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2 Right-handed neutrinos: seesaw models and signatures

• The minimal case of two right-handed neutrinos, consistent with neutrino oscillation data, is discussed including either diagonal or
o↵-diagonal right-handed neutrino masses.

• The case of extra neutrino singlets is considered, focussing on the inverse seesaw mechanism.

1 Introduction

The Standard Model (SM) of particle physics [1–4] involves three families of spin-1/2 chiral fermions, the quarks and leptons, arranged
into particular multiplets of the gauge group

S U(3)C ⇥ S U(2)L ⇥ U(1)Y (1)
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plus a complex scalar Higgs doublet H with hypercharge Y = +1/2
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where the vacuum expectation value (VEV) hh0i = v/
p

2 breaks the electroweak symmetry to electromagnetism, resulting in a physical
Higgs boson [5–8]. The left-handed (L) chirality fermions form electroweak S U(2)L doublets, while the right-handed (R) chirality fermions
form electroweak S U(2)L singlets. The six quarks (u)p, (d)own, (c)harm, (s)trange, (t)op, (b)ottom carry three colours (r)ed, (b)lue, (g)reen
under S U(3)C . The three families of leptons do not carry colour, and are labelled by the charged lepton mass eigenstates (e)lectron, muon
(µ) and tau (⌧). The neutrinos (⌫) are leptons with zero electric charge, and appear only in left-handed doublets together with the charged
lepton mass eigenstates, namely electron neutrino (⌫eL), muon neutrino (⌫µL), tau neutrino (⌫⌧L). In the SM, these three neutrinos are all
massless and are distinguished by separate lepton numbers Le, Lµ, L⌧. The neutrinos and antineutrinos are distinguished by total lepton
number L = ±1.

The SM survived until almost the end of the last century, but then a series of experiments established the existence of tiny neutrino
masses and rather large neutrino mixing [9, 10]. In 1998 it was discovered that ⌫µ neutrinos, produced from cosmic rays in the upper
atmosphere, disappear; later it was shown that this is due to them oscillating between the two identities ⌫µ � ⌫⌧ on their way to Earth,
which can happen if neutrinos have mass and mixing [11]. In 2002, the electron neutrinos ⌫e from the Sun were shown to also disappear,
transforming to ⌫µ and ⌫⌧, which is also a consequence of neutrino oscillations due to their mass and mixing [12]. Further atmospheric,
solar and terrestrial experiments, including reactor experiments, followed, confirming and refining this neutrino oscillation picture [13–16].
This culminated in a three family pattern of neutrino masses and mixing angles, and we now know that:
• Neutrinos have tiny masses, approximately one million times smaller than the electron mass.
• Two of the neutrino masses are similar in mass, unlike the hierarchical charged fermion masses.
• The neutrino masses break separate lepton numbers Le, Lµ, L⌧ but may or may not respect total lepton number L = Le + Lµ + L⌧, de-

pending on them being Dirac or Majorana in nature.
• Neutrinos have large mixing relevant to the atmospheric and solar experiments, and smaller mixing describing the reactor experiments,

comparable to the largest quark mixing angle.
Neutrino oscillations [17] only depend on the two mass squared di↵erences �m2

21 ⌘ m2
2 � m2

1, which is constrained by data to be positive,
and �m2

31 ⌘ m2
3 � m2

1, which current data allows to take a positive (normal) or negative (inverted) value, but do not depend on the absolute
neutrino mass scale, as explained in Fig.1. 1 Lepton mixing relevant to the oscillation experiments is parameterised by three lepton mixing
angles (and one CP violating phase), whose precise definitions will be discussed later, but which may be intuitively understood in Fig.2.
The atmospheric neutrino oscillation data is consistent with bi-maximal ⌫µ � ⌫⌧ mixing, with ✓23 ⇡ 45� [11], though it could be less than

1It is common but incorrect to refer to the mass squared ordering question as the “neutrino mass hierarchy”. The “ordering” question is separate from that of whether
neutrino masses are hierarchical in nature or approximately degenerate, which is to do with the lightest neutrino mass.
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6 Right-handed neutrinos: seesaw models and signatures

In order to explain weak interaction phenomena, S.L. Glashow in 1961 [1] introduced an electroweak gauge theory, now called the
Standard Model (SM), based on the non-Abelian gauge group S U(2)L and the weak hypercharge gauge group U(1)Y

S U(2)L ⇥ U(1)Y (10)

under which left-handed chiral electron and neutrino field form a doublet Le with hypercharge Y = �1/2 while the right-handed chiral
electron eR is a singlet with hypercharge Y = �1 equal to its electric charge,

Le =

 
⌫eL

eL

!
, eR (11)

It is not possible to write down gauge invariant mass terms, but S. Weinberg in 1967 [2] and A. Salam in 1968 [3] included the complex
scalar Higgs5 doublet H into the theory with hypercharge Y = +1/2, as in Eq. 6,

H =
 
h+

h0

!
(12)

where the vacuum expectation value (VEV) hh0i = v/
p

2 breaks the electroweak symmetry to electromagnetism

S U(2)L ⇥ U(1)Y ! U(1)Q (13)

where the electric charge generator Q is given by

Q = T3L + Y (14)

where T3L is the third generator of S U(2)L and Y is the hypercharge generator. The electron mass then arises from the gauge invariant
interaction term,

yeLeHeR + H.c.! ye
vp
2

(eLeR + eReL) (15)

where we identify the Dirac mass for the electron as,

me = ye
vp
2

(16)

The dimensionless scalar-fermion coupling constant ye is commonly referred to as a Yukawa coupling after H. Yukawa who studied pion-
nucleon couplings in his 1935 paper on strong interactions.

Following the discovery of the muon µ in 1936 by C.D. Anderson and S. Neddermeyer, and the tau lepton ⌧ in 1977 by M.L. Perl, the
standard electroweak theory was extended to include three gauge invariant Yukawa terms 6

yeLeHeR + yµLµHµR + y⌧L⌧H⌧R + H.c. (17)

where the three lepton doublets with hypercharge Y = �1/2 are
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leading to the three Dirac masses for the charged leptons

me = ye
vp
2
, mµ = yµ

vp
2
, m⌧ = y⌧

vp
2
, (19)

where me ⇡ 0.511 MeV, mµ ⇡ 105.66 MeV, m⌧ ⇡ 1777 MeV [72], plus three massless left-handed chiral neutrinos ⌫eL, ⌫µL, ⌫⌧L. The
hierarchy of the three charged lepton masses, all of them much smaller than the Higgs VEV v ⇡ 246 GeV, is parametrised in terms of the
three hierarchical Yukawa couplings ye ⌧ yµ ⌧ y⌧ ⌧ 1, which is unexplained in the SM.

Note that there is an accidental global symmetry which survives electroweak symmetry breaking, namely U(1)Le , U(1)Lµ , U(1)L⌧ ,
associated with the three lepton numbers Le, Lµ, L⌧, not to be confused with the three lepton doublets of the same name 7. This is simply
the symmetry of the three Yukawa terms in Eq.17, where any field with a label ↵ = e, µ, ⌧ is associated a global lepton number L↵ = 1 under
the respective lepton number. For example, ⌫eL, eL, eR all have Le = 1 and Lµ = L⌧ = 0, and so on. The three lepton numbers really express
the fact that there are no mass mixing Yukawa terms like for example LeHµR . Of course there is nothing to forbid such mass mixing terms,
which are allowed by gauge invariance, but they can be easily rotated away, as we now discuss.

To see this let us write the three lepton doublets as Li and the three right-handed charged leptons as eR j, where i, j = 1, 2, 3, and the
Yukawa terms as

HLiye
i jeR j + H.c. (20)

5Actually the complex scalar S U(2) doublet was first discussed by Kibble [8]. Higgs et al [5–7] only considered U(1).
6Of course at the time, Glashow, Weinberg and Salam only knew of the muon terms.
7Total lepton number L = Le + Lµ + L⌧ is also conserved.
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where me ⇡ 0.511 MeV, mµ ⇡ 105.66 MeV, m⌧ ⇡ 1777 MeV [72], plus three massless left-handed chiral neutrinos ⌫eL, ⌫µL, ⌫⌧L. The
hierarchy of the three charged lepton masses, all of them much smaller than the Higgs VEV v ⇡ 246 GeV, is parametrised in terms of the
three hierarchical Yukawa couplings ye ⌧ yµ ⌧ y⌧ ⌧ 1, which is unexplained in the SM.
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Yukawa terms as
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i jeR j + H.c. (20)

5Actually the complex scalar S U(2) doublet was first discussed by Kibble [8]. Higgs et al [5–7] only considered U(1).
6Of course at the time, Glashow, Weinberg and Salam only knew of the muon terms.
7Total lepton number L = Le + Lµ + L⌧ is also conserved.
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Ideally we would like all Yukawas to be of order unity, so what is going on?

Is there a flavour symmetry at work?
(Maybe not! See Talk by Avelino Vicente)
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GUTsFamily

Figure 18: Quark and lepton masses lego plot (true heights need to be scaled by the factors shown). The (scaled) heights
of the towers representing the fermion masses, show vast hierarchies which are completely mysterious in the SM. GUTs
and Family symmetries act in di↵erent directions as shown.

• Renormalisable at GUT scale.

• GUT breaking sector explicit, µ term generated.

• MSSM reproduced with R-parity from ZR

4 .

• Doublet-triplet splitting via Missing Partner mechanism [174].

• Proton decay suppressed.

• Solves the strong CP problem via Nelson-Barr mechanism [175,176].

• Up-type quark strong mass hierarchy explained.

• Littlest Seesaw model arises with spontaneously broken CP symmetry.

The model also requires the additional discrete symmetries Z9 ⇥ Z6 ⇥ ZR

4 . The superfields relevant
for quarks, leptons and Higgs, including flavons, are shown in Table 4. SM quarks and leptons are
contained in the superfields F and Ti. The light MSSM Higgs doublet Hu originates from a linear
combination of H5 and H45, while Hd arises from H5 and H45, in order to obtain acceptable relations
between down-type quarks and charged leptons.

Although renormalisable at the GUT scale, light fermion masses are suppressed when “messenger
fields” are integrated out, resulting in e↵ective non-renormalisable operators, analogous to the way
the seesaw mechanism works. For example, the field ⇠, which gains a VEV v⇠ ⇠ 0.06MGUT, results
in a hierarchical fermion mass structure in the up-type quark sector through e↵ective operators like
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Fermion Mass Hierarchies 
from Symmetry
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Figure 16: The Pati-Salam multiplets for one family of quarks and leptons where the leptons are the fourth colour and
the assigment is left-right symmetric, so the ⌫R is predicted.
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where  c

i
are the CP conjugated RH quarks and leptons (so that they become LH) and i = 1 . . . 3 is

a family index. Clearly the three RHNs (or rather strictly speaking their CP conjugates ⌫c

i
) are now

predicted as part of the gauge multiplets. This is welcome since it means that neutrino masses, which
arise via the seesaw mechanism, will be related to quark and charged lepton masses as desired.

The Higgs fields are contained in the following representations,
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where Hd and Hu are two low energy Higgs doublets.
The two heavy Higgs representations are
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and
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The Higgs fields are assumed to develop VEVs,

h⌫Hi ⇠ MGUT , h⌫̄Hi ⇠ MGUT (102)

leading to the symmetry breaking of the PS gauge group at MGUT down to that of the SM,

SU(4) ⌦ SU(2)
L

⌦ SU(2)
R

�! SU(3)
C

⌦ SU(2)
L

⌦ U(1)
Y

(103)

in the usual notation. Under the symmetry breaking in Eq.103, the Higgs field H in Eq.99 splits into
two Higgs doublets Hd, Hu whose neutral components subsequently develop weak scale VEVs,

hH0
d
i = vd, hH0

u
i = vu (104)
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Figure 17: A complete family of LH quarks and leptons (where RH fermions are CP conjugated) forms a single 16 spinor
representation of SO(10), including the RHN (CP conjugated as ⌫c). The notation | ± ± ± ±±i labels the components
of the spinor, in terms of a direct product of five Pauli matrices with eigenstates |±i, respectively, with the constraint
that there must be an even number of |�i eigenstates. The embedding of the SM gauge group is such that the first three
components of |±±±±±i is associated SU(3)C , while the last two components are associated with the SU(2)L ⇥U(1)Y

gauge group.

| ± ± ± ±±i are associated with SU(3)C as in Fig.17. In fact the subgroup SO(6) ⇥ SO(4) is locally
isomorphic to SU(4) ⇥ SU(2) ⇥ SU(2) which is precisely the Pati-Salam gauge group, so one possible
symmetry breaking direction is,

SO(10) ! SU(4)C ⇥ SU(2)L ⇥ SU(2)R (109)

with
16 ! (4,2,1) � (4,1,2). (110)

Another possible symmetry breaking direction is,

SO(10) ! SU(5) ⇥ U(1)X (111)

with
16 ! 5�3 � 101 � 15 (112)

10 ! 5�2 � 52. (113)

The Kronecker product of two spinor representations gives:

16 ⌦ 16 = 10 � 126 � 120. (114)

With quarks and leptons denoted as  in the 16 representation, this allows Yukawa couplings if a Higgs
h in the 10 representation of SO(10) is introduced, since 10 ⌦ 10 contains the singlet, namely,

yijh i j (115)
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There are four consistent possible solutions for X⌫ ,

X⌫ = ⇢3(1), ⇢3(S), ⇢3(U), ⇢3(SU) . (84)

The light neutrino mass matrix m⌫ is constrained by the residual family symmetry ZSU

2 and residual
CP symmetry X⌫ as [113]:

⇢T

3 (SU)m⌫⇢3(SU) = m⌫ , (85a)

XT

⌫
m⌫X⌫ = m⇤

⌫
, (85b)

where the second of these equations follows from Eq.78. For X⌫ = ⇢3(S), ⇢3(U), the lepton mixing angles
and CP phases are determined to be a special case of TM1 mixing, with maximal atmospheric mixing
angle and maximal Dirac CP violation �CP = ±

⇡

2 . The Majorana phases are trivial with ↵21, ↵31 = 0, ⇡.
The other two cases in Eq.84 predict zero CP violation.

Finally we note that the Littlest Seesaw neutrino mass matrix in Eqs.54, 73 satisfies Eq.85a (after
multiplying L2 by a minus sign) but can only satisfy Eq.85b for ⌘ = 0, which is not acceptable, therefore
that model does not possess any remnant CP symmetry in the neutrino sector. Instead the LS prediction
⌘ = ±2⇡/3 arises from an extra Z3 symmetry of the flavon potential, as explained below Eq.73.

6 Unification: Grand Unified Theories of Flavour

We have argued that neutrino masses and mixing angles are a part of the flavour puzzle, which includes
charged leptons and quarks. However lepton mixing angles are quite large, which seems to suggest
discrete family symmetry. When the type I seesaw mechanism is also included, as a mechanism for
small neutrino masses, then large scales may become involved, possibly as large as the GUT scale. In
such a framework the origin of all quark and lepton masses and mixing could be related to some GUT
symmetry group GGUT, which unifies the fermions within each family and therefore relates neutrino
masses to charged quark and lepton masses. Indeed, the inclusion of GUTs requires the problem of
neutrino masses and the problem of quark and lepton masses to be tackled simultaneously. The choice of
GUT group is quite large, but some possible candidate gauge groups are shown in Fig. 15. In this section
we shall focus mainly on SU(5) [132], the Pati-Salam gauge group SU(4)C ⇥ SU(2)L ⇥ SU(2)R [133]
and SO(10) [134] (shown in pale blue in Fig. 15).

6.1 SU(5)

We first consider the gauge group SU(5) [132], which is rank 4 and has 24 gauge bosons which transform
as the 24 adjoint representation. A LH lepton and quark fermion family is neatly accommodated into
the SU(5) representations F = 5 and T = 10, where
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⌧0 �0 Stab(⌧0)
i S ZS

4 =
�
1, S, S2, S3

 

e2⇡i/3 ST, S2 ZST
3 ⇥ ZS2

2 =
�
1, ST, (ST )2, S2, S3T, S2(ST )2

 

i1 T, S2 ZT
⇥ ZS2

2 =
�
1, S2, T, S2T, T 2, S2T 2, . . .

 

others S2 ZS2

2 =
�
1, S2

 

Table 1. The fixed points ⌧0 in the fundamental domain D and the corresponding stabilizers
Stab(⌧0) which are abelian subgroup of �. Notice that the cyclic Zg

m has the presentation rule
Zg
m = {g|gm = 1}. The stabilizer ZST

3 ⇥ZS2

2 of ⌧0 = e2⇡i/3 is isomorphic to the cyclic group ZS3T
6 ,

and the ZT denotes the infinite cyclic group generated by the translation T .

group in figure 4. From Eq. (3.8) we see that only the modular symmetry transformation
conjugate to �0 can have fixed point. In other words, �f and �0 must belong to the same
conjugacy class. It is straightforward to see that the stabilizer Stab(⌧f ) = �0Stab(⌧0)�0�1 is
isomorphic Stab(⌧0), and the isomorphism is given by a conjugation with �0. The alignment
of the modular form at the symmetric points are fixed so that the lepton mass matrices
and mixing parameters are strongly constrained, the phenomenological implications of the
residual symmetry fixed points would be discussed later.

3.4 Modular invariant supersymmetric theories

We work in the framework of the modular invariant supersymmetric theory [4–6]. In the
context of N = 1 global supersymmetry, the most general form of the action is

S =

Z
d4xd2✓d2✓̄K(�I , �̄I , ⌧, ⌧̄) +

Z
d4xd2✓W(�I , ⌧) + h.c.

�
, (3.9)

where K(�I , �̄I , ⌧, ⌧̄) is the Kähler potential, it is a real gauge invariant function of the chiral
superfields �I , the modulus ⌧ and their hermitian conjugates �̄, ⌧̄ . W(�, ⌧) stands for the
superpotential, and it is a holomorphic gauge invariant function of the chiral superfields
�I and ⌧ . The action S should be modular invariant and respect the SM (or GUT) gauge
symmetry. The transformation properties of �I are specified by its modular weight �kI
and the representation rI under �0

N ,

⌧ ! �⌧ =
a⌧ + b

c⌧ + d
, �I ! (c⌧ + d)�kI⇢rI (�)�I . (3.10)

The Kähler potential to be the minimal form [6],

K(�I , �̄I , ⌧, ⌧̄) = �h⇤2 log(�i⌧ + i⌧̄) +
X

I

(�i⌧ + i⌧̄)�kI |�I |
2 , (3.11)

where h is a positive constant. After the modulus ⌧ gets a vacuum expectation, this Kähler
potential gives the kinetic terms for the scalar components of the supermultiplet �I and
the modulus field ⌧ . Notice the Kähler potential is loosely constrained by the modular
symmetry, there are additional terms consistent with modular symmetry [7]. However, the
Kähler potential K is subject to strong constraint in some top-down models motivated by
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which implies 1

⌧ 7! �⌧ = �(⌧) =
a⌧ + b

c⌧ + d
, Im(⌧) > 0 . (3.2)

where a, b, c, d are integers and they fulfill ad � bc = 1. A complex torus is a quotient
C/⇤ of the complex plane C by a lattice ⇤, it is obtained by gluing both opposite pairs of
edges of the fundamental parallelogram depicted in gray in figure 1. Obviously each linear

fractional transformation of Eq. (3.2) is associated with a 2 ⇥ 2 matrix � =

 
a b

c d

!
with

integer coefficients and determinant 1. All the linear fractional transformations form the
full modular group � which is isomorphic to SL(2,Z). Notice that � and �� act in the
same way on the modulus ⌧ , the faithful action group is the projective special linear group
� ⌘ PSL(2,Z) ⇠= SL(2,Z)/{12,�12}, where 12 stands for the two-dimensional identity
matrix. Note that the modular group is defined to be � In some literature. The modular
group is an infinite discrete group and it can be generated by two elements S and T [1, 2]

S =

 
0 1

�1 0

!
, T =

 
1 1

0 1

!
. (3.3)

Note that S and T are often referred to as modular inversion and translation respectively,

S : ⌧ 7! �
1

⌧
, T : ⌧ 7! ⌧ + 1 . (3.4)

It is straightforward to check that the two generators satisfy the following relations

S2 = �12, S4 = (ST )3 = 12, S2T = TS2 (3.5)

and also (TS)3 = 12 which is equivalent to (ST )3 = 12. The corresponding relations in �

are S2 = (ST )3 = 12, since 12 and �12 are indistinguishable in �.
As shown in figure 3, the � orbit of every modulus ⌧ has a representative in the standard

fundamental domain D
2 .

D = {⌧ |Im(⌧) > 0, |Re(⌧)| 
1

2
, |⌧ | � 1} , (3.7)

which is bounded by the vertical lines Re(⌧) = �
1
2 , Re(⌧) =

1
2 and the circle |⌧ | = 1 in the

upper half plane H. Every point in the upper half plane is equivalent to a point of D under
the action of SL(2,Z), and no two points inside D differ by a linear fraction transformation.
The transformation T pairs the two vertical lines Re(⌧) = ±

1
2 , and the transformation S

maps the arc of |⌧ | = 1 from i to e⇡i/3 into the arc from i to e2⇡i/3. Notice that the
fundamental domain is not unique, the transformed region �D by any element � of � can
also be taken as the fundamental domain.

1This modular transformation is well-defined, as it fulfills Im(�(⌧)) = Im(⌧)
|c⌧+d|2 > 0 and (��0)(⌧) =

�(�0(⌧)).
2More precisely, each orbit has a unique representative in the standard fundamental domain

D =
n
⌧
���|⌧ | > 1,�1

2
 Re(⌧) <

1
2

o
[
n
⌧
���|⌧ | = 1, Re(⌧)  0

o
, (3.6)
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Figure 7. Two equivalent lattices generated by the base vectors {!1, !2} and {�!2, !1 � 2!2},
the corresponding modular transformation is ⌧ ! �1/(⌧ � 2).

some literature. The modular group is an infinite discrete group and it can be generated
by two elements S and T [151, 152]

S =

 
0 1

�1 0

!
, T =

 
1 1

0 1

!
. (3.4)

Note that S and T are often referred to as modular inversion and translation respectively,

S : ⌧ 7! �1

⌧
, T : ⌧ 7! ⌧ + 1 . (3.5)

It is straightforward to check that the two generators satisfy the following relations

S4 = (ST )3 = 12, S2T = TS2 (3.6)

and also (TS)3 = 12 which is equivalent to (ST )3 = 12. The corresponding relations in �

are S2 = (ST )3 = 12, since 12 and �12 are indistinguishable in �. Moreover, one can find
that the inverse of a modular transformation is

��1 =

 
d � b

�c a

!
, � =

 
a b

c d

!
. (3.7)

The modular group � has a series of infinite normal subgroups �(N) (N = 1, 2, 3, . . .)
defined by,

�(N) =

( 
a b

c d

!
2 SL(2,Z),

 
a b

c d

!
=

 
1 0

0 1

!
(mod N)

)
, (3.8)
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way. Subsequently it was realised that such theories offer the promise that the only flavon
present is the single modulus field ⌧ , whose VEV fixes the value of Yukawa couplings which
form representations of �N and are modular forms, leading to very predictive theories [150].

Following the above observation [150], there has been considerable activity in applying
modular symmetry to flavour models, and also in extending the framework to more general
settings. Indeed it was this paper [150] which really ignited the field, and led to the recent
developments which form the subject of this review. There have already appeared some
very good early reviews [86] in the context of neutrino physics. The purpose of the present
review is to provide a dedicated and comprehensive review of the literature relating to the
bottom-up approach to modular symmetry flavour models, starting from the basic ideas,
through the most recent more sophisticated approaches, before discussing some applications
to neutrino and flavour models.

3.2 The modular group

Following the informal introduction to the modular group of the previous subsection, we
now provide a more rigorous exposition, setting out the mathematical formalism in some
detail. As mentioned above, the modular group is ubiquitous in string theory. It is
the invariance group of a lattice ⇤ = {m1!1 + m2!2| m1,2 2 Z} in the complex plane C,
where !1 and !2 are the basis vectors of the lattice with ⌧ ⌘ !1/!2 and we may assume
Im(⌧) > 0 by swapping !1 and !2 if necessary. As shown in figure 7, the two lattices
⇤ = {m1!1 + m2!2| m1,2 2 Z} and ⇤0 = {m1!0

1 + m2!0
2| m1,2 2 Z} are identical if and

only if  
!0
1

!0
2

!
=

 
a b

c d

! 
!1

!2

!
, (3.1)

which implies7

⌧ 7! �⌧ = �(⌧) =
a⌧ + b

c⌧ + d
, Im(⌧) > 0 . (3.2)

where a, b, c, d are integers and they fulfill ad � bc = 1. A complex torus is a quotient
C/⇤ of the complex plane C by a lattice ⇤, it is obtained by gluing both opposite pairs of
edges of the fundamental parallelogram depicted in gray in figure 7. Obviously each linear

fractional transformation of Eq. (3.2) is associated with a 2 ⇥ 2 matrix � =

 
a b

c d

!
with

integer coefficients and determinant 1. All the linear fractional transformations form the
full modular group � which is isomorphic to SL(2,Z), i.e.

� ⌘ SL(2,Z) =

( 
a b

c d

!����a, b, c, d 2 Z, ad � bc = 1

)
. (3.3)

Notice that � and �� act in the same way on the modulus ⌧ , the faithful action group is
the projective special linear group � ⌘ PSL(2,Z) ⇠= SL(2,Z)/{12,�12}, where 12 stands
for the two-dimensional identity matrix. Note that the modular group is defined to be � in

7This modular transformation is well-defined, as it fulfills Im(�(⌧)) = Im(⌧)
|c⌧+d|2 > 0 and (��0)(⌧) =

�(�0(⌧)).
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Infinite 

which is the principal congruence subgroup of level N . Note that for N = 1 the principal
congruence subgroup is just equal to the full modular group, � = �(1). Also the element
TN belongs to �(N), i.e. TN 2 �(N).

The groups �(N) of linear fractional transformations are slightly different from the
groups �(N). We have �(N) = �(N)/{12,�12} for N = 1, 2, while �(N) = �(N) for
N > 2 because in this case �12 doesn’t belong to �(N).

The quotient groups

�N ⌘ PSL(2,Z)/�(N) ⌘ �/�(N) (3.9)

are the so-called inhomogeneous finite modular groups and are isomorphic to PSL(2, N).
The group �N can be generated by two element S and T satisfying

S2 = (ST )3 = TN = 1 , (3.10)

where here 1 denotes the identity element. Notice that additional relations are necessary
in order to render the group �N finite for N � 6 [149]. We see that �1 is a trivial group
comprising only the identity element, �2 is isomorphic to S3. For small values of N , the
groups �N are isomorphic to permutation groups: �3

⇠= A4, �4
⇠= S4 and �5

⇠= A5 [149].
The finite modular groups �N as flavor symmetry have been widely studied to explain
neutrino mixing.

The quotient groups

�0
N ⌘ SL(2,Z)/�(N) ⌘ �/�(N) (3.11)

are the so-called homogeneous finite modular groups. They can be regarded as the group
of two-by-two matrices with entries that are integers modulo N and determinant equal to
one modulo N , and they are isomorphic to SL(2, N). The groups �0

N
are the double cover

groups of �N , as discussed below and shown in table 2.
We see �2

⇠= �0
2, and �N for N > 2 is isomorphic to the quotient of �0

N
over its center

{12,�12}, i.e., �N
⇠= �0

N
/{12,�12} in matrix form. Hence �0

N
has double the number

of group elements as �N with |�0
N
| = 2|�N |. The group �0

N
can be obtained from �N

by including another generator R which is related to �12 2 SL(2,Z) and commutes with
all elements of the SL(2,Z) group, such that the generators S, T and R of �0

N
obey the

following relations8 [153],

S2 = R, (ST )3 = TN = R2 = 1, RT = TR . (3.12)

Note that additional relations are needed for N � 6. We summarize the finite modular
groups �N , �0

N
and their orders in table 2.

8The multiplication rules of �0
N can also be written as S4 = (ST )3 = TN = 1, S2T = TS2.
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Finite (double cover)

step 1

step 2

step 3



Fundamental Complex Domain of  and Fixed Pointsτ

⌧0 �0 Stab(⌧0)
i S ZS

4 =
�
1, S, S2, S3

 

e2⇡i/3 ST, S2 ZST

3 ⇥ ZS
2

2 =
�
1, ST, (ST )2, S2, S3T, S2(ST )2

 

i1 T, S2 ZT ⇥ ZS
2

2 =
�
1, S2, T, S2T, T 2, S2T 2, . . .

 

others S2 ZS
2

2 =
�
1, S2

 

Table 3. The fixed points ⌧0 in the fundamental domain D and the corresponding stabilizers
Stab(⌧0) which are abelian subgroups of � [71]. Notice that the cyclic Zg

m has the presentation rule
Zg

m = {g|gm = 1}. The stabilizer ZST
3 ⇥ZS2

2 of ⌧0 = e2⇡i/3 is isomorphic to the cyclic group ZS3T
6 ,

and the ZT denotes the infinite cyclic group generated by the translation T .

1
2 + i

p
3
2 which is related to ⌧ST by T transformation [71]. Moreover, we find that all the

infinite fixed points ⌧f in the upper half complex plane and the corresponding modular
transformation �f satisfying �f⌧f = ⌧f , are given by [71, 154],

⌧f = �0⌧0, �f = �0�0�
0�1, �0 2 � , (3.19)

where �0 is an arbitrary modular symmetry element. Hence all fixed points are related
to ⌧S , ⌧ST and ⌧T by modular transformations. In the case of single modulus, they are
equivalent to the fixed points in the fundamental domain. However, in the case of multiple
moduli, not all the fixed points of moduli can be moved to the fundamental domains in the
presence of flavons, as discussed in sections 6 and 8.5. From Eq. (3.19) we see that only the
modular symmetry transformation conjugate to �0 can have fixed point. In other words,
�f and �0 must belong to the same conjugacy class. It is straightforward to see that the
stabilizer Stab(⌧f ) = �0Stab(⌧0)�0�1 is isomorphic Stab(⌧0), and the isomorphism is given
by a conjugation with �0. The alignment of the modular form at the symmetric points are
fixed so that the lepton mass matrices and mixing parameters are strongly constrained, the
phenomenological implications of the residual symmetry fixed points would be discussed
later.

3.4 Modular invariant supersymmetric theories

We work in the framework of the modular invariant supersymmetric theory [143, 144, 150].
In the context of N = 1 global supersymmetry, the most general form of the action is

S =

Z
d4xd2✓d2✓̄K(�I , �̄I , ⌧, ⌧̄) +

Z
d4xd2✓W(�I , ⌧) + h.c.

�
, (3.20)

where K(�I , �̄I , ⌧, ⌧̄) is the Kähler potential, it is a real gauge invariant function of the chiral
superfields �I , the modulus ⌧ and their hermitian conjugates �̄, ⌧̄ . W(�, ⌧) stands for the
superpotential, and it is a holomorphic gauge invariant function of the chiral superfields
�I and ⌧ . The action S should be modular invariant and respect the SM (or GUT) gauge
symmetry. The transformation properties of �I are specified by its modular weight �kI
and the representation rI under �0

N
,

⌧ ! �⌧ =
a⌧ + b

c⌧ + d
, �I ! (c⌧ + d)�kI⇢rI (�)�I . (3.21)
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N �N |�N | �0
N

|�0
N
|

2 S3 6 S3 6

3 A4 12 T 0 24

4 S4 24 S0
4 48

5 A5 60 A0
5 120

6 S3 ⇥ A4 72 S3 ⇥ T 0 144

7 PSL(2, 7) ⇠= ⌃(168) 168 SL(2, 7) 336

Table 2. The finite modular groups �N and �0
N and their orders up to N = 7.

As shown in figure 8, the � orbit of every modulus ⌧ has a representative in the standard
fundamental domain D 9 .

D =

⇢
⌧ |Im(⌧) > 0, |Re(⌧)|  1

2
, |⌧ | � 1

�
, (3.14)

which is bounded by the vertical lines Re(⌧) = �1
2 , Re(⌧) = 1

2 and the circle |⌧ | = 1 in the
upper half plane H. Every point in the upper half plane is equivalent to a point of D under
the action of SL(2,Z), and no two points inside D differ by a linear fraction transformation.
The transformation T pairs the two vertical lines Re(⌧) = ±1

2 , and the transformation S

maps the arc of |⌧ | = 1 from i to e⇡i/3 into the arc from i to e2⇡i/3. Notice that the
fundamental domain is not unique, the transformed region �D by any element � of � can
also be taken as the fundamental domain.

3.3 Fixed points of modulus and residual modular symmetry

The modular symmetry is spontaneously broken by the vacuum expectation value (VEV)
of the modulus ⌧ . There is no allowed value of ⌧ which preserves the whole modular group
(for example ⌧ = 0 is not allowed since it is not in the fundamental domain). However, some
value ⌧0 of the modulus is invariant under the action of certain SL(2,Z) transformation �0,
i.e.

�0⌧0 = ⌧0 . (3.15)

Thus the modular group � is partially broken and the residual symmetry generated by �0
is preserved. We call ⌧0 is the fixed point of �0 and the subgroup generated by �0 as the
stabilizer of ⌧0 with

Stab(⌧0) ⌘ {�0 2 �|�0⌧0 = ⌧0} . (3.16)

Using the identity =(�⌧) =
=⌧

|c⌧ + d|2 , from Eq. (3.15) we find |c0⌧0 + d0| = 1 and conse-

quently c0⌧0 + d0 must be a phase. Moreover the explicit expression of Eq. (3.15) for the
9More precisely, each orbit has a unique representative in the standard fundamental domain

D =
n
⌧
���|⌧ | > 1,�1

2
 Re(⌧) <

1
2

o
[
n
⌧
���|⌧ | = 1, Re(⌧)  0

o
, (3.13)
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Fixed Points

J
H
E
P
0
2
(
2
0
2
4
)
1
6
0

2

3/2

1
3/2

1/2

−1/2 1/200−1 1

e2πi
3

i∞

iIm
τ

Re τ

Figure 1. This figure shows the fundamental domain for the action of the modular group in cyan.
We chose to include the solid line border. The three symmetry points, τsym = i∞, i, ω, are marked in
red. An arbitrary value of τ in the complex plane can be mapped to a point within this domain via a
modular transformation in eq. (2.2).

The structure of the Kähler potential K, and its covariance under a modular transforma-
tion is of great importance once a model is specified [70, 71]. Nonetheless, since our aim in
this paper is not to build a particular modular invariant model but rather to demonstrate
a proof of principle that the mass relations can be a result of modular invariance, we will
not include further discussion around it.

The superpotential terms in W involving the SM fermions can be written compactly
as modular invariant fermion bilinears,

W ⊃ ψiM(τ)ij ψc
j , (2.7)

with i, j = 1, . . . , 3 denoting the three families of the SM. Here it is understood that M(τ)
includes the Higgs doublet chiral superfields Φu,d of the MSSM. Their vacuum expectation
values (VEVs) induce the spontaneous breaking of the SM electroweak symmetry, while the
VEV of the scalar component of the field τ , the modulus, characterizes the breaking of modular
invariance. Altogether, the Φu,d and τ VEVs give rise to the mass matrices of the SM fermions.

We now turn to the issue of modular symmetry breaking and residual symmetries. Note
that, as seen from eqs. (2.2) and (2.6), modular invariance is nonlinearly realized, and any value
of τ will break this symmetry. In figure 1 we display the fundamental domain of the modular
group action on τ . Furthermore, there are three special values of the modulus τ at which the
modular group Γ breaks down into different preserved residual discrete symmetries [53, 72–75].
We generically denote these values as τsym and refer to them as symmetry points. These are
associated to some unbroken combination of the generators of the modular group in eq. (2.3).
As seen from eqs. (2.2) and (2.3) the R generator is unbroken for any value of τ , so that a
ZR
2 symmetry is always preserved. Therefore the three symmetry points are

• τsym = i∞, invariant under T , preserving ZT
N ⊗ ZR

2 .

• τsym = i, invariant under S, preserving ZS
4 , with ZR

2 as a subgroup.

• τsym = ω ≡ exp(2πi/3), invariant under ST , preserving ZST
3 ⊗ ZR

2 .
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2

involves two right-handed neutrinos plus two additional singlets, is given by:

M⌫ =

0

@
03⇥3 mD 03⇥2

m
T

D
02⇥2 M

02⇥3 M
T

µ

1

A , (1)

where 0n⇥m are n⇥m dimensional submatrices consisting of all zeroes and the other submatrices in the flavour basis
have the structure:

mD ⇠

0

@
0 b

a 3b
a b

1

A , M ⇠

✓
1 0
0 1

◆
, µ ⇠

✓
1 0
0 !

◆
, ! = e

2⇡i
3 . (2)

The light active neutrino mass matrix arising from the inverse seesaw formula m⌫ = �mD(MT )�1
µM

�1
m

T

D
takes

the same form as the usual LS model [17–24]:

m⌫ = m⌫a

0

@
0 0 0
0 1 1
0 1 1

1

A+m⌫b!

0

@
1 3 1
3 9 3
1 3 1

1

A (3)

The above mass matrix structures are motivated by the phenomenological success of the low energy mass matrix in
Eq. 3 which is identical to that of the usual LS model, involving two right-handed neutrinos, but in this case arising
from the inverse seesaw model, including the two additional singlets. Such an extension allows CLFV decays, such as
µ ! e�, at observable rates, since in the inverse seesaw model small neutrino masses are explained by the smallness
of the µ matrix 1, which allows Dirac masses to be large even for TeV scale values of M . This is the first low scale
seesaw model leading to a successful fit of the 6 physical observables of the neutrino sector with only 2 e↵ective
free parameters. In our model the small masses for the light active neutrinos are generated from an inverse seesaw
mechanism. In order to achieve the above mass matrices, we appeal to standard approaches to the flavour puzzle
based on symmetries, as follows.

The flavour puzzle of the SM indicates that New Physics has to be advocated to explain the observed SM fermion mass
and mixing pattern. This is the so called flavour puzzle, which is not explained by the SM and provides motivation
for building models with additional scalars and fermions in their particle spectrum and with extended symmetries
which can be continuous or discrete and their breaking produces the observed pattern of SM fermion mass and mixing
pattern. Several discrete groups have been employed in extensions of the SM to tackle SM fermion flavor puzzle. In
particular the discrete group S4 [34–47], together with the groups A4 [48–78], T7 [79–88], �(27) [89–111] and T

0 [112–
127], is the smallest group containing an irreducible triplet representation that can accommodate the three fermion
families of the Standard model (SM). These groups have been widely used in several extensions of the SM since they
are particular promising in providing a viable and predictive description of the observed SM fermion mass spectrum
and mixing parameters. In the present article, we shall employ S4, together with other auxiliary symmetries, in order
to achieve the above mass matrices of the LIS model, together with a diagonal charged lepton mass matrix.

The current article is organized as follows. In section II we explain our model. In section III we present our results
in terms of neutrino masses and mixing. The implications of our model in the lepton flavor violating decays µ ! e�,
⌧ ! µ� and ⌧ ! e� are studied in section III. We conclude in section V. A description of the S4 discrete group is
presented in Appendix A. The superpotential that determines the vacuum configuration for the S4 doublet and triplet
scalars of our model is presented in Appendix B.

II. THE MODEL

We consider an S4 flavour model for leptons where the masses for the light active neutrinos are generated from an
inverse seesaw mechanism. The implementation of the inverse seesaw mechanism in our model relies in the inclusion
of four gauge singlets right handed Majorana neutrinos, which is the minimal amount of gauge singlet right handed
Majorana neutrinos needed to implement a realistic inverse seesaw mechanism as pointed out for the first time in Ref.

1 An example of a dynamical explanation for the smallness of the µ parameter of the inverse seesaw and its connection with Dark matter
is provided in Ref. [128]

which implies 1

⌧ 7! �⌧ = �(⌧) =
a⌧ + b

c⌧ + d
, Im(⌧) > 0 . (3.2)

where a, b, c, d are integers and they fulfill ad � bc = 1. A complex torus is a quotient
C/⇤ of the complex plane C by a lattice ⇤, it is obtained by gluing both opposite pairs of
edges of the fundamental parallelogram depicted in gray in figure 1. Obviously each linear

fractional transformation of Eq. (3.2) is associated with a 2 ⇥ 2 matrix � =

 
a b

c d

!
with

integer coefficients and determinant 1. All the linear fractional transformations form the
full modular group � which is isomorphic to SL(2,Z). Notice that � and �� act in the
same way on the modulus ⌧ , the faithful action group is the projective special linear group
� ⌘ PSL(2,Z) ⇠= SL(2,Z)/{12,�12}, where 12 stands for the two-dimensional identity
matrix. Note that the modular group is defined to be � In some literature. The modular
group is an infinite discrete group and it can be generated by two elements S and T [1, 2]

S =

 
0 1

�1 0

!
, T =

 
1 1

0 1

!
. (3.3)

Note that S and T are often referred to as modular inversion and translation respectively,

S : ⌧ 7! �
1

⌧
, T : ⌧ 7! ⌧ + 1 . (3.4)

It is straightforward to check that the two generators satisfy the following relations

S2 = �12, S4 = (ST )3 = 12, S2T = TS2 (3.5)

and also (TS)3 = 12 which is equivalent to (ST )3 = 12. The corresponding relations in �

are S2 = (ST )3 = 12, since 12 and �12 are indistinguishable in �.
As shown in figure 3, the � orbit of every modulus ⌧ has a representative in the standard

fundamental domain D
2 .

D = {⌧ |Im(⌧) > 0, |Re(⌧)| 
1

2
, |⌧ | � 1} , (3.7)

which is bounded by the vertical lines Re(⌧) = �
1
2 , Re(⌧) =

1
2 and the circle |⌧ | = 1 in the

upper half plane H. Every point in the upper half plane is equivalent to a point of D under
the action of SL(2,Z), and no two points inside D differ by a linear fraction transformation.
The transformation T pairs the two vertical lines Re(⌧) = ±

1
2 , and the transformation S

maps the arc of |⌧ | = 1 from i to e⇡i/3 into the arc from i to e2⇡i/3. Notice that the
fundamental domain is not unique, the transformed region �D by any element � of � can
also be taken as the fundamental domain.

1This modular transformation is well-defined, as it fulfills Im(�(⌧)) = Im(⌧)
|c⌧+d|2 > 0 and (��0)(⌧) =

�(�0(⌧)).
2More precisely, each orbit has a unique representative in the standard fundamental domain

D =
n
⌧
���|⌧ | > 1,�1

2
 Re(⌧) <

1
2

o
[
n
⌧
���|⌧ | = 1, Re(⌧)  0

o
, (3.6)
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Examples of Finite Modular Symmetry
N �N |�N | �0

N
|�0

N
|

2 S3 6 S3 6

3 A4 12 T 0 24

4 S4 24 S0
4 48

5 A5 60 A0
5 120

6 S3 ⇥ A4 72 S3 ⇥ T 0 144

7 PSL(2, 7) ⇠= ⌃(168) 168 SL(2, 7) 336

Table 2. The finite modular groups �N and �0
N and their orders up to N = 7.

As shown in figure 8, the � orbit of every modulus ⌧ has a representative in the standard
fundamental domain D 9 .

D =

⇢
⌧ |Im(⌧) > 0, |Re(⌧)|  1

2
, |⌧ | � 1

�
, (3.14)

which is bounded by the vertical lines Re(⌧) = �1
2 , Re(⌧) = 1

2 and the circle |⌧ | = 1 in the
upper half plane H. Every point in the upper half plane is equivalent to a point of D under
the action of SL(2,Z), and no two points inside D differ by a linear fraction transformation.
The transformation T pairs the two vertical lines Re(⌧) = ±1

2 , and the transformation S

maps the arc of |⌧ | = 1 from i to e⇡i/3 into the arc from i to e2⇡i/3. Notice that the
fundamental domain is not unique, the transformed region �D by any element � of � can
also be taken as the fundamental domain.

3.3 Fixed points of modulus and residual modular symmetry

The modular symmetry is spontaneously broken by the vacuum expectation value (VEV)
of the modulus ⌧ . There is no allowed value of ⌧ which preserves the whole modular group
(for example ⌧ = 0 is not allowed since it is not in the fundamental domain). However, some
value ⌧0 of the modulus is invariant under the action of certain SL(2,Z) transformation �0,
i.e.

�0⌧0 = ⌧0 . (3.15)

Thus the modular group � is partially broken and the residual symmetry generated by �0
is preserved. We call ⌧0 is the fixed point of �0 and the subgroup generated by �0 as the
stabilizer of ⌧0 with

Stab(⌧0) ⌘ {�0 2 �|�0⌧0 = ⌧0} . (3.16)

Using the identity =(�⌧) =
=⌧

|c⌧ + d|2 , from Eq. (3.15) we find |c0⌧0 + d0| = 1 and conse-

quently c0⌧0 + d0 must be a phase. Moreover the explicit expression of Eq. (3.15) for the
9More precisely, each orbit has a unique representative in the standard fundamental domain

D =
n
⌧
���|⌧ | > 1,�1

2
 Re(⌧) <

1
2

o
[
n
⌧
���|⌧ | = 1, Re(⌧)  0

o
, (3.13)

– 23 –

N=2 N=3

N=4

N=5�N

Yukawa coupling 

Figure 4. The fixed points of the modular group, it is impossible to display all of them because
there are infinite fixed points. The red region and yellow region are the fundamental domains of
� and �(4) respectively. The fixed points are displayed in solid (hollow) circles and diamonds in
(outside) the fundamental domain of �(4).

string theory [8–10], and the above minimal Kähler potential as the leading order contribu-
tion could possibly be achieved. The superpotential W can be expanded into power series
of supermultiplets �I

W(�I , ⌧) =
X

n

YI1...In(⌧)�I1 ...�In . (3.12)

Modular invariance requires the function YI1...In(⌧) should be a modular form of weight kY
of level N and in the representation rY of �0

N :

Y (⌧) ! Y (�⌧) = (c⌧ + d)kY ⇢rY (�)Y (⌧) , (3.13)

where kY and rY should satisfy the conditions

kY = k1 + ...+ kn, ⇢rY ⌦ ⇢rI1 ⌦ . . .⌦ ⇢rIn 3 1 . (3.14)

– 6 –

Y (⌧)�1�2�3
�1 ! (c⌧ + d)k1⇢1(�)�1

⇢rY ⇥ ⇢1 ⇥ ⇢2 ⇥ ⇢3 = 1 + ...

Fields transform under modular 
symmetry with weight k

Weights must add up to zero 
so the Yukawa carries weight

Yukawa coupling is a modular form 

F.Feruglio, 1706.08749

Level S2 = I
TN = I

(ST )3 = I

kY = k1 + k2 + k3�



A4 triplet 3
Weight kY=2

that there are three linearly independent such forms, which we call Yi(⌧). Three linearly
independent weight 2 and level-3 forms are constructed in the Appendix C. They read:

Y1(⌧) =
i

2⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� +
⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� +
⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

� � 27⌘0(3⌧)

⌘(3⌧)

#

Y2(⌧) =
�i

⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� + !2 ⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� + !
⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

�
#

(28)

Y2(⌧) =
�i

⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� + !
⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� + !2 ⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

�
#

.

where ⌘(⌧) is the Dedekind eta-function, defined in the upper complex plane:

⌘(⌧) = q1/24
1Y

n=1

(1� qn) q ⌘ ei2⇡⌧ . (29)

They transform in the three-dimensional representation of A4. In a vector notation where
Y T = (Y1, Y2, Y3) we have

Y (�1/⌧) = ⌧ 2 ⇢(S)Y (⌧) , Y (⌧ + 1) = ⇢(T )Y (⌧) ,

with unitary matrices ⇢(S) and ⇢(T )

⇢(S) =
1

3

0

@
�1 2 2
2 �1 2
2 2 �1

1

A , ⇢(T ) =

0

@
1 0 0
0 ! 0
0 0 !2

1

A , ! = �1

2
+

p
3

2
i .

The q-expansion of Yi(⌧) reads:

Y1(⌧) = 1 + 12q + 36q2 + 12q3 + ...

Y2(⌧) = �6q1/3(1 + 7q + 8q2 + ...)

Y3(⌧) = �18q2/3(1 + 2q + 5q2 + ...) .

From the q-expansion we see that the functions Yi(⌧) are regular at the cusps. Moreover
Yi(⌧) satisfy the constraint:

Y 2
2 + 2Y1Y3 = 0 . (30)

As discussed explicitly in Appendix D, the constraint (30) is essential to recover the correct
dimension of the linear space M2k(�(3)). On the one side from table 1 we see that this
space has dimension 2k + 1. On the other hand the number of independent homogeneous
polynomial Yi1Yi2 · · · Yik of degree k that we can form with Yi is (k + 1)(k + 2)/2. These
polynomials are modular forms of weight 2k and, to match the correct dimension, k(k�1)/2
among them should vanish. Indeed this happens as a consequence of eq. (30). Therefore
the ring M(�(3)) is generated by the modular forms Yi(⌧) (i = 1, 2, 3).

12
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E.g. Level N=3:   Γ3 ∼ A4

For the representation 3, we will choose a basis in which the generator T is diagonal.
The explicit forms of S and T are

S =
1

3

0

@
�1 2 2
2 �1 2
2 2 �1

1

A , T =

0

@
1 0 0
0 !

2 0
0 0 !

1

A , (13)

with ! = e
2⇡i/3 = �1/2 + i

p
3/2. The basic multiplication rule is

3⌦ 3 = 1� 1
0
� 1

00
� 3S � 3A , (14)

where the subscripts S and A denotes symmetric and antisymmetric combinations re-
spectively. If we have two triplets ↵ = (↵1,↵2,↵3) ⇠ 3 and � = (�1, �2, �3) ⇠ 3, we can
obtain the following irreducible representations from their product,

(↵�)1 = ↵1�1 + ↵2�3 + ↵3�2 ,

(↵�)10 = ↵3�3 + ↵1�2 + ↵2�1 ,

(↵�)100 = ↵2�2 + ↵1�3 + ↵3�1 ,

(↵�)3S = (2↵1�1 � ↵2�3 � ↵3�2, 2↵3�3 � ↵1�2 � ↵2�1, 2↵2�2 � ↵1�3 � ↵3�1) ,

(↵�)3A = (↵2�3 � ↵3�2,↵1�2 � ↵2�1,↵3�1 � ↵1�3) . (15)

The linear space of the modular forms of integral weight k and level N = 3 has dimension
k + 1 [16]. The modular space M2k(�(3)) can be constructed from the Dedekind eta-
function ⌘(⌧) which is defined as

⌘(⌧) = q
1/24

1Y

n=1

(1� q
n), q = e

2⇡i⌧
. (16)

The Dedekind eta-function ⌘(⌧) satisfies the following identities

⌘(⌧ + 1) = e
i⇡/12

⌘(⌧), ⌘(�1/⌧) =
p
�i⌧ ⌘(⌧) . (17)

There are only three linearly independent modular forms of weight 2 and level 3, which
are denoted as Yi(⌧) with i = 1, 2, 3. We can arrange the three modular functions into a

vector Y (2)
3 = (Y1, Y2, Y3)

T transforming as a triplet 3 of A4. The modular forms Yi can
be expressed in terms of ⌘(⌧) and its derivative as follow [16]:

Y1(⌧) =
i

2⇡


⌘
0(⌧/3)

⌘(⌧/3)
+

⌘
0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+

⌘
0((⌧ + 2)/3)

⌘((⌧ + 2)/3)
�

27⌘0(3⌧)

⌘(3⌧)

�
,

Y2(⌧) =
�i

⇡


⌘
0(⌧/3)

⌘(⌧/3)
+ !

2⌘
0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

⌘
0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

�
,

Y3(⌧) =
�i

⇡


⌘
0(⌧/3)

⌘(⌧/3)
+ !

⌘
0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

2⌘
0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

�
. (18)

The q-expansions of the triplet modular forms Y (2)
3 are given by

Y
(2)
3 =

0

@
Y1(⌧)
Y2(⌧)
Y3(⌧)

1

A =

0

@
1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + . . .

�6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + . . . )
�18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + . . . )

1

A . (19)

6In the fundamental domain 

where Cij
n are some constants independent of ω since Yukawa couplings are modular forms which are

holomorphic functions of ω . It is straightforward to show that q1/N transforms under T as follows

q1/N
T

→↑ e2ωi(ε+1)/N = e2ωi/Nq1/N = εq1/N , q
T

→↑ q . (16)

Thus the modular invariance under the T transformation in Eq. (13) implies

Cij

n = 0, n ↓= →kij (mod N) . (17)

Hence the Yukawa couplings Ye

ij
(ω) are of the following form

Y
e

ij(ω) = Cij

N→kij
q(N→kij)/N + Cij

2N→kij
q(2N→kij)/N + Cij

3N→kij
q(3N→kij)/N + . . .

= q(N→kij)/N
[
Cij

N→kij
+ Cij

2N→kij
q + Cij

3N→kij
q2 + . . .

]
. (18)

It follows that the magnitude of the Yukawa coupling Y
e

ij
is determined by the power index kij which

depends on the transformations of the fields Ec

i
, Lj , Hd under the modular generator T . There

exists basis in which the generators S and T are represented by unitary and symmetric matrices and
the corresponding Clebsch-Gordan coe!cients are real, then the generalized CP symmetry reduces
to the canonical CP and the all couplings are enforced to be real [41]. Then CP invariance requires
the Yukawa couplings fulfill

Y
e

ij(→ω↑) = Y
e↑
ij (ω) , (19)

which follows from Eq. (36). Hence all the coe!cients Cij
n are real due to CP symmetry, and the

real part of ω is the unique source of CP violation. In the fundamental domain D, the imaginary
part y = Im(ω) is greater than or equal

↔
3/2 so that the parameter q is quite small,

|q| = e→2ωy
↗ e→

↓
3ω

↘ 0.0043 ≃ 1 . (20)

Hence the order of magnitude of the Yukawa couplings Y
e

ij
(ω) is dominated by the leading order

term q(N→kij)/N .

3.2 Adding weighton

We introduce a new chiral superfield ϑ whose modular weight kϑ = 1. This ϑ is called weighton
since it carries the unit of modular weight [34]. We assume that ϑ is the trivial singlet under both
modular symmetry and the SM gauge group. We also assume ϑ transforms under CP as a scalar.
The weighton ϑ transforms under modular symmetry and CP as follows

ϑ
ϖ

→↑ (cω + d)→1ϑ, ϑ
CP
→↑ ϑ↑ , (21)

After including weighton, the modular invariant Yukawa couplings become

W = →ϑ̃JijEc

iY
e

ij(ω)LjHd →
1

2”
ϑ̃KijLiLjY

ϱ

ij(ω)HuHu , (22)

where ϑ̃ = ϑ/Mfl and Mfl is cut-o# flavour scale. It is straightforward to derive that the modular
transformation of Ye

ij
(ω) and Y

ϱ

ij
(ω) is given by

Y
e

ij (ϖω) = (cω + d)
kEc

i
+kLj

+kd+Jijϱ↑
d
(ϖ)

[
ϱ↑Ec(ϖ)Ye (ω) ϱ†

L
(ϖ)

]

ij

,

Y
ϱ

ij (ϖω) = (cω + d)kLi
+kLj

+2ku+Kijϱ2↑u (ϖ)
[
ϱ↑L(ϖ)Y

ϱ (ω) ϱ†
L
(ϖ)

]

ij

. (23)
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where Cij
n are some constants independent of ω since Yukawa couplings are modular forms which are

holomorphic functions of ω . It is straightforward to show that q1/N transforms under T as follows

q1/N
T

→↑ e2ωi(ε+1)/N = e2ωi/Nq1/N = εq1/N , q
T

→↑ q . (16)

Thus the modular invariance under the T transformation in Eq. (13) implies

Cij

n = 0, n ↓= →kij (mod N) . (17)

Hence the Yukawa couplings Ye

ij
(ω) are of the following form

Y
e

ij(ω) = Cij

N→kij
q(N→kij)/N + Cij

2N→kij
q(2N→kij)/N + Cij

3N→kij
q(3N→kij)/N + . . .

= q(N→kij)/N
[
Cij

N→kij
+ Cij

2N→kij
q + Cij

3N→kij
q2 + . . .

]
. (18)

It follows that the magnitude of the Yukawa coupling Y
e

ij
is determined by the power index kij which

depends on the transformations of the fields Ec

i
, Lj , Hd under the modular generator T . There

exists basis in which the generators S and T are represented by unitary and symmetric matrices and
the corresponding Clebsch-Gordan coe!cients are real, then the generalized CP symmetry reduces
to the canonical CP and the all couplings are enforced to be real [41]. Then CP invariance requires
the Yukawa couplings fulfill

Y
e

ij(→ω↑) = Y
e↑
ij (ω) , (19)

which follows from Eq. (36). Hence all the coe!cients Cij
n are real due to CP symmetry, and the

real part of ω is the unique source of CP violation. In the fundamental domain D, the imaginary
part y = Im(ω) is greater than or equal

↔
3/2 so that the parameter q is quite small,

|q| = e→2ωy
↗ e→

↓
3ω

↘ 0.0043 ≃ 1 . (20)

Hence the order of magnitude of the Yukawa couplings Y
e

ij
(ω) is dominated by the leading order

term q(N→kij)/N .

3.2 Adding weighton

We introduce a new chiral superfield ϑ whose modular weight kϑ = 1. This ϑ is called weighton
since it carries the unit of modular weight [34]. We assume that ϑ is the trivial singlet under both
modular symmetry and the SM gauge group. We also assume ϑ transforms under CP as a scalar.
The weighton ϑ transforms under modular symmetry and CP as follows

ϑ
ϖ

→↑ (cω + d)→1ϑ, ϑ
CP
→↑ ϑ↑ , (21)

After including weighton, the modular invariant Yukawa couplings become

W = →ϑ̃JijEc

iY
e

ij(ω)LjHd →
1

2”
ϑ̃KijLiLjY

ϱ

ij(ω)HuHu , (22)

where ϑ̃ = ϑ/Mfl and Mfl is cut-o# flavour scale. It is straightforward to derive that the modular
transformation of Ye

ij
(ω) and Y

ϱ

ij
(ω) is given by

Y
e

ij (ϖω) = (cω + d)
kEc

i
+kLj

+kd+Jijϱ↑
d
(ϖ)

[
ϱ↑Ec(ϖ)Ye (ω) ϱ†

L
(ϖ)

]

ij

,

Y
ϱ

ij (ϖω) = (cω + d)kLi
+kLj

+2ku+Kijϱ2↑u (ϖ)
[
ϱ↑L(ϖ)Y

ϱ (ω) ϱ†
L
(ϖ)

]

ij

. (23)
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where q = e
2⇡i⌧ . We find numerically that ✏

2
1 is a similar order to ✏

2
2, and to ✏3. Con-

sequently, we may take the first non-trivial term at the order O(✏i) ⇠ O(✏1) ⇠ O(✏2) ⇠

O(✏1/23 ), dropping higher corrections in each entry of our successful model. We find the
following results for the up and down quark Yukawa matrices, respectively, making a
leading order approximation for each element of the matrix,

Y
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u
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, (60)

Y
III

d
'

0

BBBB@

✏
4
1↵d ✏

4
1✏3↵d ✏

4
1✏2↵d

✏
3
1✏2�d ✏

3
1�d ✏

3
1✏3�d

✏1

�
2✏22�

II

d
+ ✏3�

I

d

�
✏1✏2

�
2�II

d
+ �

I

d

�
✏1�

I

d
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Since the matrices are hierarchical, we can make an estimate for the three mixing angles
as follows, which accurately reproduces the fully calculated CKM angles. We then express
✏2, ✏3 by using the q-expansions, for which the first order reproduces well the full Dedekind-
eta value for our best fit point.
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The above approximations reproduce the numerical values of the quark mixing angles
well, to two significant figures for ✓12, ✓23, but only within a factor of two for ✓13. This
is because it is the smallest angle, and hence sensitive to additional contributions. For
the two larger angles, there are several reasons why the above expressions well reproduce
data. To begin with, quark mixing angles are all small, so a small angle approximation

is valid. Furthermore, overall factors and phases cancel in the ratios such as Y
2,1
u

Y
2,2
u

and
Y

2,1
d

Y
2,2
d

, since each row of the Yukawa matrices is controlled by a particular modular form,

therefore the physical CKM angles are identified as the di↵erence in these two ratios, with
no arbitrary relative phase. This is quite di↵erent from a traditional FN model based
on an Abelian symmetry, where mixing angle predictions would depend on arbitrary

coe�cients and phases. It implies that partial cancellations occur between Y
2,1
u

Y
2,2
u

and
Y

2,1
d

Y
2,2
d
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Hard to obtain both mass 
hierarchies and mixing…  

Yukawa coupling is a modular form 



E.g. Lepton Model at level N=3
L e

c

3 e
c

2 e
c

1 N
c
Hu,d

A4 3 1
0
1
00
1 3 1

kI 1 1 1 1 1 0

Table 1: The Feruglio model of leptons, where each supermultiplet has a modular weight �kI .

the modulus ⌧ . The Higgs doublets Hu and Hd are assumed to transform as 1 under
A4 and their modular weights kHu,Hd

are vanishing. The neutrino masses are assumed
arise from the type I seesaw mechanism. In this example [16], the three generations
of left-handed lepton doublets L ⌘ (L1, L2, L3)T and of the CP conjugated right-handed
neutrino N c

⌘ (N c

1 , N
c

2 , N
c

3)
T are organised into two triplets 3 of A4 with modular weights

denoted as kL and kN , which will be fixed to take the values of unity shown in Table 1.

When the three CP conjugated right-handed charged leptons ec3,2,1 are assigned to three
di↵erent singlets 10, 100 and 1 of A4 as in previous works [16,18,19,22–25], their modular
weights could be identical, which will be fixed to take the values of unity as shown in
Table 1, and only the lowest weight modular form Y

(2)
3 is necessary in the minimal model.

Then the superpotential for the charged lepton masses takes the form

We = ↵e
c

1(LY
(2)
3 )1Hd + �e

c

2(LY
(2)
3 )10Hd + �e

c

3(LY
(2)
3 )100Hd

= ↵e
c

1(L1Y1 + L2Y3 + L3Y2)Hd + �e
c

2(L3Y3 + L1Y2 + L2Y1)Hd

+ �e
c

3(L2Y2 + L3Y1 + L1Y3)Hd . (23)

The invariance of We under modular transformations implies the following relations for
the weights, 8

><

>:

ke1 + kL = 2 ,

ke2 + kL = 2 ,

ke3 + kL = 2 ,

(24)

which implies
ke1 = ke2 = ke3 = 2� kL , (25)

where all values are fixed to be unity as shown in Table 1. This is exactly the case
considered in the literature [16, 18, 19, 22–25]. We can straightforwardly read out the
charged lepton Yukawa matrix

Ye =

0

BBBBB@

↵ Y1 ↵ Y3 ↵ Y2

�Y2 �Y1 �Y3

�Y3 �Y2 �Y1

1

CCCCCA
(26)

For example, ⌧T = i1 implies Y (2)
3 / (1, 0, 0)T , leads to a diagonal charged lepton Yukawa

matrix with me : mµ : m⌧ = ↵ : � : �. The charged lepton mass hierarchies are accounted
for in the Feruglio model by tuning the parameters to be ↵ ⌧ � ⌧ �.
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which implies
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considered in the literature [16, 18, 19, 22–25]. We can straightforwardly read out the
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3 / (1, 0, 0)T , leads to a diagonal charged lepton Yukawa
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Then the superpotential for the charged lepton masses takes the form

We = ↵e
c

1(LY
(2)
3 )1Hd + �e

c

2(LY
(2)
3 )10Hd + �e

c

3(LY
(2)
3 )100Hd

= ↵e
c

1(L1Y1 + L2Y3 + L3Y2)Hd + �e
c

2(L3Y3 + L1Y2 + L2Y1)Hd

+ �e
c

3(L2Y2 + L3Y1 + L1Y3)Hd . (23)

The invariance of We under modular transformations implies the following relations for
the weights, 8
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ke2 + kL = 2 ,

ke3 + kL = 2 ,

(24)

which implies
ke1 = ke2 = ke3 = 2� kL , (25)

where all values are fixed to be unity as shown in Table 1. This is exactly the case
considered in the literature [16, 18, 19, 22–25]. We can straightforwardly read out the
charged lepton Yukawa matrix

Ye =
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↵ Y1 ↵ Y3 ↵ Y2

�Y2 �Y1 �Y3

�Y3 �Y2 �Y1
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For example, ⌧T = i1 implies Y (2)
3 / (1, 0, 0)T , leads to a diagonal charged lepton Yukawa

matrix with me : mµ : m⌧ = ↵ : � : �. The charged lepton mass hierarchies are accounted
for in the Feruglio model by tuning the parameters to be ↵ ⌧ � ⌧ �.
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For the representation 3, we will choose a basis in which the generator T is diagonal.
The explicit forms of S and T are

S =
1

3

0

@
�1 2 2
2 �1 2
2 2 �1

1

A , T =

0

@
1 0 0
0 !

2 0
0 0 !

1

A , (13)

with ! = e
2⇡i/3 = �1/2 + i

p
3/2. The basic multiplication rule is

3⌦ 3 = 1� 1
0
� 1

00
� 3S � 3A , (14)

where the subscripts S and A denotes symmetric and antisymmetric combinations re-
spectively. If we have two triplets ↵ = (↵1,↵2,↵3) ⇠ 3 and � = (�1, �2, �3) ⇠ 3, we can
obtain the following irreducible representations from their product,

(↵�)1 = ↵1�1 + ↵2�3 + ↵3�2 ,

(↵�)10 = ↵3�3 + ↵1�2 + ↵2�1 ,

(↵�)100 = ↵2�2 + ↵1�3 + ↵3�1 ,

(↵�)3S = (2↵1�1 � ↵2�3 � ↵3�2, 2↵3�3 � ↵1�2 � ↵2�1, 2↵2�2 � ↵1�3 � ↵3�1) ,

(↵�)3A = (↵2�3 � ↵3�2,↵1�2 � ↵2�1,↵3�1 � ↵1�3) . (15)

The linear space of the modular forms of integral weight k and level N = 3 has dimension
k + 1 [16]. The modular space M2k(�(3)) can be constructed from the Dedekind eta-
function ⌘(⌧) which is defined as

⌘(⌧) = q
1/24

1Y

n=1

(1� q
n), q = e

2⇡i⌧
. (16)

The Dedekind eta-function ⌘(⌧) satisfies the following identities

⌘(⌧ + 1) = e
i⇡/12

⌘(⌧), ⌘(�1/⌧) =
p
�i⌧ ⌘(⌧) . (17)

There are only three linearly independent modular forms of weight 2 and level 3, which
are denoted as Yi(⌧) with i = 1, 2, 3. We can arrange the three modular functions into a

vector Y (2)
3 = (Y1, Y2, Y3)

T transforming as a triplet 3 of A4. The modular forms Yi can
be expressed in terms of ⌘(⌧) and its derivative as follow [16]:

Y1(⌧) =
i

2⇡


⌘
0(⌧/3)

⌘(⌧/3)
+

⌘
0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+

⌘
0((⌧ + 2)/3)

⌘((⌧ + 2)/3)
�

27⌘0(3⌧)

⌘(3⌧)

�
,

Y2(⌧) =
�i

⇡


⌘
0(⌧/3)

⌘(⌧/3)
+ !

2⌘
0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

⌘
0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

�
,

Y3(⌧) =
�i

⇡


⌘
0(⌧/3)

⌘(⌧/3)
+ !

⌘
0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

2⌘
0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

�
. (18)

The q-expansions of the triplet modular forms Y (2)
3 are given by

Y
(2)
3 =

0

@
Y1(⌧)
Y2(⌧)
Y3(⌧)

1

A =

0

@
1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + . . .

�6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + . . . )
�18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + . . . )

1

A . (19)
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Charged lepton 
mass matrix

kEi , kL, kd and k' such that kEi + kL + kd + k' = 0. Moreover, to forbid a dependence of
the charged lepton masses on Y (⌧) (and a dependence of the Weinberg operator on 'T ),
we take, for instance, k' = �3. The superpotential for the charged lepton sector reads:

we = ↵ Ec
1Hd(L 'T )1 + � Ec

2Hd(L 'T )10 + � Ec
3Hd(L 'T )100 . (35)

The VEV of eq. (34) leads to a diagonal mass matrix for the charged leptons:

me = diag(↵, �, �)u vd . (36)

The charged lepton masses can be reproduced by adjusting the parameters ↵, � and �,
with an ambiguity related to the freedom of permuting the eigenvalues. As a result, the
lepton mixing matrix UPMNS is determined up to a permutation of the rows. Finally, by
choosing kL = +1 and ku = 0, we uniquely determine the form of the Weinberg operator:

w⌫ =
1

⇤
(HuHu LL Y )1 (37)

r =
�m2

sol

|�m2
atm| sin2 ✓12 sin2 ✓13 sin2 ✓23

�CP
⇡

me
mµ

mµ

m⌧

best value 0.0292 0.297 0.0215 0.5 1.4 0.0048 0.0565

1� error 0.0008 0.017 0.0007 0.1 0.2 0.0002 0.0045

Table 4: Values of observables and their 1� errors used to optimize the model parameters,
through a �2 scan. Oscillation parameters are from ref. [68] and ratios of charged lepton
masses from ref. [69]. We use |�m2

atm| = |m2
3 � (m2

1 +m2
2)/2| where mi are the neutrino

masses. The ratios me
mµ

and mµ

m⌧
are evaluated at the scale 2⇥ 1016 GeV. For mµ

m⌧
the average

between the values obtained with tan � = 10 and tan � = 38 has been used. There is
a sizable di↵erence between the allowed 1� ranges of sin2 ✓23 for the cases of normal and
inverted ordering. For simplicity we have adapted the ranges quoted in ref. [68] and we
use a unique range for the two cases. The value of �CP

⇡ has not been used in the scan.

The superpotential w = we + w⌫ depends on the four parameters ↵, �, �,⇤. The charged
lepton masses me, mµ and m⌧ are in a one-to-one correspondence with ↵, � and �, which
can be taken real without loosing generality. The neutrino mass matrix is given by:

m⌫ =

0

@
2Y1 �Y3 �Y2

�Y3 2Y2 �Y1

�Y2 �Y1 2Y3

1

A v2u
⇤

(38)

We see that the fourth parameter, ⇤, controls the absolute scale of neutrino masses. A
remarkable feature of this model is that neutrino mass ratios, lepton mixing angles, Dirac
and Majorana phases are completely determined by the modulus ⌧ . We have eight dimen-
sionless physical quantities that do not depend on any coupling constant. Assuming the

14

Weinberg 
operator

3 3 3A4 rep:
1 1 2Modular weights k :
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the charged lepton masses on Y (⌧) (and a dependence of the Weinberg operator on 'T ),
we take, for instance, k' = �3. The superpotential for the charged lepton sector reads:

we = ↵ Ec
1Hd(L 'T )1 + � Ec

2Hd(L 'T )10 + � Ec
3Hd(L 'T )100 . (35)

The VEV of eq. (34) leads to a diagonal mass matrix for the charged leptons:

me = diag(↵, �, �)u vd . (36)

The charged lepton masses can be reproduced by adjusting the parameters ↵, � and �,
with an ambiguity related to the freedom of permuting the eigenvalues. As a result, the
lepton mixing matrix UPMNS is determined up to a permutation of the rows. Finally, by
choosing kL = +1 and ku = 0, we uniquely determine the form of the Weinberg operator:

w⌫ =
1

⇤
(HuHu LL Y )1 (37)

r =
�m2

sol

|�m2
atm| sin2 ✓12 sin2 ✓13 sin2 ✓23

�CP
⇡

me
mµ

mµ

m⌧

best value 0.0292 0.297 0.0215 0.5 1.4 0.0048 0.0565

1� error 0.0008 0.017 0.0007 0.1 0.2 0.0002 0.0045

Table 4: Values of observables and their 1� errors used to optimize the model parameters,
through a �2 scan. Oscillation parameters are from ref. [68] and ratios of charged lepton
masses from ref. [69]. We use |�m2

atm| = |m2
3 � (m2

1 +m2
2)/2| where mi are the neutrino

masses. The ratios me
mµ

and mµ

m⌧
are evaluated at the scale 2⇥ 1016 GeV. For mµ

m⌧
the average

between the values obtained with tan � = 10 and tan � = 38 has been used. There is
a sizable di↵erence between the allowed 1� ranges of sin2 ✓23 for the cases of normal and
inverted ordering. For simplicity we have adapted the ranges quoted in ref. [68] and we
use a unique range for the two cases. The value of �CP

⇡ has not been used in the scan.

The superpotential w = we + w⌫ depends on the four parameters ↵, �, �,⇤. The charged
lepton masses me, mµ and m⌧ are in a one-to-one correspondence with ↵, � and �, which
can be taken real without loosing generality. The neutrino mass matrix is given by:

m⌫ =

0

@
2Y1 �Y3 �Y2

�Y3 2Y2 �Y1

�Y2 �Y1 2Y3

1

A v2u
⇤

(38)

We see that the fourth parameter, ⇤, controls the absolute scale of neutrino masses. A
remarkable feature of this model is that neutrino mass ratios, lepton mixing angles, Dirac
and Majorana phases are completely determined by the modulus ⌧ . We have eight dimen-
sionless physical quantities that do not depend on any coupling constant. Assuming the
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Neutrino mass matrix

(plus seesaw)

Higgs fields Hu,d are invariant under A4 with zero modular weight, i.e.

L → (3, 1) , ec → (1, 1) , µc →
(
1→→, 1

)
, ω c →

(
1→, 1

)
, N c → (3, 1) , Hu,d → (1, 0) , (8.1)

where the first numbers in the parentheses denote the transformation under A4 modular
symmetry and the second numbers are the modular weight. In a standard notation, the
superpotential for the charged lepton masses is given by:

We = εec(LY (2)
3 )1Hd + ϑµc(LY (2)

3 )1→Hd + ϖω c(LY (2)
3 )1→→Hd , (8.2)

where Y (2)
3 (ω) = (Y1, Y2, Y3)T denotes the irreducible triplet of level-3 weight-2 modular

forms in Eq. (4.33). The couplings ε, ϑ and ϖ can be made real through redefinition of the
fields ec, µc, ω c. Using the contraction rules of two A4 triplets in Eq. (C.26), we can read
out the charged lepton mass matrix as follow,

Me =




εY1(ω) εY3(ω) εY2(ω)

ϑY2(ω) ϑY1(ω) ϑY3(ω)

ϖY3(ω) ϖY2(ω) ϖY1(ω)



 vd . (8.3)

The superpotential relevant to neutrino masses is:

Wω = g1((N
c L)3S

Y (2)
3 )1Hu + g2((N

c L)3A
Y (2)
3 )1Hu +

1

2
!L((N cN c)3S

Y (2)
3 )1 , (8.4)

where the phase of g1 can be absorbed into the left-handed lepton field L, while g2 is
complex. The Dirac neutrino mass matrix mD and heavy Majorana neutrino mass matrix
mN take the following form

MN =




2Y1(ω) ↑ Y3(ω) ↑ Y2(ω)

↑Y3(ω) 2Y2(ω) ↑ Y1(ω)

↑Y2(ω) ↑ Y1(ω) 2Y3(ω)



!L ,

MD =




2g1Y1(ω) (↑g1 + g2)Y3(ω) (↑g1 ↑ g2)Y2(ω)

(↑g1 ↑ g2)Y3(ω) 2g1Y2(ω) (↑g1 + g2)Y1(ω)

(↑g1 + g2)Y2(ω) (↑g1 ↑ g2)Y1(ω) 2g1Y3(ω)



 vu . (8.5)

The light neutrino mass matrix is Mω = ↑MT

D
M↑1

N
MD. Charged lepton masses can be

reproduced by adjusting the parameters ε, ϑ and ϖ, while neutrino masses and the lepton
mass matrix depend also on additional five parameters: one overall scale |g1|2v2u/!L, the
complex combination g2/g1 and the ω VEV. This model can accommodate both normal
ordering and inverted ordering neutrino mass spectrum. The best fit values of the free
parameters as well as the neutrino masses and mixing parameters at the best fit points are
shown in table 15.

In the above original A4 modular model [143], the right-handed lepton fields ec, µc and
ω c have the same modular weight and they transform as di!erent A4 singlets. In fact, we can
distinguish ec, µc and ω c through the combination of modular weights and representation
assignments under A4. If two or all of ec, µc and ω c are assigned to the same A4 singlet
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Goodness of fit against NuFit 5.2 values without SK atmospheric data
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sin2 ς12 sin2 ς13 sin2 ς23 φCP /↼ ϑ21/↼ ϑ31/↼ m1(eV) m2(eV) m3(eV) |mωω |(eV)
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Goodness of fit against NuFit 5.2 values with SK atmospheric data
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0.303 0.0222 0.445 1.298 1.944 0.933 0.0635 0.0641 0.0809 0.0629

IO

ω2
min Re(ε) Im(ε) |g2/g1| arg(g2/g1)

|g1|2v2u
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0.307 0.0222 0.564 1.731 0.728 0.812 0.0636 0.0642 0.0405 0.0331

Table 15. The best fit values of free couplings and lepton masses and lepton mixing parameters
in the original A4 modular model of Feruglio [143], we use the latest global fit results of NuFIT
v5.2 without/with SK atmospheric data [82].

representation, they could be distinguished by di!erent modular weights. The left-handed
lepton fields are assigned to be A4 triplet in order to produce the large lepton mixing angles.
Guided by the principle of simplicity, we use the lower weight modular forms of level 3 as
much as possible. Then the superpotential for charged lepton masses can take the following
ten possible forms [240]:

• (ec, µc, ε c) ↑ (1,1,1), (kec + kL, kµc + kL, kεc + kL) = (2, 4, 6)

The modular invariant superpotential for charged lepton Yukawa couplings is given by

We = ϑec(LY (2)
3 )1Hd + ϖµc(LY (4)

3 )1Hd + ϱ1ε
c(LY (6)

3I )1Hd + ϱ2ε
c(LY (6)

3II)1Hd

= ϑec (L1Y1 + L2Y3 + L3Y2) Hd

+ϖµc

[
L1(Y

2
1 ↓ Y2Y3) + L2(Y

2
2 ↓ Y1Y3) + L3(Y

2
3 ↓ Y1Y2)

]
Hd

+ϱ1ε
c

[
L1(Y

3
1 + 2Y1Y2Y3) + L2(Y

2
1 Y3 + 2Y 2

3 Y2) + L3(Y
2
1 Y2 + 2Y 2

2 Y3)
]
Hd

+ϱ2ε
c

[
L1(Y

3
3 + 2Y1Y2Y3) + L2(Y

2
3 Y2 + 2Y 2

2 Y1) + L3(Y
2
3 Y1 + 2Y 2

1 Y2)
]
Hd ,(8.6)

where Y (4)
3 and Y (6)

3I , Y (6)
3II are weight 4 and weight 6 modular forms at level 3 respec-

tively, and they are given in Eqs. (4.36, 4.37).

• (ec, µc, ε c) ↑ (1↑,1↑,1↑), (kec + kL, kµc + kL, kεc + kL) = (2, 4, 6)
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c(LY (6)

3II)1→→Hd

= ϑec(L1Y3 + L2Y2 + L3Y1)Hd

+ϖµc

[
L1(Y

2
2 ↓ Y1Y3) + L2(Y

2
3 ↓ Y1Y2) + L3(Y

2
1 ↓ Y2Y3)

]
Hd
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Introduce a weighton (complete singlet*) 
L e

c

3 e
c

2 e
c

1 N
c
Hu,d �

A4 3 1
0
1
00

1 3 1 1

kI 1 0 �1 �3 1 0 1

Table 2: A natural A4 model of leptons with a weighton �. Note that each supermultiplet
has a modular weight �kI .

The three right-handed charged leptons e
c

3,2,1 are assigned to three di↵erent singlets 1
0,

1
00 and 1 of A4 as before but now their modular weights are not identical, and correspond

to kec3,2,1
= 0,�1,�3 (i.e. weights 0, 1, 3) such that powers of � with k� = 1 are required

compensate the terms in the previous model, with the combinations ec3�, e
c

2�
2
, e

c

1�
4 each

having combined weights of unity as before. The weighton � is assumed to develop
a vacuum expectation value (vev) so that the corresponding terms are suppressed by
powers of

�̃ ⌘
h�i

Mfl

, (31)

where Mfl is a dimensionful cut-o↵ flavour scale.

The weighton vev in Eq.31 may be driven by a leading order superpotential term

Wdriv = �(Y (4)
1

�
4

M
2
fl

�M
2), (32)

where � is an A4 singlet driving superfield with zero modular weight, while M is a free
dimensionful mass scale. This is similar to the usual driving field mechanism familiar
from flavon models [5–11], except for the presence of the lowest weight singlet modular

form Y
(4)
1 listed in Eq.21, where the quadratic term �

2 is forbidden since Y
(2)
1 does not

exist, and we have dropped higher powers such as �
6, and so on. As usual [5–11], the

structure of the driving superpotential Wdriv may be enforced by a U(1)R symmetry,
with the driving superfield � having R = 2, the weighton � and Higgs superfields having
R = 0 and the matter superfields having R = 1, which prevents other superpotential
terms appearing 3. The F-flatness condition F� = @Wdriv

@�
= 0 applied to Eq.32 then

drives a weighton vev, h�i ⇠ (MMfl)1/2, leading to the suppression factor in Eq.31 being
given by �̃ ⇠ (M/Mfl)1/2, where we assume M ⌧ Mfl.

The suppression factor in Eq.31 generates the charged lepton mass hierarchy naturally,
with m⌧,µ,e / �̃, �̃

2
, �̃

4, with only the lowest weight modular form Y
(2)
3 being necessary

as before.

After the weighton develops its vev, the superpotential for the charged lepton masses

3At the low energy scale, after the inclusion of SUSY breaking e↵ects, the U(1)R symmetry will be
broken to the usual discrete R-parity [5]. Such SUSY breaking e↵ects may also modify the predictions
from modular symmetry [16]. However the study of SUSY breaking is beyond the scope of this paper.
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powers of �̃ controlling the hierarchies,
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For example, ⌧T = i1 implies Y
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3 / (1, 0, 0)T , leading to a diagonal and naturally

hierarchical charged lepton Yukawa matrix with me : mµ : m⌧ = ↵e�̃
4 : �e�̃

2 : �e�̃. The
empirically observed charged lepton mass ratios me/mµ = 1/207 and mµ/m⌧ = 1/17
suggest that we fix �̃ ⇡ 1/15 to account for the charged lepton mass hierarchy, with the
mass ratios me/mµ ⇠ �̃

2 and mµ/m⌧ ⇠ �̃, assuming order one coe�cients ↵e, �e, �e ⇠ 1.
The small parameter �̃ ⇡ 1/15 defined to be the ratio of scales in Eq.31 now provides an
explanation for the charged lepton mass hierarchies.

However now there will be additional terms corresponding to higher weight modular
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3 , compensated by extra powers of weighton fields �, which will give corrections
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where from Eq.21 the weight 4 Yukawa couplings are given in terms of the weight 2
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By definition the weighton  does not break flavour symmetry (c.f. FN flavon)
* For hierarchies from triplet flavon see                                                      .

ϕ

small 
parameter

Natural explanation of 
charged lepton mass hierarchy
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Q d
c

3 d
c

2 d
c

1 u
c

3 u
c

2 u
c

1 Hu,d �

A4 3 1
0

1
00

1 1
0

1
00

1 1 1

kI 1 0, 2, 4 �2 �3 5, 3, 1 �1, 2, 4 �3 0 1

Table 3: Natural A4 models of quarks with a weighton �. All 27 combinations of modular
weights are considered in the text. Note that each supermultiplet has a modular weight �kI .

where ↵
0
e
, �

0
e
, �

0
e
are new free complex coe�cients (also assumed to be of order unity)

while the weight 4 Yukawa couplings are given in Eq.36. For example, ⌧T = i1 implies
Y

(2)
3 / (1, 0, 0)T , implies that the higher order corrections also take the form of a diagonal

charged lepton Yukawa matrix. However these are just the leading corrections. There
will also be further corrections from even higher weight modular forms, such as Y

(6)
3 ,

compensated by extra powers of weighton fields �, which will give further corrections to
the charged lepton Yukawa matrix. However, since �̃ ⇡ 1/15, we find all such corrections
to be very suppressed, and have a negligible e↵ect on the numerical results.

Since the modular weights of L and N
c are unchanged, and their representations are the

same, we expect the seesaw neutrino matrices to be the same as in the original model
at lowest order, where no weighton field � appears and fN (Y ) / Y

(2)
3 and fM (Y ) /

Y
(2)
3 as in Eq.28. Thus the seesaw matrices in this model are exactly the same as in

Eq.29. However now there will higher order corrections involving weightons, the leading
correction being suppressed by �̃

2,

�W⌫ = g
0
1�̃

2((N c
L)3SY

(4)
3 )1Hu + g

0
2�̃

2((N c
L)3AY

(4)
3 )1Hu + ⇤0

�̃
2((N c

N
c)3S

Y
(4)
3 )1

= g
0
1�̃

2
⇥
(2N c

1L1 �N
c

2L3 �N
c

3L2)Y
(4)
1 + (2N c

3L3 �N
c

1L2 �N
c

2L1)Y
(4)
3

+ (2N c

2L2 �N
c

3L1 �N
c

1L3)Y
(4)
2

⇤
Hu

+ g
0
2�̃

2
⇥
(N c

2L3 �N
c

3L2)Y
(4)
1 + (N c

1L2 �N
c

2L1)Y
(4)
3 + (N c

3L1 �N
c

1L3)Y
(4)
2

⇤
Hu

+ 2⇤0
�̃
2
⇥
(N c

1N
c

1 �N
c

2N
c

3)Y
(4)
1 + (N c

3N
c

3 �N
c

1N
c

2)Y
(4)
3 + (N c

2N
c

2 �N
c

1N
c

3)Y
(4)
2

⇤
,

(38)

which is of the same form as in Eq.28, yielding additive corrections to the seesaw matrices
of the same form as in Eq.29 but suppressed by �̃

2 and with the primed Yukawa couplings
given by Eq.36. As before, since �̃ ⇡ 1/15, these corrections are expected to be about
0.5%, so in the neutrino sector we can safely ignore these corrections and use the same
results as before. Thus we expect that the modulus best fit to point to be the same value
quoted as before, approximating the fixed point case ⌧T = i1.

4.3 Natural models of quarks

Quarks have been considered with A4 modular symmetry in [35]. However there has
been no attempt to explain the quark mass hierarchy. Using similar ideas developed
in the previous section for the charged leptons, we now consider models for the down
type quark Yukawa matrix with md : ms : mb ⇠ �̃

4 : �̃3 : �̃, which turns out to be a
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good description of the down quark mass hierarchies as we shall see. As in the charged
lepton sector, the weighton is assumed to develop a vacuum expectation value (vev) so
that the corresponding terms are suppressed by powers of �̃ = h�i/Mfl, where Mfl is
a dimensionful cut-o↵ flavour scale, which we assume to be the same scale as for the
charged leptons.

We introduce the quark modular weights in Table 3 which can achieve this, using the
same weighton � as in the charged lepton sector. We assign the quark doublets Q to a
triplet of A4 with kQ = 1 analogous to the lepton doublets. The three right-handed down
type quarks dc3,2,1 are assigned to three di↵erent singlets 10, 100 and 1 of A4, analogous to
how the charged lepton Yukawa matrix was constructed.

Unlike in the charged lepton sector, here we allow higher weight modular forms in the
quark sector, which will prove necessary to describe quark mixing. We therefore have more
freedom in assigning various modular weights to d

c

3,2,1 such that powers of � with k� = 1
are required compensate the terms, with the combinations d

c

3�, d
c

2�
3
, d

c

1�
4 appearing,

analogous to the charged lepton assignments. This generates the down type quark mass
hierarchy naturally, with mb,s,d / �̃, �̃

3
, �̃

4.

After the weighton develops its VEV, the superpotential for the down type quark masses
with kdc3,2,1

= 0,�2,�3 takes the form

Wd = ↵dd
c

1�̃
4(QY

(2)
3 )1Hd + �dd

c

2�̃
3(QY

(2)
3 )10Hd + �dd

c

3�̃(QY
(2)
3 )100Hd

= ↵dd
c

1�̃
4(Q1Y1 +Q2Y3 +Q3Y2)Hd + �dd

c

2�̃
3(Q3Y3 +Q1Y2 +Q2Y1)Hd

+ �dd
c

3�̃(Q2Y2 +Q3Y1 +Q1Y3)Hd , (39)

which gives a similar form of Yukawa matrix for the down type quarks as for the charged
leptons in Eq.34, albeit the second row being more suppressed than before,

Y
I

d
=

0

BBBBBBB@

↵d�̃
4
Y1 ↵d�̃

4
Y3 ↵d�̃

4
Y2

�d�̃
3
Y2 �d�̃

3
Y1 �d�̃

3
Y3

�d�̃Y3 �d�̃Y2 �d�̃Y1

1

CCCCCCCA

(40)

where without loss of generality we may take ↵d, �d, �u to be real. However now there will
be additional terms corresponding to higher weight modular forms, Y (4)

3 , compensated
by extra powers of weighton fields �, which will give corrections to the down type quark
superpotential, analogous to the higher order corrections to the charged lepton superpo-
tential in Eq.33. Since these corrections will yield a matrix with a similar structure to the
lowest order matrix but with each element having an additional correction be suppressed
by a relative power of �̃2. This yields the additive correction to the down type quark
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Quark Sector with weighton

in [35], the lowest weight modular forms Y (2)
3 are not su�cient to describe quark mixing

so here we shall utilise weight 6 modular form Y
(6)
3 for only the third family (whereas

in [35] weight 6 modular forms were assumed for all three families of quarks). If we

had used the lowest weight modular forms Y (2)
3 for all three families then the up quark

Yukawa matrix would have rows proportional to that of the down quark Yukawa matrix,
leading to zero quark mixing angles, so we need to use higher weight modular forms for
the up Yukawa matrix, at least for the second or third families, and here we use weight 6
only for the third family. This motivates the assignments kuc

3,2,1
= 5,�1,�3 such that the

combinations Qu
c

3, Qu
c

2�
2
, Qu

c

1�
4 imply the modular forms Y (6)

3 , Y (2)
3 , Y (2)

3 , respectively,
where powers of � with k� = 1 are required. Actually there are two independent weight 6

modular forms Y (6)
3,I and Y

(6)
3,II and both must be considered as contributing independently.

Although the above assignments satisfies our requirements, we need to check that these
are indeed the leading order terms. Firstly Qu

c

3 has weight �6 so the leading term is

Y
(6)
3 , with the higher order correction Qu

c

3�
2 having weight �8 and requiring Y

(8)
3 (the

lower weight modular forms Y (2)
3 and Y

(4)
3 are forbidden at all orders). Secondly, although

Qu
c

2 has weight zero, this term is forbidden since it is an A4 triplet and Y
(0)
3 does not

exist. Therefore the leading allowed term is Qu
c

2�
2 with weight �2, compensated by Y

(2)
3 ,

with the higher order term Qu
c

2�
4 with weight �4 compensated by Y

(4)
3 being suppressed.

Thirdly Qu
c

1 has weight 2 and cannot be compensated by a modular form with positive
weight. While Qu

c

1�
2 has weight zero it is forbidden since it is an A4 triplet and triplet

modular forms cannot have zero weight. Therefore the leading term is Qu
c

1�
4 with weight

�2 which is compensated by Y
(2)
3 , with the higher order correction Qu

c

1�
6 having weight

�4 compensated by Y
(4)
3 being suppressed.

After the weighton develops its vev, the leading order superpotential for the up type
quark masses takes the form

Wu = ↵uu
c

1�̃
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(2)
3 )1Hu + �uu

c

2�̃
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3 )10Hu + �

I

u
u
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3,I )100Hu + �
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u
u
c
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(6)
3,II)100Hu

= ↵uu
c

1�̃
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c

2�̃
2(Q3Y3 +Q1Y2 +Q2Y1)Hu
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I

u
u
c

3(Q2Y
(6)
2,I +Q3Y

(6)
1,I +Q1Y

(6)
3,I )Hu + �

II

u
u
c

3(Q2Y
(6)
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md : ms : mb ⇠ �̃4 : �̃3 : �̃

mu : mc : mt ⇠ �̃4 : �̃2 : 1

Natural explanation of 
quark mass hierarchy

L e
c

3 e
c

2 e
c

1 N
c
Hu,d �

A4 3 1
0
1
00

1 3 1 1

kI 1 0 �1 �3 1 0 1

Table 2: A natural A4 model of leptons with a weighton �. Note that each supermultiplet
has a modular weight �kI .

The three right-handed charged leptons e
c

3,2,1 are assigned to three di↵erent singlets 1
0,

1
00 and 1 of A4 as before but now their modular weights are not identical, and correspond

to kec3,2,1
= 0,�1,�3 (i.e. weights 0, 1, 3) such that powers of � with k� = 1 are required

compensate the terms in the previous model, with the combinations ec3�, e
c

2�
2
, e

c

1�
4 each

having combined weights of unity as before. The weighton � is assumed to develop
a vacuum expectation value (vev) so that the corresponding terms are suppressed by
powers of

�̃ ⌘
h�i

Mfl

, (31)

where Mfl is a dimensionful cut-o↵ flavour scale.

The weighton vev in Eq.31 may be driven by a leading order superpotential term

Wdriv = �(Y (4)
1

�
4

M
2
fl

�M
2), (32)

where � is an A4 singlet driving superfield with zero modular weight, while M is a free
dimensionful mass scale. This is similar to the usual driving field mechanism familiar
from flavon models [5–11], except for the presence of the lowest weight singlet modular

form Y
(4)
1 listed in Eq.21, where the quadratic term �

2 is forbidden since Y
(2)
1 does not

exist, and we have dropped higher powers such as �
6, and so on. As usual [5–11], the

structure of the driving superpotential Wdriv may be enforced by a U(1)R symmetry,
with the driving superfield � having R = 2, the weighton � and Higgs superfields having
R = 0 and the matter superfields having R = 1, which prevents other superpotential
terms appearing 3. The F-flatness condition F� = @Wdriv

@�
= 0 applied to Eq.32 then

drives a weighton vev, h�i ⇠ (MMfl)1/2, leading to the suppression factor in Eq.31 being
given by �̃ ⇠ (M/Mfl)1/2, where we assume M ⌧ Mfl.

The suppression factor in Eq.31 generates the charged lepton mass hierarchy naturally,
with m⌧,µ,e / �̃, �̃

2
, �̃

4, with only the lowest weight modular form Y
(2)
3 being necessary

as before.

After the weighton develops its vev, the superpotential for the charged lepton masses

3At the low energy scale, after the inclusion of SUSY breaking e↵ects, the U(1)R symmetry will be
broken to the usual discrete R-parity [5]. Such SUSY breaking e↵ects may also modify the predictions
from modular symmetry [16]. However the study of SUSY breaking is beyond the scope of this paper.
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General analysis with a weighton

Y (6)
3B (ω) = →

1

2
Y (6)
3I +

↑
3

2
Y (6)
3II . (90)

One sees that both Y (6)
3A (ω) and Y (6)

3B (ω) are along the direction (1, 0, 0)T in the limit of large Im(ω).

B Possible patterns of fermion masses and rotation angles

In this Appendix, we shall present the hierarchical patterns of the fermion masses mω1 , mω2 , mω3 and the

rotation angles εω12, ε
ω
13, ε

ω
23 as well as the permutation Pω which can be obtained from the finite modular

groups !→
3
↓= T →, !→

4
↓= S→

4 and !→
5
↓= A→

5, see tables 3, 4, and 5. The three generations of matter fields ϑ and
ϑc are assigned to three-dimensional (possible reducible) representations rω and rωc of !→

N respectively. We
require at least one of rω and rωc to be an irreducible triplet of !→

N , otherwise there are too many cases after
including the weighton. As a consequence, the superpotential for the mass of ϑ involves at most three power
indices of ϖ̃. For instance, if the ϑ is a triplet and ϑc

1, ϑ
c
2 and ϑc

3 are three singlets of !→
N , the superpotential

can be generally written as,

W = ϱ ϖ̃I
(
ϑc
1ϑY

(k1)
r1

Hu/d

)

1
+ ς ϖ̃J

(
ϑc
2ϑY

(k2)
r2

Hu/d

)

1
+ φ ϖ̃K

(
ϑc
3ϑY

(k3)
r3

Hu/d

)

1
, (91)

where the power indices I, J and K are are determined by the modular weights of the matter fields ϑ and
ϑc. If the first two generation fields ϑc

1 and ϑc
2 are assigned to a doublet of !→

N , we have I = J . If ϑc
1, ϑ

c
2 and

ϑc
3 are embedded into an irreducible triplet, then we have I = J = K. The superpotential has a similar form

as Eq. (91) in the case that ϑc instead of ϑ is an irreducible triplet of !→
N . The electroweak lepton doublets

are assigned to an irreducible triplet of the finite modular group !→
N , the hierarchical patterns of neutrino

masses mεi and rotation angles εεij are listed in table 6 under the assumption that the light neutrino masses
are generated by the Weinberg operator.

Table 3: The order of magnitudes of fermion masses mωi and rotation angles εωij as well as the permutation

matrix Pω, where the three generations of matter fields ϑ ↔ (ϑ1,ϑ2,ϑ3)T and ϑc
↔ (ϑc

1,ϑ
c
2,ϑ

c
3)

T are assigned
to three-dimensional (possibly reducible) representations of the finite modular group !→

3
↓= T →. For example,

rωc = 1→→
↗ 1→

↗ 1 means rωc
1
= 1→→, rωc

2
= 1→, rωc

3
= 1.

rω →rωc power of ω̃ Pω (mω1 ,mω2 ,mω3) (εω12, ε
ω
23, ε

ω
13)

3 →3 I = J = K P132 (ω̃I , ω̃I , ω̃I) (|q| 13 , |q| 13 , |q| 13 )

3→(1→→ ↑ 1→ ↑ 1)

I ↓ J ↓ K P231

(
ω̃I , ω̃J , ω̃K

)
(|q| 13 , |q| 13 , |q| 13 ω̃2(I↑K) + |q| 23 )

J ↓ K ↓ I P312 (ω̃J , ω̃K , ω̃I) (|q| 13 , |q| 13 , |q| 13 ω̃2(J↑I) + |q| 23 )

K ↓ I ↓ J P123 (ω̃K , ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 13 ω̃2(K↑J) + |q| 23 )

J ↓ I ↓ K P321 (ω̃J , ω̃I , ω̃K) (|q| 23 , |q| 13 ω̃2(I↑K) + |q| 23 , |q| 13 )

I ↓ K ↓ J P213 (ω̃I , ω̃K , ω̃J) (|q| 23 , |q| 13 ω̃2(K↑J) + |q| 23 , |q| 13 )

K ↓ J ↓ I P132 (ω̃K , ω̃J , ω̃I) (|q| 23 , |q| 13 ω̃2(J↑I) + |q| 23 , |q| 13 )

continues on next page
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level N=3

where Cij
n are some constants independent of ω since Yukawa couplings are modular forms which are

holomorphic functions of ω . It is straightforward to show that q1/N transforms under T as follows

q1/N
T

→↑ e2ωi(ε+1)/N = e2ωi/Nq1/N = εq1/N , q
T

→↑ q . (16)

Thus the modular invariance under the T transformation in Eq. (13) implies

Cij

n = 0, n ↓= →kij (mod N) . (17)

Hence the Yukawa couplings Ye

ij
(ω) are of the following form

Y
e

ij(ω) = Cij

N→kij
q(N→kij)/N + Cij

2N→kij
q(2N→kij)/N + Cij

3N→kij
q(3N→kij)/N + . . .

= q(N→kij)/N
[
Cij

N→kij
+ Cij

2N→kij
q + Cij

3N→kij
q2 + . . .

]
. (18)

It follows that the magnitude of the Yukawa coupling Y
e

ij
is determined by the power index kij which

depends on the transformations of the fields Ec

i
, Lj , Hd under the modular generator T . There

exists basis in which the generators S and T are represented by unitary and symmetric matrices and
the corresponding Clebsch-Gordan coe!cients are real, then the generalized CP symmetry reduces
to the canonical CP and the all couplings are enforced to be real [41]. Then CP invariance requires
the Yukawa couplings fulfill

Y
e

ij(→ω↑) = Y
e↑
ij (ω) , (19)

which follows from Eq. (36). Hence all the coe!cients Cij
n are real due to CP symmetry, and the

real part of ω is the unique source of CP violation. In the fundamental domain D, the imaginary
part y = Im(ω) is greater than or equal

↔
3/2 so that the parameter q is quite small,

|q| = e→2ωy
↗ e→

↓
3ω

↘ 0.0043 ≃ 1 . (20)

Hence the order of magnitude of the Yukawa couplings Y
e

ij
(ω) is dominated by the leading order

term q(N→kij)/N .

3.2 Adding weighton

We introduce a new chiral superfield ϑ whose modular weight kϑ = 1. This ϑ is called weighton
since it carries the unit of modular weight [34]. We assume that ϑ is the trivial singlet under both
modular symmetry and the SM gauge group. We also assume ϑ transforms under CP as a scalar.
The weighton ϑ transforms under modular symmetry and CP as follows

ϑ
ϖ

→↑ (cω + d)→1ϑ, ϑ
CP
→↑ ϑ↑ , (21)

After including weighton, the modular invariant Yukawa couplings become

W = →ϑ̃JijEc

iY
e

ij(ω)LjHd →
1

2”
ϑ̃KijLiLjY

ϱ

ij(ω)HuHu , (22)

where ϑ̃ = ϑ/Mfl and Mfl is cut-o# flavour scale. It is straightforward to derive that the modular
transformation of Ye

ij
(ω) and Y

ϱ

ij
(ω) is given by

Y
e

ij (ϖω) = (cω + d)
kEc

i
+kLj

+kd+Jijϱ↑
d
(ϖ)

[
ϱ↑Ec(ϖ)Ye (ω) ϱ†

L
(ϖ)

]

ij

,

Y
ϱ

ij (ϖω) = (cω + d)kLi
+kLj

+2ku+Kijϱ2↑u (ϖ)
[
ϱ↑L(ϖ)Y

ϱ (ω) ϱ†
L
(ϖ)

]

ij

. (23)
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since it carries the unit of modular weight [34]. We assume that ϑ is the trivial singlet under both
modular symmetry and the SM gauge group. We also assume ϑ transforms under CP as a scalar.
The weighton ϑ transforms under modular symmetry and CP as follows

ϑ
ϖ

→↑ (cω + d)→1ϑ, ϑ
CP
→↑ ϑ↑ , (21)

After including weighton, the modular invariant Yukawa couplings become

W = →ϑ̃JijEc

iY
e

ij(ω)LjHd →
1

2”
ϑ̃KijLiLjY

ϱ

ij(ω)HuHu , (22)

where ϑ̃ = ϑ/Mfl and Mfl is cut-o# flavour scale. It is straightforward to derive that the modular
transformation of Ye

ij
(ω) and Y

ϱ

ij
(ω) is given by

Y
e

ij (ϖω) = (cω + d)
kEc

i
+kLj

+kd+Jijϱ↑
d
(ϖ)

[
ϱ↑Ec(ϖ)Ye (ω) ϱ†

L
(ϖ)

]

ij

,

Y
ϱ

ij (ϖω) = (cω + d)kLi
+kLj

+2ku+Kijϱ2↑u (ϖ)
[
ϱ↑L(ϖ)Y

ϱ (ω) ϱ†
L
(ϖ)

]

ij

. (23)

7

q-expansion 
suppresses mixing

Weightons control 
mass hierarchy

independent of modular weights

(cont’d…)
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Table 3 – continued from previous page

rω → rωc power of ω̃ Pω (mω1 ,mω2 ,mω3) (εω12, ε
ω
23, ε

ω
13)

3 → (1→→ ↑ 1→ ↑ 1)

I ↓ J ↓ K P231

(
ω̃I , ω̃J , ω̃K

)
(|q| 13 , |q| 13 , |q| 13 ω̃2(I↑K) + |q| 23 )

J ↓ K ↓ I P312 (ω̃J , ω̃K , ω̃I) (|q| 13 , |q| 13 , |q| 13 ω̃2(J↑I) + |q| 23 )

K ↓ I ↓ J P123 (ω̃K , ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 13 ω̃2(K↑J) + |q| 23 )

J ↓ I ↓ K P321 (ω̃J , ω̃I , ω̃K) (|q| 23 , |q| 13 ω̃2(I↑K) + |q| 23 , |q| 13 )

I ↓ K ↓ J P213 (ω̃I , ω̃K , ω̃J) (|q| 23 , |q| 13 ω̃2(K↑J) + |q| 23 , |q| 13 )

K ↓ J ↓ I P132 (ω̃K , ω̃J , ω̃I) (|q| 23 , |q| 13 ω̃2(J↑I) + |q| 23 , |q| 13 )

3 → (1→ ↑ 1↑ 1)

I ↓ J ↓ K, |q| 13 ω̃J ↓ ω̃I P231 (|q| 13 ω̃I , |q| 13 ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

I ↓ J ↓ K, ω̃I ↓ |q| 13 ω̃J P231 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

J ↓ K ↓ I P213 (|q| 23 ω̃J , ω̃K , ω̃I) (|q| 23 , |q| 23 + |q| 13 ω̃2(K↑I), |q| 13 )

K ↓ I ↓ J P231 (|q| 23 ω̃K , ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

J ↓ I ↓ K P231 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

I ↓ K ↓ J , |q| 13 ω̃K ↓ ω̃I P231 (|q| 13 ω̃I , |q| 13 ω̃K , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

I ↓ K ↓ J , ω̃I ↓ |q| 13 ω̃K P231 (|q| 23 ω̃K , ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

K ↓ J ↓ I P213 (|q| 23 ω̃K , ω̃J , ω̃I) (|q| 23 , |q| 23 + |q| 13 ω̃2(J↑I), |q| 13 )

3 → (1→→ ↑ 1↑ 1)

I ↓ J ↓ K, ω̃I ↓ |q| 13 ω̃J P321 (|q| 13 ω̃J , ω̃I , ω̃K) (|q| 23 , |q| 23 + |q| 13 ω̃2(I↑K), |q| 13 )

I ↓ J ↓ K, |q| 13 ω̃J ↓ ω̃I P231 (ω̃I , |q| 13 ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 13 ω̃2(I↑K) + |q| 23 )

J ↓ K ↓ I P312 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 13 , |q| 13 , |q| 23 )

K ↓ I ↓ J P321 (|q| 13 ω̃K , ω̃I , ω̃J) (|q| 23 , |q| 13 , |q| 13 )

J ↓ I ↓ K P321 (|q| 13 ω̃J , ω̃I , ω̃K) (|q| 23 , |q| 13 , |q| 13 )

I ↓ K ↓ J , ω̃I ↓ |q| 13 ω̃K P321 (|q| 13 ω̃K , ω̃I , ω̃J) (|q| 23 , |q| 23 + |q| 13 ω̃2(I↑J), |q| 13 )

I ↓ K ↓ J , |q| 13 ω̃K ↓ ω̃I P231 (ω̃I , |q| 13 ω̃K , ω̃J) (|q| 13 , |q| 13 , |q| 13 ω̃2(I↑J) + |q| 23 )

K ↓ J ↓ I P312 (|q| 13 ω̃K , ω̃J , ω̃I) (|q| 13 , |q| 13 , |q| 23 )

3 → (1→ ↑ 1→ ↑ 1)

I ↓ J ↓ K P231 (|q| 13 ω̃I , ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

J ↓ K ↓ I P213 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 23 , |q| 23 + |q| 13 ω̃2(K↑I), |q| 13 )

K ↓ I ↓ J , ω̃K ↓ |q| 13 ω̃I P213 (|q| 13 ω̃I , ω̃K , ω̃J) (|q| 23 , |q| 23 + |q| 13 ω̃2(K↑J), |q| 13 )

K ↓ I ↓ J , |q| 13 ω̃I ↓ ω̃K P123 (ω̃K , |q| 13 ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 23 + |q| 13 ω̃2(K↑J))

J ↓ I ↓ K P231 (|q| 13 ω̃J , ω̃I , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

I ↓ K ↓ J P213 (|q| 13 ω̃I , ω̃K , ω̃J) (|q| 23 , |q| 13 , |q| 13 )

K ↓ J ↓ I, |q| 13 ω̃J ↓ ω̃K P123 (ω̃K , |q| 13 ω̃J , ω̃I) (|q| 13 , |q| 13 , |q| 23 + |q| 13 ω̃2(K↑I))

K ↓ J ↓ I, ω̃K ↓ |q| 13 ω̃J P213 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 23 , |q| 13 , |q| 13 )

continues on next page
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Table 3 – continued from previous page

rω → rωc power of ω̃ Pω (mω1 ,mω2 ,mω3) (εω12, ε
ω
23, ε

ω
13)

3 → (1→→ ↑ 1→→ ↑ 1)

I ↓ J ↓ K P321 (|q| 23 ω̃I , ω̃J , ω̃K) (|q| 23 , |q| 23 + |q| 13 ω̃2(J↑K), |q| 13 )

J ↓ K ↓ I P312 (|q| 23 ω̃J , ω̃K , ω̃I) (|q| 13 , |q| 13 , |q| 23 )

K ↓ I ↓ J , ω̃K ↓ |q| 13 ω̃I P312 (|q| 23 ω̃I , ω̃K , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

K ↓ I ↓ J , |q| 13 ω̃I ↓ ω̃K P312 (|q| 13 ω̃K , |q| 13 ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

J ↓ I ↓ K P321 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 23 , |q| 23 + |q| 13 ω̃2(I↑K), |q| 13 )

I ↓ K ↓ J P312 (|q| 23 ω̃I , ω̃K , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

K ↓ J ↓ I, ω̃K ↓ |q| 13 ω̃J P312 (|q| 23 ω̃J , ω̃K , ω̃I) (|q| 13 , |q| 13 , |q| 23 )

K ↓ J ↓ I, |q| 13 ω̃J ↓ ω̃K P312 (|q| 13 ω̃K , |q| 13 ω̃J , ω̃I) (|q| 13 , |q| 13 , |q| 23 )

3 → (1→→ ↑ 1→ ↑ 1→)

I ↓ J ↓ K, ω̃I ↓ |q| 13 ω̃J P123 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

I ↓ J ↓ K, |q| 13 ω̃J ↓ ω̃I P123 (|q| 13 ω̃I , |q| 13 ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

J ↓ K ↓ I P132 (|q| 23 ω̃J , ω̃K , ω̃I) (|q| 23 , |q| 23 + |q| 13 ω̃2(K↑I), |q| 13 )

K ↓ I ↓ J P123 (|q| 23 ω̃K , ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

J ↓ I ↓ K P123 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

I ↓ K ↓ J , ω̃I ↓ |q| 13 ω̃K P123 (|q| 23 ω̃K , ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

I ↓ K ↓ J , |q| 13 ω̃K ↓ ω̃I P123 (|q| 13 ω̃I , |q| 13 ω̃K , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

K ↓ J ↓ I P132 (|q| 23 ω̃K , ω̃J , ω̃I) (|q| 23 , |q| 23 + |q| 13 ω̃2(J↑I), |q| 13 )

3 → (1→→ ↑ 1→→ ↑ 1→)

I ↓ J ↓ K P123 (|q| 13 ω̃I , ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

J ↓ K ↓ I P132 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 23 , |q| 23 + |q| 13 ω̃2(K↑I), |q| 13 )

K ↓ I ↓ J , ω̃K ↓ |q| 13 ω̃I P132 (|q| 13 ω̃I , ω̃K , ω̃J) (|q| 23 , |q| 23 + |q| 13 ω̃2(K↑J), |q| 13 )

K ↓ I ↓ J , |q| 13 ω̃I ↓ ω̃K P312 (ω̃K , |q| 13 ω̃I , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

J ↓ I ↓ K P123 (|q| 13 ω̃J , ω̃I , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

I ↓ K ↓ J P132 (|q| 13 ω̃I , ω̃K , ω̃J) (|q| 23 , |q| 23 + |q| 13 ω̃2(K↑J), |q| 13 )

K ↓ J ↓ I, ω̃K ↓ |q| 13 ω̃J P132 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 23 , |q| 23 + |q| 13 ω̃2(K↑I), |q| 13 )

K ↓ J ↓ I, |q| 13 ω̃J ↓ ω̃K P312 (ω̃K , |q| 13 ω̃J , ω̃I) (|q| 13 , |q| 13 , |q| 23 )

3 → (1↑ 1↑ 1) I ↓ J ↓ K P231 (|q| 23 ω̃I , |q| 13 ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

3 → (1→ ↑ 1→ ↑ 1→) I ↓ J ↓ K P123 (|q| 23 ω̃I , |q| 13 ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

3 → (1→→ ↑ 1→→ ↑ 1→→) I ↓ J ↓ K P312 (|q| 23 ω̃I , |q| 13 ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

3 → (2̂↑ 1)
I = J ↓ K P231 (|q| 23 ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

K ↓ I = J P231 (|q| 23 ω̃K , ω̃J , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

3 → (2̂↑ 1→)
I = J ↓ K P213 (|q| 13 ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 23 + |q| 13 ω̃2(J↑K), |q| 13 )

K ↓ I = J P231 (|q| 13 ω̃K , ω̃J , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

3 → (2̂↑ 1→→)
I = J ↓ K P312 (ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 + |q| 13 ω̃2(J↑K))

K ↓ I = J P231 (ω̃K , ω̃J , ω̃J) (|q| 13 , |q| 13 , |q| 23 + |q| 13 ω̃2(K↑J))

3 → (2̂→ ↑ 1)
I = J ↓ K P321 (ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 23 + |q| 13 ω̃2(J↑K), |q| 13 )

K ↓ I = J P123 (ω̃K , ω̃J , ω̃J) (|q| 13 , |q| 13 , |q| 23 + |q| 13 ω̃2(K↑J))

3 → (2̂→ ↑ 1→)
I = J ↓ K P123 (|q| 23 ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

K ↓ I = J P123 (|q| 23 ω̃K , ω̃J , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

continues on next page
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Table 3 – continued from previous page

rω → rωc power of ω̃ Pω (mω1 ,mω2 ,mω3) (εω12, ε
ω
23, ε

ω
13)

3 → (2̂→ ↑ 1→→)
I = J ↓ K P132 (|q| 13 ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 23 + |q| 13 ω̃2(J↑K), |q| 13 )

K ↓ I = J P123 (|q| 13 ω̃K , ω̃J , ω̃J) (|q| 13 , |q| 13 , |q| 23 )

3 → (2̂→→ ↑ 1)
I = J ↓ K P321 (|q| 13 ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 23 + |q| 13 ω̃2(J↑K), |q| 13 )

K ↓ I = J P321 (|q| 13 ω̃K , ω̃J , ω̃J) (|q| 23 , |q| 13 , |q| 13 )

3 → (2̂→→ ↑ 1→)
I = J ↓ K P123 (ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 + |q| 13 ω̃2(J↑K))

K ↓ I = J P321 (ω̃K , ω̃J , ω̃J) (|q| 23 , |q| 13 , |q| 13 )

3 → (2̂→→ ↑ 1→→)
I = J ↓ K P312 (|q| 23 ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 , |q| 23 )

K ↓ I = J P321 (|q| 23 ω̃K , ω̃J , ω̃J) (|q| 23 , |q| 13 , |q| 13 )

(1→→ ↑ 1→ ↑ 1) → 3

I ↓ J ↓ K P123 (ω̃I , ω̃J , ω̃K) (|q| 23 ω̃I↑J , |q| 13 ω̃J↑K , |q| 13 ω̃I↑K)

J ↓ K ↓ I P231 (ω̃J , ω̃K , ω̃I) (|q| 23 ω̃J↑K , |q| 13 ω̃K↑I , |q| 13 ω̃J↑I)

K ↓ I ↓ J P312 (ω̃K , ω̃I , ω̃J) (|q| 23 ω̃K↑I , |q| 13 ω̃I↑J , |q| 13 ω̃K↑J)

J ↓ I ↓ K P213 (ω̃J , ω̃I , ω̃K) (|q| 13 ω̃J↑I , |q| 13 ω̃I↑K , |q| 13 ω̃J↑K)

I ↓ K ↓ J P132 (ω̃I , ω̃K , ω̃J) (|q| 13 ω̃I↑K , |q| 13 ω̃K↑J , |q| 13 ω̃I↑J)

K ↓ J ↓ I P321 (ω̃K , ω̃J , ω̃I) (|q| 13 ω̃K↑J , |q| 13 ω̃J↑I , |q| 13 ω̃K↑I)

(1→ ↑ 1↑ 1) → 3

I ↓ J ↓ K, |q| 13 ω̃J ↓ ω̃I P123 (|q| 13 ω̃I , |q| 13 ω̃J , ω̃K) (|q|↑ 1
3 ω̃I↑J , ω̃J↑K , |q| 13 ω̃I↑K)

I ↓ J ↓ K, ω̃I ↓ |q| 13 ω̃J P213 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 13 ω̃J↑I , |q| 13 ω̃I↑K , ω̃J↑K)

J ↓ K ↓ I P231 (|q| 23 ω̃J , ω̃K , ω̃I) (ω̃J↑K , |q| 13 ω̃K↑I , |q| 13 ω̃J↑I)

K ↓ I ↓ J P312 (|q| 23 ω̃K , ω̃I , ω̃J) (|q| 13 ω̃K↑I , |q| 13 ω̃I↑J , ω̃K↑J)

J ↓ I ↓ K P213 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 13 ω̃J↑I , |q| 13 ω̃I↑K , ω̃J↑K)

I ↓ K ↓ J , |q| 13 ω̃K ↓ ω̃I P132 (|q| 13 ω̃I , |q| 13 ω̃K , ω̃J) (|q|↑ 1
3 ω̃I↑K , ω̃K↑J , |q| 13 ω̃I↑J)

I ↓ K ↓ J , ω̃I ↓ |q| 13 ω̃K P312 (|q| 23 ω̃K , ω̃I , ω̃J) (|q| 13 ω̃K↑I , |q| 13 ω̃I↑J , ω̃K↑J)

K ↓ J ↓ I P321 (|q| 23 ω̃K , ω̃J , ω̃I) (ω̃K↑J , |q| 13 ω̃J↑I , |q| 13 ω̃K↑I)

(1→→ ↑ 1↑ 1) → 3

I ↓ J ↓ K, ω̃I ↓ |q| 13 ω̃J P213 (|q| 13 ω̃J , ω̃I , ω̃K) (|q| 23 ω̃J↑I , |q| 13 ω̃I↑K , ω̃J↑K)

I ↓ J ↓ K, |q| 13 ω̃J ↓ ω̃I P123 (ω̃I , |q| 13 ω̃J , ω̃K) (|q| 13 ω̃I↑J , ω̃J↑K , |q| 13 ω̃I↑K)

J ↓ K ↓ I P231 (|q| 13 ω̃J , ω̃K , ω̃I) (ω̃J↑K , |q| 13 ω̃K↑I , |q| 13 ω̃J↑I)

K ↓ I ↓ J P312 (|q| 13 ω̃K , ω̃I , ω̃J) (|q| 23 ω̃K↑I , |q| 13 ω̃I↑J , ω̃K↑J)

J ↓ I ↓ K P213 (|q| 13 ω̃J , ω̃I , ω̃K) (|q| 23 ω̃J↑I , |q| 13 ω̃I↑K , ω̃J↑K)

I ↓ K ↓ J , ω̃I ↓ |q| 13 ω̃K P312 (|q| 13 ω̃K , ω̃I , ω̃J) (|q| 23 ω̃K↑I , |q| 13 ω̃I↑J , ω̃K↑J)

I ↓ K ↓ J , |q| 13 ω̃K ↓ ω̃I P132 (ω̃I , |q| 13 ω̃K , ω̃J) (|q| 13 ω̃I↑K , ω̃K↑J , |q| 13 ω̃I↑J)

K ↓ J ↓ I P321 (|q| 13 ω̃K , ω̃J , ω̃I) (ω̃K↑J , |q| 13 ω̃J↑I , |q| 13 ω̃K↑I)
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Table 3 – continued from previous page

rω → rωc power of ω̃ Pω (mω1 ,mω2 ,mω3) (εω12, ε
ω
23, ε

ω
13)

(1→ ↑ 1→ ↑ 1) → 3

I ↓ J ↓ K P123 (|q| 13 ω̃I , ω̃J , ω̃K) (ω̃I↑J , |q| 13 ω̃J↑K , |q| 13 ω̃I↑K)

J ↓ K ↓ I P231 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 23 ω̃J↑K , |q| 13 ω̃K↑I , ω̃J↑I)

K ↓ I ↓ J , ω̃K ↓ |q| 13 ω̃I P132 (|q| 13 ω̃I , ω̃K , ω̃J) (|q| 13 ω̃I↑K , |q| 13 ω̃K↑J , ω̃I↑J)

K ↓ I ↓ J , |q| 13 ω̃I ↓ ω̃K P312 (ω̃K , |q| 13 ω̃I , ω̃J) (|q| 13 ω̃K↑I , ω̃I↑J , |q| 13 ω̃K↑J)

J ↓ I ↓ K P213 (|q| 13 ω̃J , ω̃I , ω̃K) (ω̃J↑I , |q| 13 ω̃I↑K , |q| 13 ω̃J↑K)

I ↓ K ↓ J P132 (|q| 13 ω̃I , ω̃K , ω̃J) (|q| 23 ω̃I↑K , |q| 13 ω̃K↑J , ω̃I↑J)

K ↓ J ↓ I, |q| 13 ω̃J ↓ ω̃K P321 (ω̃K , |q| 13 ω̃J , ω̃I) (|q| 13 ω̃K↑J , ω̃J↑I , |q| 13 ω̃K↑I)

K ↓ J ↓ I, ω̃K ↓ |q| 13 ω̃J P231 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 23 ω̃J↑K , |q| 13 ω̃K↑I , ω̃J↑I)

(1→→ ↑ 1→→ ↑ 1) → 3

I ↓ J ↓ K P123 (|q| 23 ω̃I , ω̃J , ω̃K) (ω̃I↑J , |q| 13 ω̃J↑K , |q| 13 ω̃I↑K)

J ↓ K ↓ I P231 (|q| 23 ω̃J , ω̃K , ω̃I) (|q| 13 ω̃J↑K , |q| 13 ω̃K↑I , ω̃J↑I)

K ↓ I ↓ J , ω̃K ↓ |q| 13 ω̃I P132 (|q| 23 ω̃I , ω̃K , ω̃J) (|q| 13 ω̃I↑K , |q| 13 ω̃K↑J , ω̃I↑J)

K ↓ I ↓ J , |q| 13 ω̃I ↓ ω̃K P312 (|q| 13 ω̃K , |q| 13 ω̃I , ω̃J) (|q|↑ 1
3 ω̃K↑I , ω̃I↑J , |q| 13 ω̃K↑J)

J ↓ I ↓ K P213 (|q| 23 ω̃J , ω̃I , ω̃K) (ω̃J↑I , |q| 13 ω̃I↑K , |q| 13 ω̃J↑K)

I ↓ K ↓ J P132 (|q| 23 ω̃I , ω̃K , ω̃J) (|q| 13 ω̃I↑K , |q| 13 ω̃K↑J , ω̃I↑J)

K ↓ J ↓ I, ω̃K ↓ |q| 13 ω̃J P231 (|q| 23 ω̃J , ω̃K , ω̃I) (|q| 13 ω̃J↑K , |q| 13 ω̃K↑I , ω̃J↑I)

K ↓ J ↓ I, |q| 13 ω̃J ↓ ω̃K P321 (|q| 13 ω̃K , |q| 13 ω̃J , ω̃I) (|q|↑ 1
3 ω̃K↑J , ω̃J↑I , |q| 13 ω̃K↑I)

(1→→ ↑ 1→ ↑ 1→) → 3

I ↓ J ↓ K, ω̃I ↓ 1
3 ω̃J P213 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 13 ω̃J↑I , |q| 13 ω̃I↑K , ω̃J↑K)

I ↓ J ↓ K, |q| 13 ω̃J ↓ ω̃I P123 (|q| 13 ω̃I , |q| 13 ω̃J , ω̃K) (|q|↑ 1
3 ω̃I↑J , ω̃J↑K , |q| 13 ω̃I↑K)

J ↓ K ↓ I P231 (|q| 23 ω̃J , ω̃K , ω̃I) (ω̃J↑K , |q| 13 ω̃K↑I , |q| 13 ω̃J↑I)

K ↓ I ↓ J P312 (|q| 23 ω̃K , ω̃I , ω̃J) (|q| 13 ω̃K↑I , |q| 13 ω̃I↑J , ω̃K↑J)

J ↓ I ↓ K P213 (|q| 23 ω̃J , ω̃I , ω̃K) (|q| 13 ω̃J↑I , |q| 13 ω̃I↑K , ω̃J↑K)

I ↓ K ↓ J , ω̃I ↓ |q| 13 ω̃K P312 (|q| 23 ω̃K , ω̃I , ω̃J) (|q| 13 ω̃K↑I , |q| 13 ω̃I↑J , ω̃K↑J)

I ↓ K ↓ J , |q| 13 ω̃K ↓ ω̃I P132 (|q| 13 ω̃I , |q| 13 ω̃K , ω̃J) (|q|↑ 1
3 ω̃I↑K , ω̃K↑J , |q| 13 ω̃I↑J)

K ↓ J ↓ I P321 (|q| 23 ω̃K , ω̃J , ω̃I) (ω̃K↑J , |q| 13 ω̃J↑I , |q| 13 ω̃K↑I)

(1→→ ↑ 1→→ ↑ 1→) → 3

I ↓ J ↓ K P123 (|q| 13 ω̃I , ω̃J , ω̃K) (ω̃I↑J , |q| 13 ω̃J↑K , |q| 13 ω̃I↑K)

J ↓ K ↓ I P231 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 23 ω̃J↑K , |q| 13 ω̃K↑I , ω̃J↑I)

K ↓ I ↓ J , ω̃K ↓ |q| 13 ω̃I P132 (|q| 13 ω̃I , ω̃K , ω̃J) (|q| 23 ω̃I↑K , |q| 13 ω̃K↑J , ω̃I↑J)

K ↓ I ↓ J , |q| 13 ω̃I ↓ ω̃K P312 (ω̃K , |q| 13 ω̃I , ω̃J) (|q| 13 ω̃K↑I , ω̃I↑J , |q| 13 ω̃K↑J)

J ↓ I ↓ K P213 (|q| 13 ω̃J , ω̃I , ω̃K) (ω̃J↑I , |q| 13 ω̃I↑K , |q| 13 ω̃J↑K)

I ↓ K ↓ J P132 (|q| 13 ω̃I , ω̃K , ω̃J) (|q| 23 ω̃I↑K , |q| 13 ω̃K↑J , ω̃I↑J)

K ↓ J ↓ I, ω̃K ↓ |q| 13 ω̃J P231 (|q| 13 ω̃J , ω̃K , ω̃I) (|q| 23 ω̃J↑K , |q| 13 ω̃K↑I , ω̃J↑I)

K ↓ J ↓ I, |q| 13 ω̃J ↓ ω̃K P321 (ω̃K , |q| 13 ω̃J , ω̃I) (|q| 13 ω̃K↑J , ω̃J↑I , |q| 13 ω̃K↑I)

(1↑ 1↑ 1) → 3 I ↓ J ↓ K P123 (|q| 23 ω̃I , |q| 13 ω̃J , ω̃K) (ω̃I↑J , ω̃J↑K , ω̃I↑K)

(1→ ↑ 1→ ↑ 1→) → 3 I ↓ J ↓ K P123 (|q| 23 ω̃I , |q| 13 ω̃J , ω̃K) (ω̃I↑J , ω̃J↑K , ω̃I↑K)

(1→→ ↑ 1→→ ↑ 1→→) → 3 I ↓ J ↓ K P123 (|q| 23 ω̃I , |q| 13 ω̃J , ω̃K) (ω̃I↑J , ω̃J↑K , ω̃I↑K)

(2̂↑ 1) → 3
I = J ↓ K P213 (|q| 23 ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 ω̃J↑K , ω̃J↑K)

K ↓ I = J P312 (|q| 23 ω̃K , ω̃J , ω̃J) (|q| 13 , |q| 13 ω̃K↑J , ω̃K↑J)

continues on next page
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Table 3 – continued from previous page

rω → rωc power of ω̃ Pω (mω1 ,mω2 ,mω3) (εω12, ε
ω
23, ε

ω
13)

(2̂↑ 1→) → 3
I = J ↓ K P123 (|q| 13 ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 13 ω̃J↑K , ω̃J↑K)

K ↓ I = J P312 (|q| 13 ω̃K , ω̃J , ω̃J) (ω̃K↑J , |q| 13 , |q| 13 ω̃K↑J)

(2̂↑ 1→→) → 3
I = J ↓ K P123 (ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 13 ω̃J↑K , |q| 13 ω̃J↑K)

K ↓ I = J P312 (ω̃K , ω̃J , ω̃J) (|q| 23 ω̃K↑J , |q| 13 , |q| 13 ω̃K↑J)

(2̂→ ↑ 1) → 3
I = J ↓ K P213 (ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 ω̃J↑K , |q| 13 ω̃J↑K)

K ↓ I = J P312 (ω̃K , ω̃J , ω̃J) (|q| 23 ω̃K↑J , |q| 13 , |q| 13 ω̃K↑J)

(2̂→ ↑ 1→) → 3
I = J ↓ K P213 (|q| 23 ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 ω̃J↑K , ω̃J↑K)

K ↓ I = J P312 (|q| 23 ω̃K , ω̃J , ω̃J) (|q| 13 ω̃K↑J , |q| 13 , ω̃K↑J)

(2̂→ ↑ 1→→) → 3
I = J ↓ K P123 (|q| 13 ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 13 ω̃J↑K , ω̃J↑K)

K ↓ I = J P312 (|q| 13 ω̃K , ω̃J , ω̃J) (ω̃K↑J , |q| 13 , |q| 13 ω̃K↑J)

(2̂→→ ↑ 1) → 3
I = J ↓ K P123 (|q| 13 ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 13 ω̃J↑K , ω̃J↑K)

K ↓ I = J P321 (|q| 13 ω̃K , ω̃J , ω̃J) (|q| 13 ω̃K↑J , |q| 13 , ω̃K↑J)

(2̂→→ ↑ 1→) → 3
I = J ↓ K P123 (ω̃J , ω̃J , ω̃K) (|q| 23 , |q| 13 ω̃J↑K , |q| 13 ω̃J↑K)

K ↓ I = J P321 (ω̃K , ω̃J , ω̃J) (|q| 13 ω̃K↑J , |q| 13 , |q| 13 ω̃K↑J)

(2̂→→ ↑ 1→→) → 3
I = J ↓ K P213 (|q| 23 ω̃J , ω̃J , ω̃K) (|q| 13 , |q| 13 ω̃J↑K , ω̃J↑K)

K ↓ I = J P321 (|q| 23 ω̃K , ω̃J , ω̃J) (ω̃K↑J , |q| 13 , |q| 13 ω̃K↑J)

Table 4: The order of magnitudes of fermion masses mωi and rotation angles ωωij as well as the permutation

matrix Pω, where the three generations of matter fields ε → (ε1,ε2,ε3)T and εc
→ (εc

1,ε
c
2,ε

c
3)

T are assigned
to three-dimensional (possibly reducible) representations of the finite modular group !→

4
↑= S→

4. Here we adopt
the basis of Ref. [9] for the representation matrices of S→

4.

rω → rωc power of ω̃ Pω (mω1 ,mω2 ,mω3) (εω12, ε
ω
23, ε

ω
13)

3→ → 3→ I = J = K P213 (ω̃J , ω̃J , ω̃J) (|q| 14 , |q| 14 , |q| 12 )

3→ → 3 I = J = K P123 (|q| 12 ω̃J , ω̃J , ω̃J) (|q| 14 , |q| 12 , |q| 34 )

3→ → 3̂→ I = J = K P321 (|q| 34 ω̃J , ω̃J , ω̃J) (|q| 12 , |q| 14 , |q| 14 )

3→ → 3̂ I = J = K P213 (|q| 14 ω̃J , ω̃J , ω̃J) (|q| 34 , |q| 14 , |q| 12 )

3 → 3 I = J = K P132 (ω̃J , ω̃J , ω̃J) (|q| 14 , |q| 12 , |q| 14 )

3 → 3̂ I = J = K P312 (|q| 34 ω̃J , ω̃J , ω̃J) (|q| 14 , |q| 14 , |q| 12 )

3̂→ → 3 I = J = K P231 (|q| 14 ω̃J , ω̃J , ω̃J) (|q| 12 , |q| 14 , |q| 34 )

3̂→ → 3̂→ I = J = K P132 (|q| 12 ω̃J , ω̃J , ω̃J) (|q| 34 , |q| 12 , |q| 14 )

3̂→ → 3̂ I = J = K P321 (ω̃J , ω̃J , ω̃J) (|q| 12 , |q| 14 , |q| 14 )

3̂ → 3̂ I = J = K P132 (|q| 12 ω̃J , ω̃J , ω̃J) (|q| 34 , |q| 12 , |q| 14 )

3→ → (2↑ 1)

I = J ↓ K, ω̃J ↓ |q| 14 ω̃K P321 (|q| 34 ω̃J , |q| 14 ω̃K , ω̃J) (|q| 12 , |q| 34 ω̃2(K↑J), |q| 14 )

I = J ↓ K, |q| 14 ω̃K ↓ ω̃J P312 (|q| 34 ω̃J , ω̃J , |q| 14 ω̃K) (|q| 14 , |q| 14 , |q| 12 )

K ↓ I = J P321 (|q| 34 ω̃K , |q| 14 ω̃J , ω̃J) (|q| 12 , |q| 34 , |q| 14 )

continues on next page
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with

Vω = P T

ω V →
ω , Pω = O23 =

1
→
2





→
2 0 0
0 1 ↑1
0 1 1



 or Pω = P123 ,

V →
ω ↓




1 0 0
0 1 sω23
0 ↑(sω23)

↑ 1








1 0 sω13
0 1 0

↑(sω13)
↑ 0 1








1 sω12 0

↑(sω12)
↑ 1 0

0 0 1



 . (43)

The order of magnitudes of the light neutrino masses and the rotation angles ωω
ij
are listed in table 6.

5 Example models

In the following, we present two example models based the finite modular group !→
3
↔= T →, which can

explain the measured masses and mixing of both quarks and leptons simultaneously. The neutrino
masses are described by the e”ective Weinberg operator in the model A and the best fit value of
the modulus ε is close to the pure imaginary axis. In the second model B, the light neutrino masses
are generated by the type-I seesaw mechanism, and the best fit value of ε is in the vicinity of the
left vertical boundary of the fundamental domain.

5.1 Model A

The generalized CP symmetry is imposed and it constrains all coupling constants to be real in our
basis. We assign the three generations of left-handed lepton doublet L and quark doublet QL to
two irreducible triplets 3 of T →, the right-handed charged leptons ec, µc, ε c and right-handed up
type quarks uc, cc, tc are singlets of T →, while the right-handed down type quarks dc and sc are
assigned to a doublet 2̂→ of T →, and bc is invariant under T →. The transformations of the matter fields
under the action of modular symmetry are given by,

L ↔ (3, 2) , ec ↔ (1,↑1) , µc
↔ (1, 1) , ε c ↔

(
1→→, 3

)
, Hu,d ↔ (1, 0) ,

QL ↔ (3, kQL) , uc ↔ (1,↑kQL) , cc ↔
(
1→→, 5↑ kQL

)
, tc ↔

(
1→, 4↑ kQL

)
,

Dc

D ↗ {dc, sc} ↔

(
2̂→, 2↑ kQL

)
, bc ↔ (1, 5↑ kQL) , ϑ ↔ (1, 1) . (44)

Here the modular transformation of a field is denoted as ϖ ↔ (r, kε), where r stands for the
transformation under the finite modular group !→

3
↔= T → and kε refers to its modular weight. Then

we can read o” the modular invariant mass terms for leptons and quarks as follow,

We = ye1ϑ̃e
c

(
LY (2)

3

)

1
Hd + ye2ϑ̃µ

c

(
LY (4)

3

)

1
Hd + ye3ε

c

(
LY (6)

3A

)

1→
Hd + ye4ε

c

(
LY (6)

3B

)

1→
Hd ,

Wω =
yω1
#

(
(LL)1Y

(4)
1

)

1
HuHu +

yω2
#

(
(LL)1→→Y (4)

1→

)

1
HuHu +

yω3
#

(
(LL)3SY

(4)
3

)

1
HuHu ,

Wu = yu1 ϑ̃
2uc(QLY

(2)
3 )1Hu + yu2 ϑ̃c

c(QLY
(6)
3A )1→Hu + yu3 ϑ̃c

c(QLY
(6)
3B )1→Hu + yu4 t

c(QLY
(4)
3 )1→→Hu ,

Wd = yd1 ϑ̃
(
(Dc

DQL)2̂Y
(3)

2̂→→

)

1
Hd + yd2 ϑ̃

(
(Dc

DQL)2̂→→Y
(3)

2̂

)

1
Hd + yd3b

c(QLY
(6)
3A )1Hd

+yd4b
c(QLY

(6)
3B )1Hd . (45)

This model is very predictive, and it uses 18 real free parameters to describe the 22 masses and
mixing parameters of quarks and leptons. Herer we have counted ϑ̃ as a free parameter. Using the
Clebsch–Gordan coe$cients in Appendix A and expanding the above superpotential, we can obtain
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For example…

18 parameter fit to fermion mass 
and mixing data, predicts 

Figure 1: The contour of | sin ωlCP |, | sin ω
q
CP |, | sinε21| and | sinε31| in the plane of ϑ for the model A,

where black star refers to the best fitting point of ϑ . The couplings are set to the best fit values in Eq. (48)

Analogously taking the lowest nontrivial order in each entry of the quark mass matrices, we
have

Mu →
vu
6
↑
3




6yu1 ϖ̃

2
↓6yu1ϱ

2ϖ̃2
↓6

↑
2yu1ϱϖ̃

2
[
(2
↑
2↓

↑
6)yu2 + (

↑
2 + 2

↑
6)yu3

]
ϱϖ̃ (

↑
3yu2 ↓ yu3 )ϖ̃

[
↓(4 +

↑
3)yu2 + (1↓ 4

↑
3)yu3

]
ϱ2ϖ̃

↓6
↑
3yu4ϱ

2
↓2

↑
6yu4ϱ ↓2

↑
3yu4



 ,
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[
↓(4 +

↑
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10d models

These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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Lattice vectors for 
each torus are 

description of the neutrino and charged lepton masses and lepton mixing based on a type
of littlest seesaw [16].

In the 10d framework considered here, the desired moduli fields ⌧i for such model are
in principle consistent with the orbifold divisors Z2 ⇥Z2, Z4, Z4 ⇥Z2. However Z2 ⇥Z2

does not fix any of the ⌧i, so is not so restrictive. The Z4 orbifold divisor fixes the ⌧i as
needed by the model, but does not have the necessary fixed branes to build consistent
interactions. We are then left with the only viable and predictive choice being the orbifold
divisor Z4 ⇥ Z2, which can lead to the desired fixed points, as we discuss below.

We assume, then, a 10d spacetime where the 6 extra dimensions are factorisable into
3 torii, each defined by one complex coordinate zi with i = 1, 2, 3, and compactified as in
Eq. 9

zi ⇠ zi + 1, zi ⇠ zi + ⌧i, (12)

The orbifold (T2)3/Z4⇥Z2 as defined by the orbifolding actions in Eq. 10, using Table 1
with (N,M) = (4, 2) then implies,

✓4 : (x, z1, z2, z3) ⇠ (x, iz1,�iz2, z3),

✓2 : (x, z1, z2, z3) ⇠ (x, z1,�z2,�z3).
(13)

In the orbifold approach, (1, ⌧i) define the twist and the basis vectors of each torus.
For the orbifold to be consistent, the orbifolding actions ✓2,4 must not change the lattice,
i.e. its action over the lattice basis vectors (1, ⌧i) must be a linear combination of the
original lattice vectors, with integer coefficients. Therefore there must exist integers
a1,2,3, b1,2,3, c1,2,3, d1,2,3 2 Z such that, as in Eq. 11

(i, i⌧1,2) = (a1,2 + b1,2⌧1,2, c1,2 + d⌧1,2),

(�1,�⌧3) = (a3 + b3⌧3, c3 + d⌧3),
(14)

In the present example, solving Eq. 14 gives,

⌧1,2 = i+ n1,2, | n1,2 2 Z,
⌧3 2 C.

(15)

which corresponds to the result given in Table 1 with (N,M) = (4, 2). We emphasise
that the twists ⌧i are fixed geometrically by the orbifold actions. Therefore in the orbifold
approach to modular symmetries, the moduli fields are not a completely free choice, but
are constrained as in Table 1.

Each orbifold action in Eq. 13, leaves some invariant subspaces which are called fixed
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Three moduli at stable fixed points… 

(a) The extra dimensional space for T2
A. The Z4 orb-

ifolding identifies the four isosceles triangles labeled as

a.

(c) The extra dimensional space for T2
C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating
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Hence, the charged-lepton mass matrix is simply given by
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where vd stands for hHdi, and we ignore the dimensionless coupling coefficients.
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and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .
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involves two right-handed neutrinos plus two additional singlets, is given by:

M⌫ =

0

@
03⇥3 mD 03⇥2

m
T

D
02⇥2 M

02⇥3 M
T

µ

1

A , (1)

where 0n⇥m are n⇥m dimensional submatrices consisting of all zeroes and the other submatrices in the flavour basis
have the structure:

mD ⇠

0

@
0 b

a 3b
a b

1

A , M ⇠

✓
1 0
0 1

◆
, µ ⇠

✓
1 0
0 !

◆
, ! = e

2⇡i
3 . (2)

The light active neutrino mass matrix arising from the inverse seesaw formula m⌫ = �mD(MT )�1
µM

�1
m

T

D
takes

the same form as the usual LS model [17–24]:

m⌫ = m⌫a

0

@
0 0 0
0 1 1
0 1 1

1

A+m⌫b!

0

@
1 3 1
3 9 3
1 3 1

1

A (3)

The above mass matrix structures are motivated by the phenomenological success of the low energy mass matrix in
Eq. 3 which is identical to that of the usual LS model, involving two right-handed neutrinos, but in this case arising
from the inverse seesaw model, including the two additional singlets. Such an extension allows CLFV decays, such as
µ ! e�, at observable rates, since in the inverse seesaw model small neutrino masses are explained by the smallness
of the µ matrix 1, which allows Dirac masses to be large even for TeV scale values of M . This is the first low scale
seesaw model leading to a successful fit of the 6 physical observables of the neutrino sector with only 2 e↵ective
free parameters. In our model the small masses for the light active neutrinos are generated from an inverse seesaw
mechanism. In order to achieve the above mass matrices, we appeal to standard approaches to the flavour puzzle
based on symmetries, as follows.

The flavour puzzle of the SM indicates that New Physics has to be advocated to explain the observed SM fermion mass
and mixing pattern. This is the so called flavour puzzle, which is not explained by the SM and provides motivation
for building models with additional scalars and fermions in their particle spectrum and with extended symmetries
which can be continuous or discrete and their breaking produces the observed pattern of SM fermion mass and mixing
pattern. Several discrete groups have been employed in extensions of the SM to tackle SM fermion flavor puzzle. In
particular the discrete group S4 [34–47], together with the groups A4 [48–78], T7 [79–88], �(27) [89–111] and T

0 [112–
127], is the smallest group containing an irreducible triplet representation that can accommodate the three fermion
families of the Standard model (SM). These groups have been widely used in several extensions of the SM since they
are particular promising in providing a viable and predictive description of the observed SM fermion mass spectrum
and mixing parameters. In the present article, we shall employ S4, together with other auxiliary symmetries, in order
to achieve the above mass matrices of the LIS model, together with a diagonal charged lepton mass matrix.

The current article is organized as follows. In section II we explain our model. In section III we present our results
in terms of neutrino masses and mixing. The implications of our model in the lepton flavor violating decays µ ! e�,
⌧ ! µ� and ⌧ ! e� are studied in section III. We conclude in section V. A description of the S4 discrete group is
presented in Appendix A. The superpotential that determines the vacuum configuration for the S4 doublet and triplet
scalars of our model is presented in Appendix B.

II. THE MODEL

We consider an S4 flavour model for leptons where the masses for the light active neutrinos are generated from an
inverse seesaw mechanism. The implementation of the inverse seesaw mechanism in our model relies in the inclusion
of four gauge singlets right handed Majorana neutrinos, which is the minimal amount of gauge singlet right handed
Majorana neutrinos needed to implement a realistic inverse seesaw mechanism as pointed out for the first time in Ref.

1 An example of a dynamical explanation for the smallness of the µ parameter of the inverse seesaw and its connection with Dark matter
is provided in Ref. [128]

De Anda, S.F.K. 2312.09010, 2304.05958

These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.

12

(a) The extra dimensional space for T2
A. The Z4 orb-

ifolding identifies the four isosceles triangles labeled as

a.

(c) The extra dimensional space for T2
C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)
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Figure 4. Illustration for the vacua of the scalar potential in the case where (m1, n1) = (m2, n2) =
(2, 0) and (m3, n3) = (0, 0). We focus on the global vacuum (ω1, ω2, ω3) = (i, i,ε). For each plot,
we fix ω1 (ω2) or ω3 and exhibit the projection of log10(!V/|Vmin|) in terms of the other modulus
parameter. Left Panel: ω3 = ε is fixed. Right Panel: ω1 = ω2 = i is fixed.

concrete Shenker-like terms that can stabilise the dilaton sector and generate feasible
A(S, S) shown in Table 1.

At the end of this subsection, let us discuss Class C. As each pair of (mi, ni) should
be di!erent from the others, there are in total four di!erent choices of (mi, ni)

• (m1, n1) = (0, 0), (m2, n2) = (0, n2), (m3, n3) = (m3, 0);

• (m1, n1) = (0, 0), (m2, n2) = (0, n2), (m3, n3) = (m3, n3);

• (m1, n1) = (0, 0), (m2, n2) = (m2, 0), (m3, n3) = (m3, n3);

• (m1, n1) = (0, n1), (m2, n2) = (m2, 0), (m3, n3) = (m3, n3).

Although this entire non-symmetric class would be much more complicated since all the
moduli should be regarded as free variables, one can still follow the similar method adopted
in Class B to determine the vacua. It is straightforward to obtain the following conditions
for the finite fixed points to be the minima

(
ϑ
2
V

ϑs
2
1

,
ϑ
2
V

ϑs
2
2

,
ϑ
2
V

ϑs
2
3

)∣∣∣∣
ωi=i or ε

> 0 ,

(
ϑ
2
V

ϑt
2
1

,
ϑ
2
V

ϑt
2
2

,
ϑ
2
V

ϑt
2
3

)∣∣∣∣
ωi=i or ε

> 0 , (3.17)

Taking (m1, n1) = (0, 0), (m2, n2) = (0, 3) and (m3, n3) = (2, 0) for instance, according to
eq. (3.17), ω = i or ε being the dS minimum requires

ω1 = ω2 = ω3 = i : 3 < A < 3.596 ;

ω1 = ω2 = i, ω3 = ε : 3 < A < 3.596 ;

ω1 = ω3 = i, ω2 = ε : 3 < A < 3.596 ;

– 20 –

These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2
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N
c
s 1 1 1 �2 0 0 T2
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�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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Stable dS minimum Stable dS minima

scenario will essentially lead to Minkowski vacua at the fixed points. Instead, we consider
H(ω1, ω2, ω3) as the summation of three di!erent H

(mi,ni)(ωi), namely,5

H(ω1, ω2, ω3) = H
(m1,n1)(ω1) +H

(m2,n2)(ω2) +H
(m3,n3)(ω3) . (3.7)

Then H(ω1, ω2, ω3) would be nonzero as long as at least one of H(mi,ni)(ωi) is non-vanishing,
making the realisation of dS vacua more likely. As a result, the Kähler potential and
superpotential can be respectively rewritten as

K(ωi, ω i, S, S) = !2
K{K(S, S)→ log[(2 Im ω1)(2 Im ω2)(2 Im ω3)]} , (3.8)

W(ωi, S) =
!3
W”(S)[H(m1,n1)(ω1) +H

(m2,n2)(ω2) +H
(m3,n3)(ω3)]

ε2(ω1)ε
2(ω2)ε

2(ω3)
, (3.9)

where the variables ωi go through {ω1, ω2, ω3}. The scalar potential in this scenario turns
out to be

V (ωi, ωi, S, S) = !4
V C̃(ωi, ωi, S, S)

{
M̃(ωi, ω i) +

[
A(S, S)→ 3

]
|H(ωi)|2

}
, (3.10)

with

C̃(ωi, ωi, S, S) =
3∏

i=1

e
K(S,S)|”(S)|2

(2 Im ωi)|ε(ωi)|4
,

M̃(ωi, ω i) =
3∑

i=1

(2 Im ωi)
2

∣∣∣∣∣∣
i
ϑH

(mi,ni)(ωi)

ϑωi

+
3∑

j=1

H
(mj ,nj)(ωj)

2ϖ
Ĝ2(ωi, ω i)
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2

.

(3.11)

One can observe that apart from ω1,2,3 and A(S, S), there are six additional parameters that
can a!ect the minima of the scalar potential, namely, m1,2,3 and n1,2,3. In the following,
we discuss the minimisation of the scalar potential given in Eq. (3.10), mainly focusing
attention on the finite fixed points i and ϱ. In order to identify whether they are indeed
the minima of the potential, we again calculate the Hessian matrices at the fixed points
and make them positive-definite. We also thoroughly search the minima of V in the entire
fundamental domain for di!erent m1,2,3, n1,2,3 and A(S, S) using the gradient descent ap-
proach, which could help us identify whether the fixed points can be the global minima of
the scalar potential.

The second derivatives of V in terms of Kähler moduli are expressed as

ϑ
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!4
V ϑω

2
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ϑ
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ϑω
2
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[
M̃+ (A→ 3)|H|2
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ϑ
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ϑωiϑω j

[M̃+ (A→ 3)|H|2] + C̃



 ϑ
2M̃

ϑωiϑω j

+ (A→ 3)

∣∣∣∣∣
ϑH

(mi,ni)

ϑωi
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2


 ,

(3.12)

5
It seems more natural to expect a factorised form for H(ω1, ω2, ω3), since the loop-level corrections from

each torus contribute to the superpotential as exponential forms, as can be seen in Eq. (2.18). However,

H(ω1, ω2, ω3) in Eq. (3.7) may still be realised, by, e.g., introducing multiple dilatons, each of which is

associated with one torus.
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scenario will essentially lead to Minkowski vacua at the fixed points. Instead, we consider
H(ω1, ω2, ω3) as the summation of three di!erent H

(mi,ni)(ωi), namely,5

H(ω1, ω2, ω3) = H
(m1,n1)(ω1) +H

(m2,n2)(ω2) +H
(m3,n3)(ω3) . (3.7)

Then H(ω1, ω2, ω3) would be nonzero as long as at least one of H(mi,ni)(ωi) is non-vanishing,
making the realisation of dS vacua more likely. As a result, the Kähler potential and
superpotential can be respectively rewritten as

K(ωi, ω i, S, S) = !2
K{K(S, S)→ log[(2 Im ω1)(2 Im ω2)(2 Im ω3)]} , (3.8)

W(ωi, S) =
!3
W”(S)[H(m1,n1)(ω1) +H

(m2,n2)(ω2) +H
(m3,n3)(ω3)]

ε2(ω1)ε
2(ω2)ε

2(ω3)
, (3.9)

where the variables ωi go through {ω1, ω2, ω3}. The scalar potential in this scenario turns
out to be

V (ωi, ωi, S, S) = !4
V C̃(ωi, ωi, S, S)

{
M̃(ωi, ω i) +

[
A(S, S)→ 3

]
|H(ωi)|2

}
, (3.10)

with

C̃(ωi, ωi, S, S) =
3∏

i=1

e
K(S,S)|”(S)|2

(2 Im ωi)|ε(ωi)|4
,

M̃(ωi, ω i) =
3∑

i=1

(2 Im ωi)
2

∣∣∣∣∣∣
i
ϑH

(mi,ni)(ωi)

ϑωi

+
3∑

j=1

H
(mj ,nj)(ωj)

2ϖ
Ĝ2(ωi, ω i)

∣∣∣∣∣∣

2

.

(3.11)

One can observe that apart from ω1,2,3 and A(S, S), there are six additional parameters that
can a!ect the minima of the scalar potential, namely, m1,2,3 and n1,2,3. In the following,
we discuss the minimisation of the scalar potential given in Eq. (3.10), mainly focusing
attention on the finite fixed points i and ϱ. In order to identify whether they are indeed
the minima of the potential, we again calculate the Hessian matrices at the fixed points
and make them positive-definite. We also thoroughly search the minima of V in the entire
fundamental domain for di!erent m1,2,3, n1,2,3 and A(S, S) using the gradient descent ap-
proach, which could help us identify whether the fixed points can be the global minima of
the scalar potential.

The second derivatives of V in terms of Kähler moduli are expressed as

ϑ
2
V

!4
V ϑω

2
i

=
ϑ
2C̃

ϑω
2
i

[
M̃+ (A→ 3)|H|2

]
+ C̃

[
ϑ
2M̃
ϑω

2
i

+ (A→ 3)H→ϑ
2
H

(mi,ni)

ϑω
2
i

]
,

ϑ
2
V

!4
V ϑωiϑω j

=
ϑ
2C̃

ϑωiϑω j

[M̃+ (A→ 3)|H|2] + C̃



 ϑ
2M̃

ϑωiϑω j

+ (A→ 3)

∣∣∣∣∣
ϑH

(mi,ni)

ϑωi

∣∣∣∣∣

2


 ,
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each torus contribute to the superpotential as exponential forms, as can be seen in Eq. (2.18). However,

H(ω1, ω2, ω3) in Eq. (3.7) may still be realised, by, e.g., introducing multiple dilatons, each of which is
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and H
→(ω), both of which could be vanishing at ω = i or ε when m > 1 or n > 1, hence

there would be at least one finite fixed point corresponding to the global minimum of the
scalar potential.

In order to verify that finite fixed points can truly be the global vacua, we also imple-
ment a numerical approach. In specific, we initiate our analysis by randomly generating
starting points in the fundamental domain. Subsequently, we employ the gradient descent
technique to meticulously search for the local minima. The results are shown in Fig. 3,
where the blue dots and orange diamonds represent the complete sets of local minima ob-
tained with vanishing A(S, S) and non-vanishing A(S, S) [A(S, S) = 3.3], respectively. By
including the dilaton e!ects, both ω = i and ε can be the vacua for certain ranges of A(S, S).
It is interesting to point out that there are additional vacua inside the fundamental domain
even if A(S, S) > 3. For example, when m = 2 and n = 0, we have another dS vacuum
at ω = →0.489 + 0.872i, which is very close to ω = ε. However, this vacuum is not the
global one as V |ω=↑0.489+0.872i = 8.29 ↑ 106!4

V while V |ω=i = 0. In addition, when m = 2

and n = 3, we can find an additional vacuum on the lower boundary of the fundamental
domain with ω = →0.211 + 0.978i, which is again not the deepest as both ω = i and ε turn
out to be Minkowski vacua.

3.2 Modulus stabilisation in the three-modulus framework

Since the compactification of 10d heterotic string theory will generally lead to three moduli,
associated with three 2d tori,3 we should extend the single modulus stabilisation into this
more complete scenario, and explore how the non-perturbative e!ects can give a dynamical
explanation of the VEVs of moduli with multiple modular symmetries.

In the three-modulus case, the modular-invariant function H(ω) in the superpotential
should be replaced by a more general form

H(ω1, ω2, ω3) =
∑

m1,m2,m3
n1,n2,n3

H
(m1,n1)(ω1)H

(m2,n2)(ω2)H
(m3,n3)(ω3) , (3.6)

where H
(mi,ni) = (j(ω) → 1728)mi/2j(ω)ni/3 for i = 1, 2, 3. Given the infinite number of

modular-invariant H(ω1, ω2, ω3), it is di"cult to investigate the modulus stabilisation for all
H(ω1, ω2, ω3) in a systematic way. Instead, we try to find the minimal superpotential that can
lead to global dS vacua at the fixed points. One may notice that the simplest H(ω1, ω2, ω3)

should be a factorised form H
(m1,n1)(ω1)H

(m2,n2)(ω2)H
(m3,n3)(ω3),4 which, however would

become zero as long as one H
(mi,ni)(ωi) is vanishing at the fixed points. Consequently, this

3
It should be mentioned that here we focus on the scenario where the extra 6d space can be factorised into

three T
2

tori. However, non-factorisable toroidal manifolds [105–108] can have di!erent geometries from

factorisable ones since the number of fixed tori could be less. Consequently, the moduli are not separable

and may be incorporated into some larger symmetry groups, e.g., the Siegel modular group [5, 109–112].

The scenario for modulus stabilisation in the non-separable case could be di!erent, which is beyond the

scope of the present paper.

4
The factorised form of the superpotential was considered in ref. [104], where H

(mi,ni)(ωi) for all the

moduli take the same form.
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Field SU(5) S
A
4 S

B
4 S

C
4 kA kB kC Loc

F 5 1 1 3 0 0 0 T2
C

T1 10 1 1 1 0 0 1 T2
C

T2 10 1 1 1 0 0 1/2 T2
C

T3 10 1 1 1 0 0 0 T2
C

N
c
a 1 1 1 1 0 →4 0 T2

B

N
c
s 1 1 1 1 →2 0 0 T2

A

Hu 5 1 1 1 0 0 0 Bulk
Hd 5 1 1 1 0 0 1/2 Bulk
H45 45 1 1 1 0 0 1/2 Bulk
H45 45 1 1 1 0 0 0 Bulk
!BC 1 1 3 3 0 0 0 Bulk
!AC 1 3 1 3 0 0 0 Bulk
ωF 1 1 1 1 0 0 →5/2 T2

C

ωT 1 1 1 1 0 0 →1/2 T2
C

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(ε3) 1 1 3 0 0 6

Yµ(ε3) 1 1 3 0 0 4

Yω (ε3) 1 1 3 0 0 2

Ya(ε2) 1 3 1 0 4 0
Ys(ε1) 3 1 1 2 0 0
Ma(ε2) 1 1 1 0 8 0
Ms(ε1) 1 1 1 4 0 0

Table 1: Full list of the assumed fields of the model as well as they localization. The ones in the bulk are
10d chiral superfields while the ones in the defined branes are 6d chiral superfields. The modular forms
in the second table are fixed by the representation and weights of the fields. The H45 is added to cancel
anomalies and plays no other role in the low energy e!ective model.

As the 10d vector superfield decomposes into 4 4d superfields (1 vector and 3 left
chiral superfields) V = {V,ω1,2,3} which fulfils the conditions [28–30]

V (x, z1, z2, z3) = P4V (x, iz1,→iz2, z3)P4, V (x, z1, z2, z3) = V (x, z1,→z2,→z3),

ω1(x, z1, z2, z3) = iP4ω1(x, iz1,→iz2, z3)P4, ω1(x, z1, z2, z3) = ω1(x, z1,→z2,→z3),

ω2(x, z1, z2, z3) = →iP4ω2(x, iz1,→iz2, z3)P4, ω2(x, z1, z2, z3) = →ω2(x, z1,→z2,→z3),

ω3(x, z1, z2, z3) = P4ω3(x, iz1,→iz2, z3)P4, ω3(x, z1, z2, z3) = →ω3(x, z1,→z2,→z3),
(10)

where each 10d function decomposes into an infinite tower of KK modes. One can easily
find the zero modes by finding the solutions for the prior equations when z1 = z2 = z3 = 0.
The only available zero modes are the SM gauge vector superfields.

3.2 SM fermions

All the SM fermions are located in the 6d brane TC and therefore they are 6d chiral
superfields which decompose as 2 4d chiral superfields (left and right) F = {FL, FR}.

4

SU(5) orbifold GUT in 10d 
up the entire mass matrix structure of every fermion is

L10d =L(0)
10d + L(1)

10d,

L(0)
10d =

(
yu33
!5

T3T3 +
yu23
!7

ωTT2T3

)
Huε

6(z)

+

(
yu22
!9

ω2TT2T2 +
yu13
!9

ω2TT1T3 +
yu12
!11

(ω3T + ω3F )T1T2

)
Huε

6(z)

+

(
Ya

!9
FN c

a”BC +
Ys

!9
FN c

s”AC

)
Huε

6(z)

+

(
Y5ω

!7
ωFFT3 +

Y
→
5ω

!9
ωF ωTFT2 +

Y
→→
5ω

!11
ωF ω

2
TFT1

)
H5dε

6(z)

+

(
Y5µ

!9
ω2FFT2 +

Y
→
5µ

!11
ω2F ωTFT1 +

Y5e

!11
ω3FFT1

)
H5dε

6(z)

+ (H(0)
5d → H(0)

45d terms)

+
Ma

2
N c

aN
c
aε

2(z1)ε
2(z3) +

Ms

2
N c

sN
c
sε

2(z2)ε
2(z3),

L(1)
10d =

(
yu11
!13

(ω4T + ω3F ωT )T1T1 +
ỹu33
!13

T3T3”
2
AC,BC

)
Huε

6(z)

+

(
Ỹa

!13
FN c

a”
2
BC +

Ỹs

!13
FN c

s”
2
AC

)
Huε

6(z)

+

(
Y

→
a

!13
ω4T,XFN c

a”BCYω +
Y

→
s

!13
ω4T,FFN c

s”ACYω

)
Huε

6(z)

+

(
Y

→→
a

!21
ω8T,XFN c

a”BCYµ +
Y

→→
s

!21
ω8T,FFN c

s”ACYµ

)
Huε

6(z)

+

(
Y

→→
a

!29
ω12T,XFN c

a”BCYe +
Y

→→
s

!29
ω12T,FFN c

s”ACYe

)
Huε

6(z)

+

(
Y

→→
5µ

!15
ωF ω

4
F,TFT3 +

Y
→
5e

!23
ωF ω

8
F,TFT3 +

Y
→→
5e

!17
ω2F ω

4
F,TFT2 +

Ỹω

!15
ωF”

2
AC,BC)FT3

)
H5ε

6(z)

+ (H(0)
5d → H(0)

45d terms),

(18)

where L(1)
10d contains terms much more suppressed than L(0)

10d.
As is mentioned in the appendix A, most singlet modular forms vanish. Therefore

powers of ω are necessary to allow up quark masses and therefore they receive a non
trivial structure.

We integrate the 6 extra dimensions and keep only the zero modes, where we will
assume, for simplicity, a single radius for the 3 di!erent tori ↑ R. We will keep the same

7
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d 
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 →6 T2

C

µ
c 1 1 1 0 0 →4 T2

C

ω
c 1 1 1 0 0 →2 T2

C

N
c
a 1 1 1 0 →4 0 T2

B

N
c
s 1 1 1 →2 0 0 T2

A

!BC 1 3 3 0 0 0 Bulk
!AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(ω3) 1 1 3 0 0 6

Yµ(ω3) 1 1 3 0 0 4

Yω (ω3) 1 1 3 0 0 2

Ya(ω2) 1 3 1 0 4 0
Ys(ω1) 3 1 1 2 0 0
Ma(ω2) 1 1 1 0 8 0
Ms(ω1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ↑ (2,→1/2), and e
c
, µ

c
, ω

c ↑ (1, 1) have the usual
SM SU(2)L↓U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
! which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

Plugging in the specific shapes of the modular forms given in Eq. 33 we arrive at a
diagonal charged-lepton mass matrix for ωC = ε, including the dimensionless coupling
coe!cients:

Ml = vd




ye 0 0

0 yµ 0

0 0 yω



 . (35)

The Dirac neutrino mass matrix is then given by:

MD = vu




(Ya)1 (Ys)1
(Ya)3 (Ys)3
(Ya)2 (Ys)2



 , (36)

where, as usual, vu denotes the Hu VEV, and the 2↓3 structure comes from the CSD with
just two RH neutrinos. We have ignored the dimensionless coupling coe!cients. Choos-
ing specific stabilisers for the two remaining moduli fields, we can achieve a CSD(3.45)
structure with n = 1→

↔
6:

MD = vu




0 b

a b
(
1→

↔
6
)

→a b
(
1 +

↔
6
)



 . (37)

The type-I seesaw mechanism will lead to an e"ective mass matrix for the light neu-
trinos:

mε = MD ·M→1
R ·MT

D = v2u





b2

Ms

b2n

Ms

b2(2→ n)

Ms

.
a2

Ma
+

b2n2

Ms
→ a2

Ma
+

b2n(2→ n)

Ms

. .
a2

Ma
+

b2(2→ n)2

Ms





, (38)

14

The set of branes is invariant under the permutation set of them. However not all
permutations are Poincaré transformations.

These fixed branes and are permuted by the Poincaré transformations

S1 : z̄ → z̄ + 1/2, S2 : z̄ + ω/2, R : z̄ → ωz̄, P : z̄ → z̄→, P ↑ : z̄ → ↑z̄→, (31)

which, after orbifolding, generate the remnant symmetry. We can write these operations
explicitly S1[(12)(34)], S2[(13)(24)], R[(243)(1)], P [(34)(1)(2)], P ↑[(34)(1)(2)]. There are
only 3 independent transformations since S2 = R2 · S1 ·R, P = P ↑.

These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ε3 is fixed geometrically to be

equal to ω [26]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ↓ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
ε3 = ω ‖. This uniquely fixes the moduli geometrically to be ε1 = i, ε2 = i + 2, ε3 = ω,

(up to a choice in four).
The field content which defines the model is given in Table 4.
The fields Table 4 are interacting extra dimensional fields whose profiles are described

in the Appendix A. The low energy phenomenology is studied after compactification.
The resulting 4d superpotential is [19], ignoring the dimensionless coupling coe!cients,

wω =
1

!
[L”BCYaN

c
a + L”ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LYεε
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

and the modular Yukawa forms are fixed by the moduli ε1 = i, ε2 = i+2, ε3 = ω resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,↑1)T ,

Ys = (1, 1 +
↔
6, 1↑

↔
6)T ,

Yε = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)

‖As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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case y’s are arbitrary complex dimensionless parameters. The primed, 5 and 45 subscript
modular forms indicate di!erent y complex parameter but the same flavour structure.

The symmetric up-quark mass matrix originates from the TTHu couplings in Eq. 23,

Mu =




0 yu12ω̃

3
T,F e

iωu1 yu13ω̃
2
T

yu12ω̃
3
T,F e

iωu1 yu22ω̃
2
T yu23ω̃T e

iωu2

yu13ω̃
2
T yu23ω̃T e

iωu2 yu33



 vu, (25)

where each y is now an arbitrary real dimensionless constant. Phases can be redefined
so that there are 5 real parameters and 2 phases. This yields the approximate up-type
quark mass hierarchies, mu → ω̃4T,Fvu, mc → ω̃2Tvu, mt → vu.

The H45 breaks the charged lepton and down quark degeneracy. The Y5e,5µ,5ε , Y45e,45µ,45ε

and primed ones have the same modular form structure but di!erent overall complex
constants multiplying them. Therefore both are diagonal mass matrices but the actual
masses are determined after Higgs mixing [40]§,

ye11vd = y5evd5 ↑ 3y5evd45, yd11vd = y5dvd5 + y45dvd45,

ye22vd = y5µvd5 ↑ 3y5µvd45, yd22vd = y5svd5 + y45svd45,

ye33vd = y5εvd5 ↑ 3y5εvd45, yd33vd = y5bvd5 + y45bvd45,

ye21vd = y→5µvd5 ↑ 3y→5µvd45, yd12vd = y→5svd5 + y→45svd45,

ye32vd = y→5εvd5 ↑ 3y→5εvd45, yd23vd = y→5bvd5 + y→45bvd45,

ye31vd = y→→5εvd5 ↑ 3y→→5εvd45, yd13vd = y→→5bvd5 + y→→45bvd45,

(26)

where vd is an e!ective down Higgs VEV.
The triangular down-quark and charged lepton mass matrices originate from the

FTHd couplings in Eq. 23,

Md =




yd11ω̃3F yd12ω̃2F ω̃T yd13ω̃F ω̃2T

0 yd22ω̃2F yd23ω̃F ω̃T eiωd2

0 0 yd33ω̃F



 vd, (27)

Me =




ye11ω̃3F 0 0

ye21ω̃2F ω̃T ye22ω̃2F 0

ye31ω̃F ω̃2T ye32ω̃F ω̃T eiωd1 ye33ω̃F



 vd, (28)

where each matrix has 6 real parameters and 1 phase. These yield the the approximate
down-type quark and charged lepton mass hierarchies, md → me → ω̃3Fvd, and ms → mµ →
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↑
6)

→ya!̃BC ys!̃AC(1 +
↑
6)



 vu, MN =

(
Ma 0

0 Ms

)
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2
u
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+
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+
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. .
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(30)

where n = 1 +
↑
6 ↓ 3.45. This can be redefined in terms of 3 independent physical

parameters
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0 1 →1
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iε
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where
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∣∣∣∣∣
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Ma

∣∣∣∣∣ , mb =

∣∣∣∣∣
v2u(ys!̃AC)2

Ms

∣∣∣∣∣ (32)

which corresponds to flipped CSD(n) with n = 1 +
↑
6 ↓ 3.45 in the notation of

ref. [17]. Therefore the model has only these three parameters for the whole neutrino
sector, where the PMNS mixing parameters do not receive any appreciable contribution
from the charged lepton sector as mentioned above and discussed further below. This
results in a highly predictive flipped CSD(1 +

↑
6) setup [3, 17] with an excellent fit to

neutrino oscillation parameters involving three real input parameters to determine the
three neutrino masses and the six parameters of the PMNS matrix, where one neutrino
mass and one Majorana phase are predicted to be zero.

One may ask how the fit changes due to the o!-diagonal charged lepton mass matrix
parameters in the lower-left of the mass matrix Me in Eq. 28. To address this question we
show two fits in Table 2. First we assume that the o!-diagonal terms in Me are smaller
than the diagonal ones on the same row, which is a natural choice, since they are relatively
suppressed by small expansion parameters. The results show that this generates quite

11

Dirac 
neutrino 
matrix

Heavy 
Majorana 
neutrino 
matrix

case y’s are arbitrary complex dimensionless parameters. The primed, 5 and 45 subscript
modular forms indicate di!erent y complex parameter but the same flavour structure.

The symmetric up-quark mass matrix originates from the TTHu couplings in Eq. 23,

Mu =




0 yu12ω̃

3
T,F e

iωu1 yu13ω̃
2
T

yu12ω̃
3
T,F e

iωu1 yu22ω̃
2
T yu23ω̃T e

iωu2

yu13ω̃
2
T yu23ω̃T e

iωu2 yu33



 vu, (25)

where each y is now an arbitrary real dimensionless constant. Phases can be redefined
so that there are 5 real parameters and 2 phases. This yields the approximate up-type
quark mass hierarchies, mu → ω̃4T,Fvu, mc → ω̃2Tvu, mt → vu.

The H45 breaks the charged lepton and down quark degeneracy. The Y5e,5µ,5ε , Y45e,45µ,45ε

and primed ones have the same modular form structure but di!erent overall complex
constants multiplying them. Therefore both are diagonal mass matrices but the actual
masses are determined after Higgs mixing [40]§,

ye11vd = y5evd5 ↑ 3y5evd45, yd11vd = y5dvd5 + y45dvd45,

ye22vd = y5µvd5 ↑ 3y5µvd45, yd22vd = y5svd5 + y45svd45,

ye33vd = y5εvd5 ↑ 3y5εvd45, yd33vd = y5bvd5 + y45bvd45,

ye21vd = y→5µvd5 ↑ 3y→5µvd45, yd12vd = y→5svd5 + y→45svd45,

ye32vd = y→5εvd5 ↑ 3y→5εvd45, yd23vd = y→5bvd5 + y→45bvd45,

ye31vd = y→→5εvd5 ↑ 3y→→5εvd45, yd13vd = y→→5bvd5 + y→→45bvd45,

(26)

where vd is an e!ective down Higgs VEV.
The triangular down-quark and charged lepton mass matrices originate from the

FTHd couplings in Eq. 23,

Md =




yd11ω̃3F yd12ω̃2F ω̃T yd13ω̃F ω̃2T

0 yd22ω̃2F yd23ω̃F ω̃T eiωd2

0 0 yd33ω̃F



 vd, (27)

Me =




ye11ω̃3F 0 0

ye21ω̃2F ω̃T ye22ω̃2F 0

ye31ω̃F ω̃2T ye32ω̃F ω̃T eiωd1 ye33ω̃F



 vd, (28)

where each matrix has 6 real parameters and 1 phase. These yield the the approximate
down-type quark and charged lepton mass hierarchies, md → me → ω̃3Fvd, and ms → mµ →
ω̃2Fvd, and mb → mε → ω̃Fvd. We have written each mass matrix in LR convention so that,
upon diagonalisation, Md will yield left-handed mixing angles arising from the upper-right

§The presence of both H45 and H45 allows the mass term M45H45H45 which ensures that all the
components of these Higgs fields are heavy, apart from the Higgs doublet component of H45 that mixes
with the Higgs doublet contained in H5d, to produce the light linear combination identified as the physical
Higgs doublet Hd. In this way, the Higgs doublet-triplet splitting mechanism discussed earlier is su!cient
to ensure one light physical combination of down-type Higgs doublets which we identify as Hd.

10

case y’s are arbitrary complex dimensionless parameters. The primed, 5 and 45 subscript
modular forms indicate di!erent y complex parameter but the same flavour structure.

The symmetric up-quark mass matrix originates from the TTHu couplings in Eq. 23,

Mu =




0 yu12ω̃

3
T,F e

iωu1 yu13ω̃
2
T

yu12ω̃
3
T,F e

iωu1 yu22ω̃
2
T yu23ω̃T e

iωu2

yu13ω̃
2
T yu23ω̃T e

iωu2 yu33



 vu, (25)

where each y is now an arbitrary real dimensionless constant. Phases can be redefined
so that there are 5 real parameters and 2 phases. This yields the approximate up-type
quark mass hierarchies, mu → ω̃4T,Fvu, mc → ω̃2Tvu, mt → vu.

The H45 breaks the charged lepton and down quark degeneracy. The Y5e,5µ,5ε , Y45e,45µ,45ε

and primed ones have the same modular form structure but di!erent overall complex
constants multiplying them. Therefore both are diagonal mass matrices but the actual
masses are determined after Higgs mixing [40]§,

ye11vd = y5evd5 ↑ 3y5evd45, yd11vd = y5dvd5 + y45dvd45,

ye22vd = y5µvd5 ↑ 3y5µvd45, yd22vd = y5svd5 + y45svd45,

ye33vd = y5εvd5 ↑ 3y5εvd45, yd33vd = y5bvd5 + y45bvd45,

ye21vd = y→5µvd5 ↑ 3y→5µvd45, yd12vd = y→5svd5 + y→45svd45,

ye32vd = y→5εvd5 ↑ 3y→5εvd45, yd23vd = y→5bvd5 + y→45bvd45,

ye31vd = y→→5εvd5 ↑ 3y→→5εvd45, yd13vd = y→→5bvd5 + y→→45bvd45,

(26)

where vd is an e!ective down Higgs VEV.
The triangular down-quark and charged lepton mass matrices originate from the

FTHd couplings in Eq. 23,

Md =




yd11ω̃3F yd12ω̃2F ω̃T yd13ω̃F ω̃2T

0 yd22ω̃2F yd23ω̃F ω̃T eiωd2

0 0 yd33ω̃F



 vd, (27)

Me =




ye11ω̃3F 0 0

ye21ω̃2F ω̃T ye22ω̃2F 0

ye31ω̃F ω̃2T ye32ω̃F ω̃T eiωd1 ye33ω̃F



 vd, (28)

where each matrix has 6 real parameters and 1 phase. These yield the the approximate
down-type quark and charged lepton mass hierarchies, md → me → ω̃3Fvd, and ms → mµ →
ω̃2Fvd, and mb → mε → ω̃Fvd. We have written each mass matrix in LR convention so that,
upon diagonalisation, Md will yield left-handed mixing angles arising from the upper-right

§The presence of both H45 and H45 allows the mass term M45H45H45 which ensures that all the
components of these Higgs fields are heavy, apart from the Higgs doublet component of H45 that mixes
with the Higgs doublet contained in H5d, to produce the light linear combination identified as the physical
Higgs doublet Hd. In this way, the Higgs doublet-triplet splitting mechanism discussed earlier is su!cient
to ensure one light physical combination of down-type Higgs doublets which we identify as Hd.

10

case y’s are arbitrary complex dimensionless parameters. The primed, 5 and 45 subscript
modular forms indicate di!erent y complex parameter but the same flavour structure.

The symmetric up-quark mass matrix originates from the TTHu couplings in Eq. 23,

Mu =




0 yu12ω̃

3
T,F e

iωu1 yu13ω̃
2
T

yu12ω̃
3
T,F e

iωu1 yu22ω̃
2
T yu23ω̃T e

iωu2

yu13ω̃
2
T yu23ω̃T e

iωu2 yu33



 vu, (25)

where each y is now an arbitrary real dimensionless constant. Phases can be redefined
so that there are 5 real parameters and 2 phases. This yields the approximate up-type
quark mass hierarchies, mu → ω̃4T,Fvu, mc → ω̃2Tvu, mt → vu.

The H45 breaks the charged lepton and down quark degeneracy. The Y5e,5µ,5ε , Y45e,45µ,45ε

and primed ones have the same modular form structure but di!erent overall complex
constants multiplying them. Therefore both are diagonal mass matrices but the actual
masses are determined after Higgs mixing [40]§,

ye11vd = y5evd5 ↑ 3y5evd45, yd11vd = y5dvd5 + y45dvd45,

ye22vd = y5µvd5 ↑ 3y5µvd45, yd22vd = y5svd5 + y45svd45,

ye33vd = y5εvd5 ↑ 3y5εvd45, yd33vd = y5bvd5 + y45bvd45,

ye21vd = y→5µvd5 ↑ 3y→5µvd45, yd12vd = y→5svd5 + y→45svd45,

ye32vd = y→5εvd5 ↑ 3y→5εvd45, yd23vd = y→5bvd5 + y→45bvd45,

ye31vd = y→→5εvd5 ↑ 3y→→5εvd45, yd13vd = y→→5bvd5 + y→→45bvd45,

(26)

where vd is an e!ective down Higgs VEV.
The triangular down-quark and charged lepton mass matrices originate from the

FTHd couplings in Eq. 23,

Md =




yd11ω̃3F yd12ω̃2F ω̃T yd13ω̃F ω̃2T

0 yd22ω̃2F yd23ω̃F ω̃T eiωd2

0 0 yd33ω̃F



 vd, (27)

Me =




ye11ω̃3F 0 0

ye21ω̃2F ω̃T ye22ω̃2F 0

ye31ω̃F ω̃2T ye32ω̃F ω̃T eiωd1 ye33ω̃F



 vd, (28)

where each matrix has 6 real parameters and 1 phase. These yield the the approximate
down-type quark and charged lepton mass hierarchies, md → me → ω̃3Fvd, and ms → mµ →
ω̃2Fvd, and mb → mε → ω̃Fvd. We have written each mass matrix in LR convention so that,
upon diagonalisation, Md will yield left-handed mixing angles arising from the upper-right

§The presence of both H45 and H45 allows the mass term M45H45H45 which ensures that all the
components of these Higgs fields are heavy, apart from the Higgs doublet component of H45 that mixes
with the Higgs doublet contained in H5d, to produce the light linear combination identified as the physical
Higgs doublet Hd. In this way, the Higgs doublet-triplet splitting mechanism discussed earlier is su!cient
to ensure one light physical combination of down-type Higgs doublets which we identify as Hd.

10

case y’s are arbitrary complex dimensionless parameters. The primed, 5 and 45 subscript
modular forms indicate di!erent y complex parameter but the same flavour structure.

The symmetric up-quark mass matrix originates from the TTHu couplings in Eq. 23,

Mu =




0 yu12ω̃

3
T,F e

iωu1 yu13ω̃
2
T

yu12ω̃
3
T,F e

iωu1 yu22ω̃
2
T yu23ω̃T e

iωu2

yu13ω̃
2
T yu23ω̃T e

iωu2 yu33



 vu, (25)

where each y is now an arbitrary real dimensionless constant. Phases can be redefined
so that there are 5 real parameters and 2 phases. This yields the approximate up-type
quark mass hierarchies, mu → ω̃4T,Fvu, mc → ω̃2Tvu, mt → vu.

The H45 breaks the charged lepton and down quark degeneracy. The Y5e,5µ,5ε , Y45e,45µ,45ε

and primed ones have the same modular form structure but di!erent overall complex
constants multiplying them. Therefore both are diagonal mass matrices but the actual
masses are determined after Higgs mixing [40]§,

ye11vd = y5evd5 ↑ 3y5evd45, yd11vd = y5dvd5 + y45dvd45,

ye22vd = y5µvd5 ↑ 3y5µvd45, yd22vd = y5svd5 + y45svd45,

ye33vd = y5εvd5 ↑ 3y5εvd45, yd33vd = y5bvd5 + y45bvd45,

ye21vd = y→5µvd5 ↑ 3y→5µvd45, yd12vd = y→5svd5 + y→45svd45,

ye32vd = y→5εvd5 ↑ 3y→5εvd45, yd23vd = y→5bvd5 + y→45bvd45,

ye31vd = y→→5εvd5 ↑ 3y→→5εvd45, yd13vd = y→→5bvd5 + y→→45bvd45,

(26)

where vd is an e!ective down Higgs VEV.
The triangular down-quark and charged lepton mass matrices originate from the

FTHd couplings in Eq. 23,

Md =




yd11ω̃3F yd12ω̃2F ω̃T yd13ω̃F ω̃2T

0 yd22ω̃2F yd23ω̃F ω̃T eiωd2

0 0 yd33ω̃F



 vd, (27)

Me =




ye11ω̃3F 0 0

ye21ω̃2F ω̃T ye22ω̃2F 0

ye31ω̃F ω̃2T ye32ω̃F ω̃T eiωd1 ye33ω̃F



 vd, (28)

where each matrix has 6 real parameters and 1 phase. These yield the the approximate
down-type quark and charged lepton mass hierarchies, md → me → ω̃3Fvd, and ms → mµ →
ω̃2Fvd, and mb → mε → ω̃Fvd. We have written each mass matrix in LR convention so that,
upon diagonalisation, Md will yield left-handed mixing angles arising from the upper-right

§The presence of both H45 and H45 allows the mass term M45H45H45 which ensures that all the
components of these Higgs fields are heavy, apart from the Higgs doublet component of H45 that mixes
with the Higgs doublet contained in H5d, to produce the light linear combination identified as the physical
Higgs doublet Hd. In this way, the Higgs doublet-triplet splitting mechanism discussed earlier is su!cient
to ensure one light physical combination of down-type Higgs doublets which we identify as Hd.

10

case y’s are arbitrary complex dimensionless parameters. The primed, 5 and 45 subscript
modular forms indicate di!erent y complex parameter but the same flavour structure.

The symmetric up-quark mass matrix originates from the TTHu couplings in Eq. 23,

Mu =




0 yu12ω̃

3
T,F e

iωu1 yu13ω̃
2
T

yu12ω̃
3
T,F e

iωu1 yu22ω̃
2
T yu23ω̃T e

iωu2

yu13ω̃
2
T yu23ω̃T e

iωu2 yu33



 vu, (25)

where each y is now an arbitrary real dimensionless constant. Phases can be redefined
so that there are 5 real parameters and 2 phases. This yields the approximate up-type
quark mass hierarchies, mu → ω̃4T,Fvu, mc → ω̃2Tvu, mt → vu.

The H45 breaks the charged lepton and down quark degeneracy. The Y5e,5µ,5ε , Y45e,45µ,45ε

and primed ones have the same modular form structure but di!erent overall complex
constants multiplying them. Therefore both are diagonal mass matrices but the actual
masses are determined after Higgs mixing [40]§,

ye11vd = y5evd5 ↑ 3y5evd45, yd11vd = y5dvd5 + y45dvd45,

ye22vd = y5µvd5 ↑ 3y5µvd45, yd22vd = y5svd5 + y45svd45,

ye33vd = y5εvd5 ↑ 3y5εvd45, yd33vd = y5bvd5 + y45bvd45,

ye21vd = y→5µvd5 ↑ 3y→5µvd45, yd12vd = y→5svd5 + y→45svd45,

ye32vd = y→5εvd5 ↑ 3y→5εvd45, yd23vd = y→5bvd5 + y→45bvd45,

ye31vd = y→→5εvd5 ↑ 3y→→5εvd45, yd13vd = y→→5bvd5 + y→→45bvd45,

(26)

where vd is an e!ective down Higgs VEV.
The triangular down-quark and charged lepton mass matrices originate from the

FTHd couplings in Eq. 23,

Md =




yd11ω̃3F yd12ω̃2F ω̃T yd13ω̃F ω̃2T

0 yd22ω̃2F yd23ω̃F ω̃T eiωd2

0 0 yd33ω̃F



 vd, (27)

Me =




ye11ω̃3F 0 0

ye21ω̃2F ω̃T ye22ω̃2F 0

ye31ω̃F ω̃2T ye32ω̃F ω̃T eiωd1 ye33ω̃F



 vd, (28)

where each matrix has 6 real parameters and 1 phase. These yield the the approximate
down-type quark and charged lepton mass hierarchies, md → me → ω̃3Fvd, and ms → mµ →
ω̃2Fvd, and mb → mε → ω̃Fvd. We have written each mass matrix in LR convention so that,
upon diagonalisation, Md will yield left-handed mixing angles arising from the upper-right

§The presence of both H45 and H45 allows the mass term M45H45H45 which ensures that all the
components of these Higgs fields are heavy, apart from the Higgs doublet component of H45 that mixes
with the Higgs doublet contained in H5d, to produce the light linear combination identified as the physical
Higgs doublet Hd. In this way, the Higgs doublet-triplet splitting mechanism discussed earlier is su!cient
to ensure one light physical combination of down-type Higgs doublets which we identify as Hd.

10

CKM mixing from Md, Mu

Triangular form    
No PMNS 

mixing from Me

LR convention

I.de Medeiros Varzielas, S.F.K., M.Levy, 2211.00654, 2309.15901 De Anda, S.F.K. 2312.09010, 2304.05958

Seesaw 
mechanism

(See Talk by Ivo)



all coupling constants are of order one. Thus the parameters ↵d1,d2 and ↵0
d1,d2 should be

relatively large to reproduce the correct size of Cabibbo angle. This point is confirmed
in the numerical calculation, as shown in section 5.

4.3.3 Neutrino Mass and Mixing

In the neutrino sector we have two right-handed neutrinos in S4 representations Na ⇠ 10

and Ns ⇠ 1, where the respective Dirac Yukawa couplings are determined by the fixed
points from Eq. (23) and table 2:

Y (6)
30 /

0

@
0
1
�1

1

A , Y (2)
3 /

0

@
1

1 +
p
6

1�
p
6

1

A (37)

We note that, in the CSD(n) model, the two columns of the Dirac mass matrix are pro-
portional to (0, 1,�1) and (1, n, 2� n) respectively, [14, 15, 19, 102], so this corresponds
approximately to the case CSD(3.45) [40]. By comparison, the predictive Littlest Seesaw
model and its variant are the cases of n = 3 [14–18], n = 4 [19–21,103] and n = �1/2 [102]
respectively. It has been shown that the CSD(n) model can be reproduced from the S4

flavour symmetry in the tri-direct CP approach [104, 105], where the parameter n is
constrained to be a generic real parameter by the S4 flavour symmetry and CP sym-
metry [104, 105]. Here the modular symmetry can fix the alignment parameter n to be
1 +

p
6 ⇡ 3.45. This is a remarkable advantage of modular symmetry with respect to

discrete flavour symmetry.

The most important operators for the neutrino masses are
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The neutrino Dirac mass matrix and the Majorana mass matrix of right-handed neutrinos
are,
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⇣
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where the Clebsch-Gordan coefficients in both contractions are omitted for notation sim-
plicity, Y (8)

1 and Y (6)
10 are absorbed into M (8)

1 and M (6)
10 respectively. The heavy Majorana

mass matrix is approximately diagonal to excellent approximation. The effective light
neutrino mass matrix is given by the seesaw formula m⌫ = �mDm
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where the two terms are equally suppressed by �̃2. From Eq. (40), we find the neutrino
mass matrix is predicted to be

m⌫ = ma
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all coupling constants are of order one. Thus the parameters ↵d1,d2 and ↵0
d1,d2 should be

relatively large to reproduce the correct size of Cabibbo angle. This point is confirmed
in the numerical calculation, as shown in section 5.

4.3.3 Neutrino Mass and Mixing

In the neutrino sector we have two right-handed neutrinos in S4 representations Na ⇠ 10

and Ns ⇠ 1, where the respective Dirac Yukawa couplings are determined by the fixed
points from Eq. (23) and table 2:
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model and its variant are the cases of n = 3 [14–18], n = 4 [19–21,103] and n = �1/2 [102]
respectively. It has been shown that the CSD(n) model can be reproduced from the S4

flavour symmetry in the tri-direct CP approach [104, 105], where the parameter n is
constrained to be a generic real parameter by the S4 flavour symmetry and CP sym-
metry [104, 105]. Here the modular symmetry can fix the alignment parameter n to be
1 +
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6 ⇡ 3.45. This is a remarkable advantage of modular symmetry with respect to

discrete flavour symmetry.
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Figure 1: The contour plots of sin2 ✓l12, sin
2
✓
l
13, sin

2
✓
l
23 and m

2
2/m

2
3 in the plane r = ms/ma

versus ⌘/⇡. The cyan, red, green and blue areas denote the 3� regions of sin2 ✓l12, sin
2
✓
l
13,

sin2 ✓l23 and m
2
2/m

2
3 respectively. The solid lines denote the 3 sigma upper bounds, the thin

lines denote the 3 sigma lower bounds and the dashed lines refer to their best fit values [107].
The panel (a) is for CSD(3.45) without charged lepton correction [40]. For the panel (b), the
input parameters (except ms, ma and ⌘) are taken to be the best fit values shown in table 4.
The panels (c) and (d) show two very similar plots for another two local minima of �2, namely
the first and second local minima, respectively, discussed in Appendix B.

do not work if strictly imposed.

In the considered model we have included a single weighton field to ameliorate the large
hierarchies in the charged fermion mass matrices, although some tuning will remain at
the per cent level. The best fit to the parameters of the model indicates that the largest
charged lepton corrections to CSD(3.45) mixing are of order the Cabibbo angle, but
occurring in both the (1,2) and (2,3) entries of the charged lepton mixing matrix. Nev-
ertheless the model leads to robust predictions for lepton mixing parameters, which we
have compared to those from the pure CSD(3.45) model with no charged lepton cor-
rections. We have performed a numerical analysis, showing quark and lepton mass and
mixing correlations around the best fit points. Since the lightest neutrino mass is zero,
and the phases are predicted, the neutrinoless double beta decay parameter is found to
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ms
ma

3�

De Anda, SFK 2304.05958

Three parameter fit

SC
4 becomes standard flavour symmetry while SA,B

4 remain as modular symmetries, thus
having a trivial (where they all commute) eclectic symmetry. With this assumption the
lepton doublet is no longer a modular form and there are no bk Kähler terms. The model
would require an extra Z3 shaping symmetry which would differentiate the three charged
lepton singlets. Furthermore the modular forms Ye,µ,⌧ would not be available and they
would have to be replaced by 3 flavon S4 triplets �e,µ,⌧ whose VEV has the same desired
alignments. This could be easily achieved through the orbifold boundary conditions and a
very simple alignment superpotential [29]. With these changes, the flavour structure and
all the phenomenological implications would be exactly the same as the model described
in the previous subsection. Thus the same flavour structure CSD(1�

p
6) can be achieved

easily through modular or eclectic S3
4 symmetry.

4.2 Numerical Fit

without SK atmospheric data with SK atmospheric data
NuFit ±1� Model NuFit ±1� Model

✓12/
� 33.41+0.75

�0.72 34.34 33.41+0.75
�0.72 34.30

✓23/
� 49.1+1.0

�1.3 48.31 42.2+1.1
�0.9 46.98

✓13/
� 8.54+0.11

�0.12 8.54 8.58+0.11
�0.11 8.75

�/
� 197+42

�25 284 232+36
�26 278

�m
2
21

10�5 eV2 7.41+0.21
�0.20 7.42 7.41+0.21

�0.20 7.13

�m
2
3`

10�3 eV2 +2.511+0.028
�0.021 2.510 +2.507+0.026

�0.027 2.520

ma

10�3 eV
31.47 30.50

mb

10�3 eV
2.28 2.32

⌘/⇡ 1.24 1.26

�
2 6.3 26.61

Table 5: Normal Ordering NuFit 5.2 values [35, 36] for the neutrino observables, and the best fit point
from the model. The best fit is for NuFit data without SK atmospheric data where the atmospheric
angle ✓23 is in the second octant, as preferred by the model.

With the CSD(1 �
p
6) structure, we can achieve the fits shown in Table 5. Note

that in both best fits, there is a unique physical phase ⌘ ⇡ 5⇡/4 which could point to a
geometrical origin.

To quantify how good the fit is we use

�2 =
X

i

✓
xexp
i � xmodel

i

�exp
i

◆2

, (42)
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G.J.Ding, S.F.K. and C.Y.Yao, 2103.16311

G.J.Ding, S.F.K, X.G.Liu and J.N.Lu,1910.03460

Seesaw mechanism gives 3 parameter neutrino mass matrix

3 input 
parameters

6 measured 
observables

“Littlest Seesaw”
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Kähler problem in modular symmetry
Kähler potential potential not fixed by modular flavor symmetry 

minimal Kähler potential non-canonical terms

Modifying Kähler metric and kinetic terms

Many non-canonical terms on the same footing as the minimal Kähler potential 
are allowed by modular symmetry

 Back to canonical Basis ➜ sizable 
corrections to mixing parameters

[Chen, Ramon-Sanchez, Ratz 1909.06910]

Canonical normalisation can lead to sizeable corrections

Unconstrained Kahler potential

unsuppressed since  is dimensionlessτ
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Kähler problem in modular symmetry
Kähler potential potential not fixed by modular flavor symmetry 

minimal Kähler potential non-canonical terms

Modifying Kähler metric and kinetic terms

Many non-canonical terms on the same footing as the minimal Kähler potential 
are allowed by modular symmetry

 Back to canonical Basis ➜ sizable 
corrections to mixing parameters

[Chen, Ramon-Sanchez, Ratz 1909.06910]

One solution is to introduce a flavour symmetry as well as modular symmetry, 
leading to so called “Eclectic Flavour Symmetry’’

21

Solution to Kähler problem:  eclectic flavor groups
 Modular flavor symmetries from top-down approach (orbifold string 

compactification) gives 
 Normal symmetries of extra dimensions ➜traditional flavor symmetries

 String duality transformations ➜modular flavor symmetries
 the multiplicative closure of these groups is defined as the eclectic 

flavor group

[Nilles et al, 2001.01736; 2004.05200]

Traditional flavor symmetry vs. modular symmetry transformations 
eclectic traditional modularG G G 

flavor symmetry transformations leave 𝜏 invariant 

modular:

flavor:

The interplay of traditional flavor symmetry an modular symmetry can
restrict the allowed Kähler potential

[see talk by Hans Nilles]

See talk by A.Trautner, 2505.00099

In general the resolution to this may 
come from the top-down approach



Conclusions

Flavour problem of Standard Model remains 
Symmetry may guide us - GUTs and Flavour Symmetry 
Modular Family Symmetry mo;vated by String theory  
Modulus field  represents a minimal “flavon” scenario 
Yukawa matrices expressed in terms of the modulus field 
Introduced “weighton” to explain fermion mass hierarchies 
10d model gives 3 moduli fields stabilised at fixed points 
SU(5) Orbifold GUT in 10d leads to predic;ve LS model 
Unconstrained Kahler poten;al calls for new ingredients

τ


