{pmatrix}_L$$

SO(10), Fritzsch-Minkowski, 1975

The blue groups emerge as levels N=2,3,4,5,7 of a F.Feruglio, 1706.08749

For reviews see e.g. T.Kobayashi and M.Tanimoto, 2307.03384,

Modular Symmetry

6d with 2 compact dimensions

Torus

J.Lauer, J.Mas and H.P.Nilles 1989, S.Ferrara, D.Lust, A.D.Shapere and S.Theisen, 1989 G.Altarelli and F.Feruglio, hep-ph/0512103 R.de Adelhart Toorop, F.Feruglio and C.Hagedorn, 1112.1340

Modular symmetry = "geometrical symmetry of the torus"

Modular Symmetry

$-\omega_2$

 $\omega_1 - 2\omega_2$

In general the modular transformation which preserves the torus area is

$$\tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d}$$

J.Lauer, J.Mas and H.P.Nilles 1989, S.Ferrara, D.Lust, A.D.Shapere and S.Theisen, 1989 G.Altarelli and F.Feruglio, hep-ph/0512103 R.de Adelhart Toorop, F.Feruglio and C.Hagedorn, 1112.1340

$$\Gamma \equiv SL(2,\mathbb{Z})$$

ad - bc = 1

From Infinite to Finite Modular Symmetry (3 steps to heaven)

$$\Gamma \equiv SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\} \quad \text{Infinite} \quad \text{step I}$$

Principle congruence subgroups $\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\} \text{ Infinite}$

 $\Gamma'_N \equiv SL(2,\mathbb{Z})/\Gamma(N) \equiv \Gamma/\Gamma(N)$

F.Feruglio, 1706.08749

Finite (double cover) step 3

P.P.Novichkov, S.T.Petcov and M.Tanimoto, 1812.11289 P.P.Novichkov, J.T.Penedo, S.T.Petcov and A.V.Titov, 1811.04933

L

Any point can be moved into fundamental domain by applying $S: \tau \mapsto -\frac{1}{\tau}, \quad T: \tau \mapsto \tau + 1$ **Fixed Points** $\gamma_0 \tau_0 = \tau_0 \, .$ τ_0 γ_0 S $e^{2\pi i/3}$ ST, S^2 T, S^2 $\imath\infty$

G.J.Ding, S.F.K., X.G.Liu and J.N.Lu, 1910.03460 I.de Medeiros Varzielas, M.Levy and Y.L.Zhou, 2008.05329

Examples of Finite Modular Symmetry

Level	N	Γ_N	$ \Gamma_N $	Γ'_N	$ \Gamma'_N $
	2	S_3	6	S_3	6
	3	A_4	12	T'	24
	4	S_4	24	S_4'	48
	5	A_5	60	A_5'	120
	6	$S_3 \times A_4$	72	$S_3 \times T'$	144
	7	$PSL(2,7) \cong \Sigma(168)$	168	SL(2,7)	336

Yukawa coupling $Y(\tau)\phi_1\phi_2\phi_3$

Weights must add up to zero so the Yukawa carries weight $-k_{Y} = k_{1} + k_{2} + k_{3}$

Fields transform under modular symmetry with weight k $\phi_1 \to (c\tau + d)^{k_1} \rho_1(\gamma) \phi_1$ Yukawa coupling is a modular form $Y(\tau) \to Y(\gamma\tau) = (c\tau + d)^{k_Y} \rho_{\mathbf{r}_V}(\gamma) Y(\tau)$ $\rho_{\mathbf{r}_{\mathbf{V}}} \times \rho_1 \times \rho_2 \times \rho_3 = 1 + \dots$

E.g. Level N=3: $\Gamma_3 \sim A_4$

Yukawa coupling is a modular form

A4 triplet 3

$$Y_3^{(2)} = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix}$$

In the fundamental domain

Possibility of hierarchical
Yukawa couplings $\begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} = \begin{pmatrix} 1 + \mathcal{O}(q) \\ -6q^{1/3} + \mathcal{O}(q) \\ -18q^{2/3} + \mathcal{O}(q) \end{pmatrix}$ Hard to obtain both mass
hierarchies and mixing...

P.P. Novichkov, J.T. Penedo and S.T. Petcov, 2102.07488

F.Feruglio, 1706.08749

 $\begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} = \begin{pmatrix} 1+12q+36q^2+12q^3+84q^4+72q^5+\dots \\ -6q^{1/3}(1+7q+8q^2+18q^3+14q^4+\dots) \\ -18q^{2/3}(1+2q+5q^2+4q^3+8q^4+\dots) \end{pmatrix}$

 $|q| \le e^{-\sqrt{3}\pi} \simeq 0.0043 \ll 1$

E.g. Lepton Model at level N=3

	L	e_3^c	e_2^c	e_1^c	N^{c}	$H_{u,d}$
$ A_4 $	3	1′	1″	1	3	1
k_I	1	1	1	1	1	0

Holomorphic superpotential for charged leptons

$$W_e = \alpha e_1^c (LY_3^{(2)})_1 H_d + \beta e_2^c (LY_3^{(2)})_{1'} H_d + \gamma e_2^c (LY_3^{(2)})_{1'}$$

 $= \alpha e_1^c (L_1 Y_1 + L_2 Y_3 + L_3 Y_2) H_d + \beta e_2^c (L_3 Y_3 + L_1 Y_2 + L_2 Y_1) H_d + \gamma e_3^c (L_2 Y_2 + L_3 Y_1 + L_1 Y_3) H_d.$

Charged lepton mass matrix $M_e = \begin{pmatrix} \alpha Y_1(\tau) & \alpha Y_3(\tau) & \alpha Y_2(\tau) \\ \beta Y_2(\tau) & \beta Y_1(\tau) & \beta Y_3(\tau) \\ \gamma Y_3(\tau) & \gamma Y_2(\tau) & \gamma Y_1(\tau) \end{pmatrix}$

F.Feruglio, 1706.08749

Weinberg $\frac{1}{\Lambda}(H_uH_uLLY)$ operator A_4 rep: **3 3 3** Modular weights k : **I I** 2

Neutrino mass matrix

$$m_{\nu} = \begin{pmatrix} 2Y_1 & -Y_3 & -Y_2 \\ -Y_3 & 2Y_2 & -Y_1 \\ -Y_2 & -Y_1 & 2Y_3 \end{pmatrix}$$

(plus seesaw)

 $e_3^c(LY_3^{(2)})_{\mathbf{1}''}H_d \qquad \mathbf{3}\otimes\mathbf{3}=\mathbf{1}\oplus\mathbf{1}'\oplus\mathbf{1}''\oplus\mathbf{3}_S\oplus\mathbf{3}_A$

(-)	Mass	Rost Fit	${\tt Re}(\tau)$	In
$\left(\begin{array}{c} \gamma \end{array} \right)$		Dest III -	0.049	2.
s(au)	v_d hierarchies	$\beta/lpha$	-	γ/α
(τ)	unexplained	210.767	358	31.7

 $W_e = \alpha_e e_1^c \tilde{\phi}^4 (LY_3^{(2)})_1 H_d + \beta_e e_2^c \tilde{\phi}^2 (L$

 $Y_e = \begin{pmatrix} \alpha_e \tilde{\phi}^4 Y_1 & \alpha_e \tilde{\phi}^4 Y_3 & \alpha_e \tilde{\phi}^4 Y_2 \\ \beta_e \tilde{\phi}^2 Y_2 & \beta_e \tilde{\phi}^2 Y_1 & \beta_e \tilde{\phi}^2 Y_3 \\ \gamma_e \tilde{\phi} Y_3 & \gamma_e \tilde{\phi} Y_2 & \gamma_e \tilde{\phi} Y_1 \end{pmatrix}$

By definition the weighton ϕ does not break flavour symmetry (c.f. FN flavon) * For hierarchies from triplet flavon see J.C. Criado, F. Feruglio and S.J.D. King, 1908.11867

S.J.D. King and S.F.K, 2002.00969

Introduce a weighton (complete singlet^{*})

$$W_{driv} = \chi(Y_1^{(4)} \frac{\phi^4}{M_{fl}^2} - M^2)$$

$$(Y_{\mathbf{3}}^{(2)})_{\mathbf{1}'}H_d + \gamma_e e_3^c \tilde{\phi} (LY_{\mathbf{3}}^{(2)})_{\mathbf{1}''}H_d$$

Natural explanation of charged lepton mass hierarchy $m_e: m_\mu: m_\tau = \alpha_e \tilde{\phi}^4: \beta_e \tilde{\phi}^2: \gamma_e \tilde{\phi}$

Quark Sector with weighton

	Q	d_3^c	d_2^c	d_1^c	u_3^c	u_2^c	u_1^c	$H_{u,d}$	ϕ
$ A_4 $	3	1'	$1^{\prime\prime}$	1	1'	1″	1	1	1
k_I	1	0, 2, 4	-2	-3	5, 3, 1	-1, 2, 4	-3	0	1

 $\begin{aligned} \mathbf{E.g.} \quad & k_{d_{3,2,1}^c} = 0, -2, -3 \qquad k_{u_{3,2,1}^c} = 5, -1, -3 \\ W_d &= \alpha_d d_1^c \tilde{\phi}^4 (QY_{\mathbf{3}}^{(2)})_{\mathbf{1}} H_d + \beta_d d_2^c \tilde{\phi}^3 (QY_{\mathbf{3}}^{(2)})_{\mathbf{1}'} H_d + \gamma_d d_3^c \tilde{\phi} (QY_{\mathbf{3}}^{(2)})_{\mathbf{1}''} H_d \\ W_u &= \alpha_u u_1^c \tilde{\phi}^4 (QY_{\mathbf{3}}^{(2)})_{\mathbf{1}} H_u + \beta_u u_2^c \tilde{\phi}^2 (QY_{\mathbf{3}}^{(2)})_{\mathbf{1}'} H_u + \gamma_u^I u_3^c (QY_{\mathbf{3},I}^{(6)})_{\mathbf{1}''} H_u + \gamma_u^{II} u_3^c (QY_{\mathbf{3},II}^{(6)})_{\mathbf{1}''} H_u \end{aligned}$

 ϕ

$$m_d: m_s: m_b \sim \tilde{\phi}^4: \tilde{\phi}^3:$$

 $m_u: m_c: m_t \sim \tilde{\phi}^4: \tilde{\phi}^2: 1$

S.J.D. King and S.F.K, 2002.00969 shton $\tilde{\phi} \equiv \frac{\langle \phi \rangle}{M_{fl}} \sim (M/M_{fl})^{1/2} \qquad \begin{array}{c} \text{small} \\ \text{parameter} \end{array}$

> Natural explanation of quark mass hierarchy Good fits to mass and mixing for certain cases

Gui-Jun Ding, S.F.K, Lu, Weng, 2505.12916 General analysis with a weighton $\mathcal{W} = \alpha \; \tilde{\phi}^{I} \left(\psi_{1}^{c} \psi Y_{\boldsymbol{r}_{1}}^{(k_{1})} H_{u/d} \right)_{\boldsymbol{\tau}} + \beta \; \tilde{\phi}^{J} \left(\psi_{2}^{c} \psi Y_{\boldsymbol{r}_{2}}^{(k_{2})} H_{u/d} \right)_{\boldsymbol{\tau}} + \gamma \; \tilde{\phi}^{K} \left(\psi_{3}^{c} \psi Y_{\boldsymbol{r}_{3}}^{(k_{3})} H_{u/d} \right)_{\boldsymbol{\tau}}$ $|q| \le e^{-\sqrt{3\pi}} \simeq 0.0043 \ll 1$ independent of modular weights level N=3 $(\theta_{12}^{\psi}, \theta_{23}^{\psi}, \theta_{13}^{\psi})$ \mathcal{P}_{ψ} $(m_{\psi_1}, m_{\psi_2}, m_{\psi_3})$ $(|q|^{\frac{1}{3}}, |q|^{\frac{1}{3}}, |q|^{\frac{1}{3}})$ $(\tilde{\phi}^I, \tilde{\phi}^I, \tilde{\phi}^I)$ 132 $(|q|^{\frac{1}{3}}, |q|^{\frac{1}{3}}, |q|^{\frac{1}{3}}\tilde{\phi}^{2(I-K)} + |q|^{\frac{2}{3}})$ $\left(\tilde{\phi}^{I}, \tilde{\phi}^{J}, \tilde{\phi}^{K} \right)$ 231 $(|q|^{\frac{1}{3}}, |q|^{\frac{1}{3}}, |q|^{\frac{1}{3}}\tilde{\phi}^{2(J-I)} + |q|^{\frac{2}{3}})$ $(\tilde{\phi}^J, \tilde{\phi}^K, \tilde{\phi}^I)$ 312

$oldsymbol{r}_{\psi}\otimesoldsymbol{r}_{\psi^c}$	power of $\tilde{\phi}$	I
$3 \otimes 3$	I = J = K	P
	$I \ge J \ge K$	P_{2}
	$J \ge K \ge I$	P_{2}
$3 \otimes (1'' \oplus 1' \oplus 1)$	$K \ge I \ge J$	P
	$J \ge I \ge K$	P_{z}
(cont'd)	$I \ge K \ge J$	P_{2}
	$K \ge J \ge I$	P

Similar tables for N=4,5

 $(|q|^{\frac{1}{3}}, |q|^{\frac{1}{3}}, |q|^{\frac{1}{3}}\tilde{\phi}^{2(K-J)} + |q|^{\frac{2}{3}})$ $(\tilde{\phi}^K, \tilde{\phi}^I, \tilde{\phi}^J)$ 123 $(|q|^{\frac{2}{3}}, |q|^{\frac{1}{3}}\tilde{\phi}^{2(I-K)} + |q|^{\frac{2}{3}}, |q|^{\frac{1}{3}})$ $(ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$ 321 $(|q|^{\frac{2}{3}}, |q|^{\frac{1}{3}}\tilde{\phi}^{2(K-J)} + |q|^{\frac{2}{3}}, |q|^{\frac{1}{3}})$ $(\tilde{\phi}^I, \tilde{\phi}^K, \tilde{\phi}^J)$ 213 $(|q|^{\frac{2}{3}}, |q|^{\frac{1}{3}}\tilde{\phi}^{2(J-I)} + |q|^{\frac{2}{3}}, |q|^{\frac{1}{3}})$ $(\tilde{\phi}^K, \tilde{\phi}^J, \tilde{\phi}^I)$ 132

q-expansion Weightons control suppresses mixing mass hierarchy

(N=3 cont'd...)

$oldsymbol{r}_\psi\otimesoldsymbol{r}_{\psi^c}$	power of $\tilde{\phi}$	P_{ψ}	$(m_{\psi_1},m_{\psi_2},m_{\psi_3})$	$(heta_{12}^\psi, heta_{23}^\psi, heta_{13}^\psi)$
	$I \ge J \ge K$	P ₂₃₁	$\left(ilde{\phi}^{I}, ilde{\phi}^{J}, ilde{\phi}^{K} ight)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(I-K)} + q ^{\frac{2}{3}})$
$old 3 \otimes (old 1'' \oplus old 1' \oplus old 1)$	$J \ge K \ge I$	P ₃₁₂	$(ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(J-I)} + q ^{\frac{2}{3}})$
	$K \ge I \ge J$	P_{123}	$(ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(K-J)} + q ^{\frac{2}{3}})$
	$J \ge I \ge K$	P ₃₂₁	$(ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(I-K)} + q ^{\frac{2}{3}}, q ^{\frac{1}{3}})$
	$I \ge K \ge J$	P_{213}	$(ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(K-J)} + q ^{\frac{2}{3}}, q ^{\frac{1}{3}})$
	$K \ge J \ge I$	P ₁₃₂	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(J-I)} + q ^{\frac{2}{3}}, q ^{\frac{1}{3}})$
	$I \ge J \ge K, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P ₂₃₁	$(q ^{rac{1}{3}} ilde{\phi}^{I}, q ^{rac{1}{3}} ilde{\phi}^{J}, ilde{\phi}^{K})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge J \ge K, \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge K \ge I$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
$2 \otimes (1' \oplus 1 \oplus 1)$	$K \ge I \ge J$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$\mathbf{J} \otimes (\mathbf{I} \oplus \mathbf{I} \oplus \mathbf{I})$	$J \ge I \ge K$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge K \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, q ^{rac{1}{3}} ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge J \ge I$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-I)}, q ^{\frac{1}{3}})$
	$I \ge J \ge K, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P ₃₂₁	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(I-K)}, q ^{\frac{1}{3}})$
	$I \ge J \ge K, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{231}	$(ilde{\phi}^{I}, q ^{rac{1}{3}} ilde{\phi}^{J}, ilde{\phi}^{K})$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(I-K)} + q ^{\frac{2}{3}})$
	$J \ge K \ge I$	P ₃₁₂	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$3 \otimes (1'' \oplus 1 \oplus 1)$	$K \ge I \ge J$	P ₃₂₁	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
	$J \ge I \ge K$	P ₃₂₁	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
	$I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P ₃₂₁	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(I-J)}, q ^{\frac{1}{3}})$
	$I \ge K \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I$	P_{231}	$(ilde{\phi}^{I}, q ^{rac{1}{3}} ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(I-J)} + q ^{\frac{2}{3}})$
	$K \ge J \ge I$	P ₃₁₂	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$I \ge J \ge K$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{J}, ilde{\phi}^{K})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge K \ge I$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P ₂₁₃	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-J)}, q ^{\frac{1}{3}})$
$3 \otimes (1' \oplus 1' \oplus 1)$	$K \ge I \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P ₁₂₃	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-J)})$
	$J \ge I \ge K$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge K \ge J$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
	$ \mid K \ge J \ge I, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K $	P_{123}	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-I)})$
	$ \mid K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J $	P_{213}	$ (q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$

Gui-Jun Ding, S.F.K, Lu, Weng, 2505.12916

	~			
$oldsymbol{r}_\psi\otimesoldsymbol{r}_{\psi^{c}}$	power of $\tilde{\phi}$	P_{ψ}	$(m_{\psi_1}, m_{\psi_2}, m_{\psi_3})$	$(\theta_{12}^{\psi}, \theta_{23}^{\psi}, \theta_{13}^{\psi})$
	$I \ge J \ge K$	P_{321}	$(q ^{\frac{2}{3}}\tilde{\phi}^{I},\tilde{\phi}^{J},\tilde{\phi}^{K})$	$\left (q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}}) \right $
	$J \ge K \ge I$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$3 \otimes (1'' \oplus 1'' \oplus 1)$	$K \ge I \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$(q ^{\frac{1}{3}}\tilde{\phi}^K, q ^{\frac{1}{3}}\tilde{\phi}^I, \tilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge I \ge K$	P_{321}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(I-K)}, q ^{\frac{1}{3}})$
	$I \ge K \ge J$	P ₃₁₂	$(q ^{rac{2}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge J \ge I, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P ₃₁₂	$(q ^{\frac{1}{3}}\tilde{\phi}^K, q ^{\frac{1}{3}}\tilde{\phi}^J, \tilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge J \ge K, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge J \ge K, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge K \ge I$	P ₁₃₂	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
$3 \otimes (1'' \oplus 1' \oplus 1')$	$K \ge I \ge J$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge I \ge K$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge K \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge J \ge I$	P ₁₃₂	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(J-I)}, q ^{\frac{1}{3}})$
	$I \ge J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{J}, ilde{\phi}^{K})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge K \ge I$	P ₁₃₂	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)}, q ^{\frac{1}{3}})$
$3 \otimes (1'' \oplus 1'' \oplus 1')$	$K \ge I \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P ₃₁₂	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge I \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge K \ge J$	P ₁₃₂	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-J)}, q ^{\frac{1}{3}})$
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
	$K \ge J \ge I, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P ₃₁₂	$(\tilde{\phi}^K, q ^{\frac{1}{3}}\tilde{\phi}^J, \tilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
${f 3}\otimes ({f 1}\oplus{f 1}\oplus{f 1})$	$I \ge J \ge K$	P ₂₃₁	$(q ^{\frac{2}{3}}\tilde{\phi}^{I}, q ^{\frac{1}{3}}\tilde{\phi}^{J},\tilde{\phi}^{K})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$3\otimes (1'\oplus1'\oplus1')$	$I \ge J \ge K$	P ₁₂₃	$(q ^{\frac{2}{3}}\tilde{\phi}^{I}, q ^{\frac{1}{3}}\tilde{\phi}^{J},\tilde{\phi}^{K})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$3\otimes (1''\oplus1''\oplus1'')$	$I \ge J \ge K$	P ₃₁₂	$(q ^{\frac{2}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^J, \tilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$3 \otimes (\widehat{2} \oplus 1)$	$I = J \ge K$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
· · · · · · · · · · · · · · · · · · ·	$K \ge I = J$	P ₂₃₁	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$3 \otimes (\widehat{2} \oplus 1')$	$I = J \ge K$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
~ ~ (~ (+)	$K \ge I = J$	P ₂₃₁	$(q ^{\frac{1}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$3 \otimes (\widehat{2} \oplus 1'')$	$I = J \ge K$	P ₃₁₂	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(J-K)})$
• • • • •)	$K \ge I = J$	P ₂₃₁	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-J)})$
$3 \otimes (\widehat{2}' \oplus 1)$	$I = J \ge K$	P_{321}	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$ (q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
~~ (~ \ +)	$K \ge I = J$	P ₁₂₃	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(K-J)})$
$3 \otimes (\widehat{2}' \oplus 1')$	$I = J \ge K$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
••(•••)	$K \ge I = J$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$

(N=3	cont'd)			
$egin{array}{c} m{r}_\psi \otimesm{r}_{\psi^c} \end{array}$	power of $\tilde{\phi}$	P_{ψ}	$(m_{\psi_1}, m_{\psi_2}, m_{\psi_3})$	$(heta_{12}^\psi, heta_{23}^\psi, heta_{13}^\psi)$
$2 \propto (\mathbf{\widehat{9}}' \oplus 1'')$	$I = J \ge K$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
$\mathbf{J}\otimes(2\oplus1)$	$K \ge I = J$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$2 \propto (\mathbf{\hat{2}}'' \oplus 1)$	$I = J \ge K$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
$3\otimes (\widehat{2}''\oplus 1)$	$K \ge I = J$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
$3 \propto (\mathbf{\widehat{9}}'' \oplus 1')$	$I = J \ge K$	P_{123}	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}}\tilde{\phi}^{2(J-K)})$
$\mathbf{J}\otimes(2\oplus1)$	$K \ge I = J$	P_{321}	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
$3 \otimes (\widehat{2}'' \oplus 1'')$	$I = J \ge K$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$\mathbf{O}\otimes(\mathbf{Z}\oplus\mathbf{I})$	$K \ge I = J$	P_{321}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
	$I \ge J \ge K$	P_{123}	$(ilde{\phi}^{I}, ilde{\phi}^{J}, ilde{\phi}^{K})$	$(q ^{\frac{2}{3}}\tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{J-I})$
$(1'' \oplus 1' \oplus 1) \otimes 3$	$K \ge I \ge J$	P_{312}	$(ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K})$
	$I \ge K \ge J$	P_{132}	$(ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J})$
	$K \ge J \ge I$	P ₃₂₁	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
	$I \ge J \ge K, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{-\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K})$
	$I \ge J \ge K, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, \tilde{\phi}^{J-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(\tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{K-I}, q ^{\frac{1}{3}} \tilde{\phi}^{J-I})$
$(1' \oplus 1 \oplus 1) \otimes 3$	$K \ge I \ge J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J}, \tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, \tilde{\phi}^{J-K})$
	$I \ge K \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{-\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J})$
	$I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J}, \tilde{\phi}^{K-J})$
	$K \ge J \ge I$	P ₃₂₁	$(q ^{\frac{2}{3}}\tilde{\phi}^{K},\tilde{\phi}^{J},\tilde{\phi}^{I})$	$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
	$I \ge J \ge K, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, \tilde{\phi}^{J-K})$
	$I \ge J \ge K, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{123}	$(ilde{\phi}^{I}, q ^{rac{1}{3}} ilde{\phi}^{J}, ilde{\phi}^{K})$	$(q ^{rac{1}{3}} ilde{\phi}^{I-J}, ilde{\phi}^{J-K}, q ^{rac{1}{3}} ilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(\tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{K-I}, q ^{\frac{1}{3}} \tilde{\phi}^{J-I})$
$(1'' \oplus 1 \oplus 1) \otimes 3$	$K \ge I \ge J$	P_{312}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{2}{3}} \tilde{\phi}^{K-I}, q ^{\frac{1}{3}} \tilde{\phi}^{I-J}, \tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, \tilde{\phi}^{J-K})$
	$ I \ge K \ge J, \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P ₃₁₂	$ (q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J}, \tilde{\phi}^{K-J})$
	$ I \ge K \ge J, q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I$	P_{132}	$ (ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, \tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J})$
	$K \ge J \ge I$	P ₃₂₁	$ (q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-I}, q ^{\frac{1}{3}} \tilde{\phi}^{K-I})$

Gui-Jun Ding, S.F.K, Lu, Weng, 2505.12916

$oldsymbol{r}_\psi \otimes oldsymbol{r}_{\psi^c}$	power of $\tilde{\phi}$	P_{ψ}	$(m_{\psi_1},m_{\psi_2},m_{\psi_3})$	$(heta_{12}^\psi, heta_{23}^\psi, heta_{13}^\psi)$
	$I \ge J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{J}, ilde{\phi}^{K})$	$(\tilde{\phi}^{I-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, \tilde{\phi}^{J-I})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{1}{3}} \tilde{\phi}^{I-K}, q ^{\frac{1}{3}} \tilde{\phi}^{K-J}, \tilde{\phi}^{I-J})$
$(1' \oplus 1' \oplus 1) \otimes 3$	$K \ge I \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, \tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(\tilde{\phi}^{J-I}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K})$
	$I \ge K \ge J$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{2}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, \tilde{\phi}^{I-J})$
	$K \ge J \ge I, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P_{321}	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, \tilde{\phi}^{J-I})$
	$I \ge J \ge K$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^{I}, ilde{\phi}^{J}, ilde{\phi}^{K})$	$(\tilde{\phi}^{I-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, \tilde{\phi}^{J-I})$
	$K \ge I \ge J, \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{132}	$(q ^{rac{2}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, \tilde{\phi}^{I-J})$
$(1'' \oplus 1'' \oplus 1) \otimes 3$	$K \ge I \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$(q ^{rac{1}{3}} ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{-\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(\tilde{\phi}^{J-I}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K})$
	$I \ge K \ge J$	P_{132}	$(q ^{rac{2}{3}} ilde{\phi}^{I}, ilde{\phi}^{K}, ilde{\phi}^{J})$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, \tilde{\phi}^{I-J})$
	$K \ge J \ge I, \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, \tilde{\phi}^{J-I})$
	$K \ge J \ge I, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P_{321}	$(q ^{\frac{1}{3}}\tilde{\phi}^K, q ^{\frac{1}{3}}\tilde{\phi}^J, \tilde{\phi}^I)$	$(q ^{-\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
	$I \ge J \ge K, \tilde{\phi}^I \ge^{\frac{1}{3}} \tilde{\phi}^J$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, \tilde{\phi}^{J-K})$
	$I \ge J \ge K, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{123}	$(q ^{\frac{1}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^J,\tilde{\phi}^K)$	$(q ^{-\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(\tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{K-I}, q ^{\frac{1}{3}} \tilde{\phi}^{J-I})$
$(1''\oplus1'\oplus1')\otimes3$	$K \ge I \ge J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}} \tilde{\phi}^{K-I}, q ^{\frac{1}{3}} \tilde{\phi}^{I-J}, \tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, \tilde{\phi}^{J-K})$
	$I \ge K \ge J, \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J}, \tilde{\phi}^{K-J})$
	$I \ge K \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{-\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J})$
	$K \ge J \ge I$	P_{321}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-I}, q ^{\frac{1}{3}} \tilde{\phi}^{K-I})$
	$I \ge J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^{I}, ilde{\phi}^{J}, ilde{\phi}^{K})$	$(\tilde{\phi}^{I-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, \tilde{\phi}^{J-I})$
	$K \ge I \ge J, \hat{\phi}^K \ge q ^{\frac{1}{3}} \hat{\phi}^I$	P_{132}	$(q ^{\frac{1}{3}} \phi^I, \phi^K, \phi^J)$	$(q ^{\frac{2}{3}} \phi^{I-K}, q ^{\frac{1}{3}} \phi^{K-J}, \phi^{I-J})$
$(1''\oplus1''\oplus1')\otimes3$	$K \ge I \ge J, \ q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$(\phi^K, q ^{\frac{1}{3}}\phi^I, \phi^J)$	$(q ^{\frac{1}{3}} \tilde{\phi}^{K-I}, \tilde{\phi}^{I-J}, q ^{\frac{1}{3}} \tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{\frac{1}{3}}\phi^J,\phi^I,\phi^K)$	$(\phi^{J-I}, q ^{\frac{1}{3}}\phi^{I-K}, q ^{\frac{1}{3}}\phi^{J-K})$
	$I \ge K \ge J$	P_{132}	$(q ^{\frac{1}{3}}\phi^I,\phi^K,\phi^J)$	$(q ^{\frac{2}{3}}\phi^{I-K}, q ^{\frac{1}{3}}\phi^{K-J}, \phi^{I-J})$
	$K \ge J \ge I, \phi^K \ge q ^{\frac{1}{3}} \phi^J$	P_{231}	$(q ^{\frac{1}{3}}\phi^J,\phi^K,\phi^I)$	$(q ^{\frac{2}{3}}\phi^{J-K}, q ^{\frac{1}{3}}\phi^{K-I}, \phi^{J-I})$
	$K \ge J \ge I, \ q ^{\frac{1}{3}}\phi^J \ge \phi^K$	P ₃₂₁	$\frac{(\phi^K, q ^{\frac{1}{3}}\phi^J, \phi^I)}{2 \tilde{\alpha} \tilde{\alpha} \tilde{\alpha} \tilde{\beta} \tilde{\alpha} \tilde{\beta} \tilde{\beta} \tilde{\beta} \tilde{\beta} \tilde{\beta} \tilde{\beta} \tilde{\beta} \beta$	$\frac{(q ^{\frac{1}{3}}\phi^{K-J},\phi^{J-I}, q ^{\frac{1}{3}}\phi^{K-I})}{2}$
$({f 1}\oplus{f 1}\oplus{f 1})\otimes{f 3}$	$I \ge J \ge K$	P_{123}	$\frac{(q ^{\frac{2}{3}}\hat{\phi}^{I}, q ^{\frac{1}{3}}\hat{\phi}^{J}, \hat{\phi}^{K})}{2 \tilde{\phi}^{I}, \tilde{\phi}^{I}, \tilde{\phi}^{K}}$	$\frac{(\hat{\phi}^{I-J}, \hat{\phi}^{J-K}, \hat{\phi}^{I-K})}{\hat{\phi}^{I-K}, \hat{\phi}^{I-K}}$
$(1'\oplus1'\oplus1')\otimes3$	$I \ge J \ge K$	P_{123}	$\frac{(q ^{\frac{2}{3}} \phi^I, q ^{\frac{1}{3}} \phi^J, \phi^K)}{2 \tilde{\varphi}^I, \tilde{\varphi}^I, \tilde{\varphi}^K}$	$(\phi^{I-J},\phi^{J-K},\phi^{I-K})$
$(1''\oplus1''\oplus1'')\otimes3$	$I \ge J \ge K$	P ₁₂₃	$\frac{(q ^{\frac{2}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^J, \tilde{\phi}^K)}{2\tilde{\phi}^I, \tilde{\phi}^I, \tilde{\phi}^K}$	$\frac{(\tilde{\phi}^{I-J}, \tilde{\phi}^{J-K}, \tilde{\phi}^{I-K})}{1 - 1 - 2 - 2 - 2 - 2}$
$(\widehat{f 2} \oplus f 1) \otimes f 3$	$I = J \ge K$	P_{213}	$(q ^{\frac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
· · · ·	$K \ge I = J$	P_{312}	$(q ^{rac{s}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \phi^{K-J}, \tilde{\phi}^{K-J})$

(N=3 cont'd...)

$egin{array}{c c c c c c c c c c c c c c c c c c c $	power of $\tilde{\phi}$	P_{ψ}	$(m_{\psi_1},m_{\psi_2},m_{\psi_3})$	$(heta_{12}^\psi, heta_{23}^\psi, heta_{13}^\psi)$
$(\hat{\mathbf{j}} \oplus 1') \otimes 2$	$I = J \ge K$	P ₁₂₃	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
	$K \ge I = J$	P ₃₁₂	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(ilde{\phi}^{K-J}, q ^{rac{1}{3}}, q ^{rac{1}{3}} ilde{\phi}^{K-J})$
$(\widehat{2} \oplus 1'') \otimes 2$	$I = J \ge K$	P ₁₂₃	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K})$
	$K \ge I = J$	P ₃₁₂	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{2}{3}} ilde{\phi}^{K-J}, q ^{rac{1}{3}}, q ^{rac{1}{3}} ilde{\phi}^{K-J})$
$(\widehat{2}' \oplus 1) \otimes 3$	$I = J \ge K$	P ₂₁₃	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K})$
	$K \ge I = J$	P ₃₁₂	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{2}{3}} ilde{\phi}^{K-J}, q ^{rac{1}{3}}, q ^{rac{1}{3}} ilde{\phi}^{K-J})$
$(\widehat{9}' \oplus 1') \otimes 9$	$I = J \ge K$	P ₂₁₃	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
	$K \ge I = J$	P ₃₁₂	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{1}{3}} ilde{\phi}^{K-J}, q ^{rac{1}{3}}, ilde{\phi}^{K-J})$
$(\widehat{\mathbf{j}}' \oplus 1'') \otimes 3$	$I = J \ge K$	P ₁₂₃	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
	$K \ge I = J$	P ₃₁₂	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(ilde{\phi}^{K-J}, q ^{rac{1}{3}}, q ^{rac{1}{3}} ilde{\phi}^{K-J})$
$(\widehat{9}'' \oplus 1) \otimes 3$	$I = J \ge K$	P ₁₂₃	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
	$K \ge I = J$	P ₃₂₁	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{1}{3}} ilde{\phi}^{K-J}, q ^{rac{1}{3}}, ilde{\phi}^{K-J})$
$(\widehat{\mathbf{j}}'' \oplus 1') \otimes 3$	$I = J \ge K$	P ₁₂₃	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K})$
$(2 \oplus 1) \otimes 3$	$K \ge I = J$	P ₃₂₁	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{1}{3}} ilde{\phi}^{K-J}, q ^{rac{1}{3}}, q ^{rac{1}{3}} ilde{\phi}^{K-J})$
 (ĵ″ ⊕ 1″) ⊗ 2	$I = J \ge K$	P ₂₁₃	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
	$K \ge I = J$	P ₃₂₁	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(ilde{\phi}^{K-J}, q ^{rac{1}{3}}, q ^{rac{1}{3}} ilde{\phi}^{K-J})$

For example...

 $L \sim (\mathbf{3}, 2)$, $e^c \sim (\mathbf{1}, -1)$, $\mu^c \sim (\mathbf{1}, 1)$, $\tau^c \sim (\mathbf{1''}, 3)$, $H_{u,d} \sim (\mathbf{1}, 0)$, $Q_L \sim (\mathbf{3}, k_{Q_L}), \quad u^c \sim (\mathbf{1}, -k_{Q_L}), \quad c^c \sim (\mathbf{1''}, 5 - k_{Q_L}), \quad t^c \sim (\mathbf{1'}, 4 - k_{Q_L}),$ $D_D^c \equiv \{d^c, s^c\} \sim \left(\widehat{\mathbf{2'}}, 2 - k_{Q_L}\right), \ b^c \sim (\mathbf{1}, 5 - k_{Q_L}), \ \phi \sim (\mathbf{1}, 1).$

18 parameter fit to fermion mass and mixing data, predicts $\delta_{\rm CP}^l = 190^o$

Gui-Jun Ding, S.F.K, Lu, Weng, 2505.12916

100 models $(\mathbb{T}^2)^3/(\mathbb{Z}_4 \times \mathbb{Z}_2)$ 3 factorable tori, SUSY preserving

De Anda, S.F.K. 2312.09010, 2304.05958 M. Fischer, M. Ratz, J. Torrado and P. K. S. Vaudrevange 1209.3906

 $^{{\}rm Re} \ \tau_{1.2}$

 $^{{\}rm Re} \ \tau_3$

SU	(5)	0	rk)if	Ο	C	GI	JT	$(\mathbb{T}^2)^3/(\mathbb{Z}_4\times\mathbb{Z}_2)$
Field	$\overline{SU(5)}$	$\overline{S_4^A}$	$\overline{S_4^B}$	$\overline{S_4^C}$	k_A	k_B	k_C	Loc	$\int \mathcal{L}_{10d}^{(0)} = \left(\frac{y_{33}^u}{\Lambda^5}T_3T_3 + \frac{y_{23}^u}{\Lambda^7}\xi_T T_2 T_3\right) H_u \delta^6(z)$
$ \begin{array}{c c} F \\ T_1 \\ T_2 \\ T_2 \\ T_2 \end{array} $	5 10 10 10	1 1 1 1	1 1 1 1	3 1 1 1	0 0 0 0	0 0 0 0	$0 \\ 1 \\ 1/2 \\ 0$	\mathbb{T}_{C}^{2} \mathbb{T}_{C}^{2} \mathbb{T}_{C}^{2} \mathbb{T}_{C}^{2}	$ + \left(\frac{y_{22}}{\Lambda^9}\xi_T^2 T_2 T_2 + \frac{y_{13}}{\Lambda^9}\xi_T^2 T_1 T_3 + \frac{y_{12}}{\Lambda^{11}}(\xi_T^3 + \xi_F^3)T_1 T_2\right) H_u \delta^6(z) $ $ + \left(\frac{Y_a}{\Lambda^9}F N_a^c \Phi_{BC} + \frac{Y_s}{\Lambda^9}F N_s^c \Phi_{AC}\right) H_u \delta^6(z) $ $ (Y_{5-} - Y_5' - Y_5' - Y_5') = 0 $
$ \begin{array}{c} \Gamma_{3} \\ N_{a}^{c} \\ N_{s}^{c} \\ H_{u} \end{array} $	1 1 5	1 1 1	1 1 1 1	1 1 1 1	$0 \\ -2 \\ 0$	$\begin{array}{c} -4 \\ 0 \\ \hline 0 \\ \end{array}$	0 0 0	\mathbb{T}_{A}^{2} \mathbb{T}_{A}^{2} Bulk	$ + \left(\frac{Y_{5\tau}}{\Lambda^7}\xi_F FT_3 + \frac{Y_{5\tau}}{\Lambda^9}\xi_F\xi_T FT_2 + \frac{Y_{5\tau}}{\Lambda^{11}}\xi_F\xi_T^2 FT_1\right)H_{5d}\delta^6(z) + \left(\frac{Y_{5\mu}}{\Lambda^9}\xi_F^2 FT_2 + \frac{Y_{5\mu}'}{\Lambda^{11}}\xi_F^2\xi_T FT_1 + \frac{Y_{5e}}{\Lambda^{11}}\xi_F^3 FT_1\right)H_{5d}\delta^6(z) $
H_{d} H_{45} $H_{\overline{45}}$ $\Phi = \infty$	$5 \\ 45 \\ \overline{45} \\ 1$	1 1 1 1	1 1 1 2	1 1 1 2	0 0 0	0 0 0	$1/2 \\ 1/2 \\ 0 \\ 0$	Bulk Bulk Bulk	$ \begin{array}{ccc} & & + (H_{5d}^{(0)} \to H_{45d}^{(0)} \text{ terms}) \\ & & + \frac{M_a}{2} N_a^c N_a^c \delta^2(z_1) \delta^2(z_3) + \frac{M_s}{2} N_s^c N_s^c \delta^2(z_2) \delta^2(z_3), \\ \end{array} $
$ \begin{array}{c} \Psi_{BC} \\ \Phi_{AC} \\ \xi_F \\ \xi_T \end{array} $	1 1 1 1	1 3 1 1	3 1 1 1	3 1 1	0 0 0 0	0 0 0	$0 \\ -5/2 \\ -1/2$	Bulk \mathbb{T}^2_C \mathbb{T}^2_C	$\begin{bmatrix} \begin{array}{c c c c c c c c c c c c c c c c c c c $
	\We i	ght	ons						$\begin{array}{c c c c c c c c c c c c c c c c c c c $

De Anda, S.F.K. 2312.09010, 2304.05958

I.de Medeiros Varzielas, S.F.K., M.Levy, 2211.00654, 2309.15901 (See Talk by Ivo)

$$M_{u} = \begin{pmatrix} 0 & y_{12}^{u} \tilde{\xi}_{T,F}^{3} e^{i\phi_{u1}} & y \\ y_{12}^{u} \tilde{\xi}_{T,F}^{3} e^{i\phi_{u1}} & y_{22}^{u} \tilde{\xi}_{T}^{2} & y_{23}^{u} \tilde{\xi}_{T} \\ y_{13}^{u} \tilde{\xi}_{T}^{2} & y_{23}^{u} \tilde{\xi}_{T} e^{i\phi_{u2}} \end{pmatrix}$$

$$M_{d} = \begin{pmatrix} y_{d11} \tilde{\xi}_{F}^{3} & y_{d12} \tilde{\xi}_{F}^{2} \tilde{\xi}_{T} & y_{d13} \tilde{\xi}_{T} \\ 0 & y_{d22} \tilde{\xi}_{F}^{2} & y_{d23} \tilde{\xi}_{F} \tilde{\xi}_{T} \\ 0 & 0 & y_{d33} \end{pmatrix}$$

$$M_e = \begin{pmatrix} y_{e11}\tilde{\xi}_F^3 & 0\\ y_{e21}\tilde{\xi}_F^2\tilde{\xi}_T & y_{e22}\tilde{\xi}_F^2\\ y_{e31}\tilde{\xi}_F\tilde{\xi}_T^2 & y_{e32}\tilde{\xi}_F\tilde{\xi}_T e^{i\phi_{d1}} \end{pmatrix}$$

Dirac
neutrino
$$M_D = \begin{pmatrix} 0 & y_s \tilde{\Phi}_{AC} \\ y_a \tilde{\Phi}_{BC} & y_s \tilde{\Phi}_{AC} (1 - \sqrt{6}) \\ -y_a \tilde{\Phi}_{BC} & y_s \tilde{\Phi}_{AC} (1 + \sqrt{6}) \end{pmatrix} v_u, \quad M_N = \begin{pmatrix} M_a & 0 \\ 0 & M_s \end{pmatrix}$$
Heavy
Majorana
neutrino
matrix

De Anda, S.F.K. 2312.09010, 2304.05958

$$m_u \sim \tilde{\xi}_{T,F}^4 v_u, \, m_c \sim \tilde{\xi}_T^2 v_u, \, m_t \sim$$

 $\begin{array}{c} y_{d13}\tilde{\xi}_{F}\tilde{\xi}_{T}^{2} \\ y_{23}\tilde{\xi}_{F}\tilde{\xi}_{T}e^{i\phi_{d2}} \\ y_{d33}\tilde{\xi}_{F} \end{array} \end{array} \right) v_{d}, \qquad \begin{array}{c} \text{LR convention} \\ \text{CKM mixing from M_{d}, M_{u}} \end{array}$

Seesaw mechanism gives 3 parameter neutrino mass matrix

$$m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + m_s e^{i\eta}$$

G.J.Ding, S.F.K, X.G.Liu and J.N.Lu, 1910.03460 G.J.Ding, S.F.K. and C.Y.Yao, 2103.16311

De Anda, SFK 2304.05958

	without SK atmos	spheric data
	NuFit $\pm 1\sigma$	Model
$\theta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	34.34
$ heta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	48.31
$ heta_{13}/^{\circ}$	$8.54_{-0.12}^{+0.11}$	8.54
$\delta/^{\circ}$	197^{+42}_{-25}	284
$\frac{\Delta m_{21}^2}{10^{-5} \mathrm{eV}^2}$	$7.41_{-0.20}^{+0.21}$	7.42
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.511^{+0.028}_{-0.021}$	2.510
$\frac{m_a}{10^{-3} \text{ eV}}$		31.47
$\frac{m_b}{10^{-3} \text{ eV}}$	$rac{m_{etaeta}}{10^{-3}~eV}$	2.28
η/π		1.24
χ^2 Three	e parameter fit	6.3

6 measured observables

3 input parameters

2.0

See talk by A.Trautner, 2505.00099

Unconstrained Kahler potential

$$\mathcal{K} = \left(-i\tau + i\bar{\tau})^{-k_{\psi}} \left(\psi^{\dagger}\psi\right)_{\mathbf{1}} + \sum_{n,\mathbf{r_1},\mathbf{r_2}} c^{(n,\mathbf{r_1},\mathbf{r_2})} (-i\tau + i\bar{\tau})^{-k_{\psi}+n} \left(\psi^{\dagger}Y_{\mathbf{r_1}}^{(n)\dagger}Y_{\mathbf{r_2}}^{(n)}\psi\right)$$

minimal Kähler potential

Canonical normalisation can lead to sizeable corrections

One solution is to introduce a flavour symmetry as well as modular symmetry, leading to so called "Eclectic Flavour Symmetry"

In general the resolution to this may come from the top-down approach

non-canonical terms unsuppressed since τ is dimensionless

[Nilles et al, 2001.01736; 2004.05200]

Conclusions

- **¬** Flavour problem of Standard Model remains Symmetry may guide us - GUTs and Flavour Symmetry Modular Family Symmetry motivated by String theory \Box Modulus field τ represents a minimal "flavon" scenario Yukawa matrices expressed in terms of the modulus field Introduced "weighton" to explain fermion mass hierarchies 10d model gives 3 moduli fields stabilised at fixed points □ SU(5) Orbifold GUT in 10d leads to predictive LS model Unconstrained Kahler potential calls for new ingredients