

Mapping the theory space of the flavor puzzle: the Froggatt-Nielsen case

Claudia Cornella || CERN

Based on: 2306.08026 with D. Curtin, E. Neil, J. Thompson 2501.00629, with D. Curtin, G. Krnjaic, M. Mellors

Photo: Santa Maria in Trastevere © F.Sansoni

Flavor puzzle = a series of puzzling observations:

3 copies of each species, identical from the point of view of gauge interactions, yet:

- 12 orders of magnitude from neutrinos to the top mass
- mixing looks very different in lepton vs quark sector

All *technically natural*, still suggestive of an organising principle beyond the SM.

Flavor puzzle = a series of puzzling observations:

3 copies of each species, identical from the point of view of gauge interactions, yet:

- 12 orders of magnitude from neutrinos to the top mass
- mixing looks very different in lepton vs quark sector

All *technically natural*, still suggestive of an organising principle beyond the SM.

Common approach: describe in terms of a symmetry and its breaking

- "Deeper" origin can vary:
 - flavor-dependent gauge interactions
 - geometry, e.g. localisation of fermions in extra dimension
- Many examples: discrete, U(2)ⁿ from flavor deconstruction, Froggatt-Nielsen

Ingredients:

• a symmetry

Ingredients:

- a symmetry
- a breaking pattern

Ingredients:

- a symmetry
- a breaking pattern
- some coefficients c_{ii}

 $\sim \mathcal{O}(1)$ if we want the pattern to come only from the symmetry ansatz

Ingredients:

- a symmetry
- a breaking pattern
- some coefficients c_{ii}

 $\sim \mathcal{O}(1)$ if we want the pattern to come only from the symmetry ansatz

When do we declare this "a good ansatz"?

Ingredients:

- a symmetry
- a breaking pattern
- some coefficients c_{ii}

 $\sim \mathcal{O}(1)$ if we want the pattern to come only from the symmetry ansatz

When do we declare this "a good ansatz"?

- When it works "locally": $\exists \underline{a} \text{ set of } c_{ij} \sim \mathcal{O}(1)$ that fits data
- When it works "globally": generic $c_{ij} \sim \mathcal{O}(1)$ reproduces data

Ingredients:

- a symmetry
- a breaking pattern
- some coefficients c_{ii}

 $\sim \mathcal{O}(1)$ if we want the pattern to come only from the symmetry ansatz

When do we declare this "a good ansatz"?

- When it works "locally": $\exists \underline{a} \text{ set of } c_{ii} \sim \mathcal{O}(1)$ that fits data
- When it works "globally": generic $c_{ii} \sim \mathcal{O}(1)$ reproduces data

We'll use the global definition to explore which FN ansätze are good solutions to the quark & lepton flavor puzzle(s)

A quick review of the Froggatt-Nielsen mechanism

(in its simplest version)

• The SM is extended by a U(1)_x symmetry, spontaneously broken by a scalar ϕ , the *flavon*, with $\epsilon = \frac{\langle \phi \rangle}{\Lambda_F} \ll 1$

Fermions carry generation-dependent charges under U(1)_X

A quick review of the Froggatt-Nielsen mechanism

(in its simplest version)

- The SM is extended by a U(1)_x symmetry, spontaneously broken by a scalar ϕ , the *flavon*, with $\epsilon = \frac{\langle \phi \rangle}{\Lambda_F} \ll 1$ Fermions carry generation-dependent charges under U(1)_x
- Yukawas arise from higher-dim. operators suppressed by powers of ϵ

$$L_{Y} \supset -c_{ij}^{u} \epsilon^{|X_{Q_{i}} - X_{u_{j}}|} \bar{Q}_{i} \tilde{H} u_{j} - c_{ij}^{d} \epsilon^{|X_{Q_{i}} - X_{d_{j}}|} \bar{Q}_{i} H d_{j}$$

Charge assignments or *textures* usually determined heuristically: set $\epsilon \sim \lambda_c \sim 0.2$, pick charges to match rough scaling of masses & mixings.

A quick review of the Froggatt-Nielsen mechanism

(in its simplest version)

- The SM is extended by a U(1)_x symmetry, spontaneously broken by a scalar ϕ , the *flavon*, with $\epsilon = \frac{\langle \phi \rangle}{\Lambda_F} \ll 1$ Fermions carry generation-dependent charges under U(1)_x
- Yukawas arise from higher-dim. operators suppressed by powers of ϵ

$$L_{Y} \supset -c_{ij}^{u} \epsilon^{|X_{Q_{i}} - X_{u_{j}}|} \bar{Q}_{i} \tilde{H} u_{j} - c_{ij}^{d} \epsilon^{|X_{Q_{i}} - X_{d_{j}}|} \bar{Q}_{i} H d_{j}$$

Charge assignments or *textures* usually determined heuristically: set $\epsilon \sim \lambda_c \sim 0.2$, pick charges to match rough scaling of masses & mixings.

• The same selection rules hold for other higher-dimensional operators

$$\frac{c_{ijkl}}{\Lambda^2} \left(\bar{\psi}_i \psi_j \right) \left(\bar{\psi}_k \psi_l \right) \epsilon^{n_{ijkl}}$$
$$n_{ijkl} \equiv |X_{\psi_i} - X_{\psi_j}| + X_{\psi_k} - X_{\psi_l}$$

 \Rightarrow predictions for flavor-violating processes bear the fingerprint of textures!

What we want to do

• Define a notion of <u>global</u> goodness for a given texture

[we know one can "always" fit almost any FN model to the SM, but that's not the point;The model should 'want' to look like the SM with 'O(1)' parameters]

- Use it to rank textures for quarks & leptons [separately]
- Identify predictions across viable textures
- *Caveat:* here the setup is FN, but the idea should generalize to other symmetrybased solutions to the flavor puzzle

What we want to do

• Define a notion of <u>global</u> goodness for a given texture

[we know one can "always" fit almost any FN model to the SM, but that's not the point;The model should 'want' to look like the SM with 'O(1)' parameters]

- Use it to rank textures for quarks & leptons [separately]
- Identify predictions across viable textures

Caveat: here the setup is FN, but the idea should generalize to other symmetrybased solutions to the flavor puzzle

Previous works have tackled FN textures from various angles, e.g.

- Bayesian analysis of specific textures: Altarelli, Feruglio, Masina [0210342, 1207.0587]
- Finding "locally" good textures with small charges: Fedele, Mastrodii, Valli [2009.05587]
- Leptonic FN + CPV in MSSM Aloni et al. [2104.02679]
- coincidentally with our lepton paper, Ibe, Shirai, Watanabe [2412.19484] performed a Bayesian scan very similar in spirit to our work

For a given FN setup (quarks, leptons, both...)

• Generate all *inequivalent* textures for fermions up to some $|X_f|_{max}$

For a given FN setup (quarks, leptons, both...)

- Generate all *inequivalent* textures for fermions up to some $|X_f|_{max}$
- For each texture, generate 1000s of individual models by randomly sampling the lacksquarecoefficients in the Yukawa couplings from an "O(1)" distribution

$$C_{ij}^{u} \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{u_j}|} \bar{Q}_i \tilde{H} u_j$$

For each choice of coefficients:

- compute masses and mixings 0
- compute masses and mixings quantify how well they reproduce data via $\delta_{\max} \equiv \max_{\mathcal{O}} \left| \frac{\mathcal{O}_{FN}}{\mathcal{O}_{exp}}, \frac{\mathcal{O}_{exp}}{\mathcal{O}_{FN}} \right|$ 0

 $\delta_{\rm max} = 3 \rightarrow \,$ at worst all obs. deviate from exp values by 3x

For a given FN setup (quarks, leptons, both...)

- Generate all *inequivalent* textures for fermions up to some $|X_f|_{max}$
- For each texture, generate 1000s of individual models by randomly sampling the coefficients in the Yukawa couplings from an "O(1)" distribution

$$C_{ij}^{u} \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{u_j}|} \bar{Q}_i \tilde{H} u_j$$

For each choice of coefficients:

- compute masses and mixings 0
- compute masses and mixings quantify how well they reproduce data via $\delta_{\max} \equiv \max_{\mathcal{O}} \left| \frac{\mathcal{O}_{FN}}{\mathcal{O}_{exp}}, \frac{\mathcal{O}_{exp}}{\mathcal{O}_{FN}} \right|$ 0

 $\delta_{\rm max}=3$ ightarrow at worst all obs. deviate from exp values by 3x

• Define: $F_a \equiv$ fraction of models $|\delta_{\max} < a$

 F_a estimates "how much" of the parameter space is data-like for a given texture $F_2 = 0.5 \rightarrow$ half of models are within a factor 2 from data

Rank textures by F_2 [or smaller deviations, if statistics permits]

15%93% $X_Q = \{3, 2, 0\}$ $X_u = \{-4, -2, 0\}$ $X_Q = \{1, 1, 0\}$ 67% 0.09% 15% 2.7%0% $X_u = \{-2, 0, 0\}$ 10% $X_d = \{-2, -2, -2\}$ $X_d = \{-3, -3, -3\}$ 10%5%5% δ_{\max}^{5} 23 5 $\overline{7}$ 10 20 30 50100 20 10 30 1 23 71 $\delta_{
m max}$

Example: distribution of $\delta_{\rm max}$ for a "good" and a "bad" texture

[Obviously $F_a \to 0$ as $a \to 1$, but top charge assignments tend to give $F_5 \sim 50 \%$, $F_2 \sim \text{few \%}$]

F_a as a global "goodness" criterium

a texture is globally good at reproducing masses & mixings \Leftrightarrow it has a high F_a

Makes intuitive sense, but is this a **robust** measure?

F_a as a global "goodness" criterium

a texture is globally good at reproducing masses & mixings \Leftrightarrow it has a high F_a

Makes intuitive sense, but is this a **robust** measure?

- ✓ Rankings based on F_a are stable across priors to sample O(1) coefficients
- ✓ A "high" F_5 (50%) implies "high" F_2 (few %)
 - useful in practice: trying ~ 10 models often gives a rough idea of quality
- ✓ For models with $\delta_{\text{max}} \sim 1$, a 10% jiggling of the coefficients leads to good (i.e. good χ^2) and "natural" fits to data

F_a as a global "goodness" criterium

a texture is globally good at reproducing masses & mixings \Leftrightarrow it has a high F_a

Makes intuitive sense, but is this a **robust** measure?

- ✓ Rankings based on F_a are stable across priors to sample O(1) coefficients
- ✓ A "high" F_5 (50%) implies "high" F_2 (few %)
 - useful in practice: trying ~ 10 models often gives a rough idea of quality
- ✓ For models with $\delta_{\text{max}} \sim 1$, a 10% jiggling of the coefficients leads to good (i.e. good χ^2) and "natural" fits to data in which sense?

What is a "natural fit"?

1. It should involve only O(1) coefficients -i.e. reproduce masses and mixings due to FN charges & ϵ , without relying on accidental hierarchies in the c_i

[Quantitatively, given prior for selecting a single coefficient, you can exactly define how unlikely a given fit's max coefficient/min coefficient) ratio is]

What is a "natural fit"?

1. It should involve only O(1) coefficients -i.e. reproduce masses and mixings due to FN charges & ϵ , without relying on accidental hierarchies in the c_i

[Quantitatively, given prior for selecting a single coefficient, you can exactly define how unlikely a given fit's max coefficient/min coefficient) ratio is]

2. It should be collectively untuned, i.e. stable under collective deformations of the c_k

A standard approach is to use the Barbieri-Giudice tuning measure:

$$\Delta_{BG}^{K} = \max_{k} \left| \frac{\partial \log \mathcal{O}_{K}}{\partial \log c_{k}} \right| \Rightarrow \Delta_{BG} = \sum_{K} \Delta_{BG}^{K}$$

...but not suitable for models that derive from a UV competition where jiggling one UV parameter will jiggle all the IR coefficients.

Instead:

$$\Delta_{\text{tot}}^{K} = \sqrt{\sum_{s} (\lambda_{s}^{K})^{2}} \quad , \ \lambda_{s}^{K} \in \text{Eig}\left(\frac{\partial^{2} \log \mathcal{O}_{K}}{\partial \log c_{k} \partial \log c_{l}}\right) \implies \Delta_{\text{tot}} = \sum_{K} \Delta_{\text{tot}}^{K}$$

We now have, for a given type of FN model, a way of ranking charge assignments by how data-like they want to be.

Next: interrogate the "top" textures for their predictions (e.g. for flavor-violating processes)

- $^\circ\,$ find an ensemble of "natural" fits starting from the coefficient choices with small $\delta_{
 m max}$
- for each fit, generate random O(1) coefficients for SMEFT operators
- get distributions of predictions

Setup
$$L_Y \supset -c_{ij}^u \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{u_j}|} \bar{Q}_i \tilde{H} u_j - c_{ij}^d \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{d_j}|} \bar{Q}_i H d_j$$

- ° assume $X_H = 0$ [the $X_H \neq 0$ case can always be mapped to the $X_H = 0$ one]
- ° scan all integer $\{X_{Q_i}, X_{u_i}, X_{d_i}\}_{i=1,2,3}$ textures with $|X|_{max} = 4$
- compare to quark masses, mixings, Jarlskog

Setup
$$L_Y \supset -c_{ij}^u \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{u_j}|} \bar{Q}_i \tilde{H} u_j - c_{ij}^d \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{d_j}|} \bar{Q}_i H d_j$$

° assume $X_H = 0$ [the $X_H \neq 0$ case can always be mapped to the $X_H = 0$ one]

- ° scan all integer $\{X_{Q_i}, X_{u_i}, X_{d_i}\}_{i=1,2,3}$ textures with $|X|_{max} = 4$
- compare to quark masses, mixings, Jarlskog

Phenomenologically viable textures for $|X|_{max} = 4$

Num.	X_{Q_1}	X_{Q_2}	X_{u_1}	X_{u_2}	X_{d_1}	X_{d_2}	X_{d_3}	$\left \mathcal{F}_{2}\left(\% ight) ight $	$\left \mathcal{F}_{5} \left(\% ight) ight $	ϵ
1	3	2	-4	-2	-3	-3	-3	2.7	67	0.17
2	3	2	-4	-2	-4	-3	-3	2.5	66	0.18
3	3	2	-3	-1	-3	-2	-2	1.9	56	0.12
4	3	2	-4	-1	-3	-3	-3	1.5	65	0.16
5	4	3	-4	-2	-4	-3	-3	1.2	52	0.23
6	3	2	-4	-1	-3	-3	-2	1.1	63	0.15
7	4	2	-4	-2	-4	-3	-3	1.1	47	0.21
8	3	2	-3	-1	-2	-2	-2	0.9	41	0.11
9	3	2	-3	-1	-3	-3	-2	0.9	55	0.14
10	3	2	-4	-2	-3	-3	-2	0.9	59	0.16
11	2	1	-3	-1	-2	-2	-2	0.8	52	0.06
12	4	3	-4	-1	-4	-3	-3	0.8	52	0.22
13	4	3	-4	-2	-4	-4	-3	0.8	50	0.24
14	3	2	-4	-2	-4	-3	-2	0.7	56	0.17
15	4	3	-4	-2	-3	-3	-3	0.7	43	0.22

5	4	3	-4	-2	-4	-3	-3	1.2	52
6	3	2	-4	-1	-3	-3	-2	1.1	63
7	4	2	-4	-2	-4	-3	-3	1.1	47
8	3	2	-3	-1	-2	-2	-2	0.9	41
9	3	2	-3	-1	-3	-3	-2	0.9	55
10	3	2	-4	-2	-3	-3	-2	0.9	59
11	2	1	-3	-1	-2	-2	-2	0.8	52
12	4	3	-4	-1	-4	-3	-3	0.8	52
13	4	3	-4	-2	-4	-4	-3	0.8	50
14	3	2	-4	-2	-4	-3	-2	0.7	56
15	4	3	-4	-2	-3	-3	-3	0.7	43

Setup
$$L_Y \supset -c_{ij}^u \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{u_j}|} \bar{Q}_i \tilde{H} u_j - c_{ij}^d \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{d_j}|} \bar{Q}_i H d_j$$

° assume $X_H = 0$ [the $X_H \neq 0$ case can always be mapped to the $X_H = 0$ one]

- $^{\rm o}\,$ scan all integer $\{X_{Q_i}, X_{u_i}, X_{d_i}\}_{i=1,2,3}\,$ textures with $\left\|X\right\|_{\rm max}=4$
- compare to quark masses, mixings, Jarlskog

Phenomenologically viable textures for $|X|_{max} = 4$

Num.	X_{Q_1}	X_{Q_2}	X_{u_1}	X_{u_2}	X_{d_1}	X_{d_2}	X_{d_3}	$\left \mathcal{F}_{2} \left(\% ight) ight $	$\left \mathcal{F}_{5}\left(\% ight) ight $	ϵ
1	3	2	-4	-2	-3	-3	-3	2.7	67	0.17
2	3	2	-4	-2	-4	-3	-3	2.5	66	0.18
3	3	2	-3	-1	-3	-2	-2	1.9	56	0.12 ←…
4	3	2	-4	-1	-3	-3	-3	1.5	65	0.16
5	4	3	-4	-2	-4	-3	-3	1.2	52	0.23
6	3	2	-4	-1	-3	-3	-2	1.1	63	0.15
7	4	2	-4	-2	-4	-3	-3	1.1	47	0.21
8	3	2	-3	-1	-2	-2	-2	0.9	41	0.11
9	3	2	-3	-1	-3	-3	-2	0.9	55	0.14
10	3	2	-4	-2	-3	-3	-2	0.9	59	0.16
11	2	1	-3	-1	-2	-2	-2	0.8	52	0.06
12	4	3	-4	-1	-4	-3	-3	0.8	52	0.22
13	4	3	-4	-2	-4	-4	-3	0.8	50	0.24
14	3	2	-4	-2	-4	-3	-2	0.7	56	0.17
15	4	3	-4	-2	-3	-3	-3	0.7	43	0.22

Setup
$$L_Y \supset -c_{ij}^u \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{u_j}|} \bar{Q}_i \tilde{H} u_j - c_{ij}^d \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{d_j}|} \bar{Q}_i H d_j$$

° assume $X_H = 0$ [the $X_H \neq 0$ case can always be mapped to the $X_H = 0$ one]

- $^{\rm o}\,$ scan all integer $\{X_{Q_i}, X_{u_i}, X_{d_i}\}_{i=1,2,3}\,$ textures with $\left\|X\right\|_{\rm max}=4$
- compare to quark masses, mixings, Jarlskog

Phenomenologically viable textures for $|X|_{max} = 4$

Num.	X_{Q_1}	X_{Q_2}	X_{u_1}	X_{u_2}	X_{d_1}	X_{d_2}	X_{d_3}	$\left \mathcal{F}_{2} \left(\% ight) ight $	$\left \mathcal{F}_{5}\left(\% ight) ight $	ϵ
1	3	2	-4	-2	-3	-3	-3	2.7	67	0.17
2	3	2	-4	-2	-4	-3	-3	2.5	66	0.18
3	3	2	-3	-1	-3	-2	-2	1.9	56	0.12 <
4	3	2	-4	-1	-3	-3	-3	1.5	65	0.16
5	4	3	-4	-2	-4	-3	-3	1.2	52	0.23
6	3	2	-4	-1	-3	-3	-2	1.1	63	0.15
7	4	2	-4	-2	-4	-3	-3	1.1	47	0.21
8	3	2	-3	-1	-2	-2	-2	0.9	41	0.11
9	3	2	-3	-1	-3	-3	-2	0.9	55	0.14
10	3	2	-4	-2	-3	-3	-2	0.9	59	0.16
11	2	1	-3	-1	-2	-2	-2	0.8	52	0.06
12	4	3	-4	-1	-4	-3	-3	0.8	52	0.22
13	4	3	-4	-2	-4	-4	-3	0.8	50	0.24
14	3	2	-4	-2	-4	-3	-2	0.7	56	0.17
15	4	3	-4	-2	-3	-3	-3	0.7	43	0.22

- we rediscover "classic" textures, but also find many new ones
 [Leurer, Nir, Seiberg]
 - textures with minimal charges (0,1) are at most locally good, never globally

Setup
$$L_Y \supset -c_{ij}^u \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{u_j}|} \bar{Q}_i \tilde{H} u_j - c_{ij}^d \left(\frac{\langle \phi \rangle}{\Lambda_F}\right)^{|X_{Q_i} - X_{d_j}|} \bar{Q}_i H d_j$$

° assume $X_H = 0$ [the $X_H \neq 0$ case can always be mapped to the $X_H = 0$ one]

- $^{\rm o}\,$ scan all integer $\{X_{Q_i}, X_{u_i}, X_{d_i}\}_{i=1,2,3}\,$ textures with $\left\|X\right\|_{\rm max}=4$
- compare to quark masses, mixings, Jarlskog

Phenomenologically viable textures for $|X|_{max} = 4$

Num.	$ X_{Q_1} $	X_{Q_2}	X_{u_1}	X_{u_2}	X_{d_1}	X_{d_2}	X_{d_3}	$\left \mathcal{F}_{2} \left(\% ight) ight $	$\left \mathcal{F}_{5} \left(\% ight) ight $	ϵ
1	3	2	-4	-2	-3	-3	-3	2.7	67	0.17
2	3	2	-4	-2	-4	-3	-3	2.5	66	0.18
3	3	2	-3	-1	-3	-2	-2	1.9	56	0.12 <
4	3	2	-4	-1	-3	-3	-3	1.5	65	0.16
5	4	3	-4	-2	-4	-3	-3	1.2	52	0.23
6	3	2	-4	-1	-3	-3	-2	1.1	63	0.15
7	4	2	-4	-2	-4	-3	-3	1.1	47	0.21
8	3	2	-3	-1	-2	-2	-2	0.9	41	0.11
9	3	2	-3	-1	-3	-3	-2	0.9	55	0.14
10	3	2	-4	-2	-3	-3	-2	0.9	59	0.16
11	2	1	-3	-1	-2	-2	-2	0.8	52	0.06
12	4	3	-4	-1	-4	-3	-3	0.8	52	0.22
13	4	3	-4	-2	-4	-4	-3	0.8	50	0.24
14	3	2	-4	-2	-4	-3	-2	0.7	56	0.17
15	4	3	-4	-2	-3	-3	-3	0.7	43	0.22

- o we rediscover "classic" textures, but also find many new ones
 €------ [Leurer, Nir, Seiberg]
 - textures with minimal charges (0,1) are at most locally good, never globally

 good textures have near degenerate charges in the down sector

Near degeneracy has important consequences.

Near degeneracy has important consequences.

 \Rightarrow hierarchies are explained, but no visible "collider" signal

Near degeneracy has important consequences.

 \Rightarrow hierarchies are explained, but no visible "collider" signal

large right-handed rotations are needed to diagonalize down-type Yukawas

 \rightarrow large FCNCs (of BSM origin)

 \rightarrow K mixing bounds push $\Lambda_F \gtrsim 10^5 \,\text{TeV}$, close to the flavor anarchic case!

Near degeneracy has important consequences.

 \Rightarrow hierarchies are explained, but no visible "collider" signal

 \Rightarrow even with a super-power collider, it would be difficult to distinguish among different good textures because the O(1) contribution from RH currents tends to dominate, "flattening" predictions

Near degeneracy has important consequences.

 \Rightarrow hierarchies are explained, but no visible "collider" signal

 \Rightarrow even with a super-power collider, it would be difficult to distinguish among different good textures because the O(1) contribution from RH currents tends to dominate, "flattening" predictions

Example: predictions for D and Bd mixing for two different textures, fixing $\Lambda_F = \Lambda_K$

Near degeneracy has important consequences.

 \Rightarrow hierarchies are explained, but no visible "collider" signal

 \Rightarrow even with a super-power collider, it would be difficult to distinguish among different good textures because the O(1) contribution from RH currents tends to dominate, "flattening" predictions

Caveat: this does <u>not</u> mean that a "good" low-scale explanation of quark flavor masses and mixings is not possible within FN.

Need to go beyond this simple setup, e.g.

- ° going much higher up in charges ($X_{\rm max} \sim 10$)
- ° add additional discrete symmetries, e.g. some \mathbb{Z}_N that makes Yukawa matrices upper triangular to begin with [see e.g. Greljio, Smolkovič, Valenti,2407.02998]
- have multiple flavons

Leptons show large mixings and mild mass hierarchies [for vs]

– very different from quarks!

Leptons show *large mixings* and *mild mass hierarchies* [for vs] – **very different from quarks**!

More **challenges**:

- ν mass generation mechanism is unknown
- ν masses and PMNS are known less precisely

Leptons show *large mixings* and *mild mass hierarchies* [for ν s] – **very different from quarks**!

More challenges:

- ν mass generation mechanism is unknown
- ν masses and PMNS are known less precisely

...but also **opportunities**:

- ° cLFV especially in the μ − e sector can be tested with extreme precision \Rightarrow potential access even to high-scale flavor models
- Cosmology measurements and $0\nu\beta\beta$ searches are set for big advancements

Setup

For charged leptons, implement FN analogously to quarks.

For neutrinos, two options:

smallness of m_{ν} comes entirely from FN

 $...\Lambda_W$ helps!

Setup

For charged leptons, implement FN analogously to quarks.

For neutrinos, two options:

smallness of m_{ν} comes entirely from FN

 $....\Lambda_W$ helps!

Scan

Scan all integer lepton flavour charges up to $|X_{\ell'}|_{max} = 7(9)$ for Dirac (Majorana) Compare to $\mathcal{O} = \left\{ m_{\ell} , \Delta m_{ij}^2 , |V_{ij}| , \sum m_{\nu} \right\}$ Note: cosmological or lab input has no effect on results

Best textures for Dirac and Majorana neutrinos

		Top Dirac textures									Top Majorana textures										
L_1	L_2	L_3	$ar{e}_1$	\bar{e}_2	\bar{e}_3	N_1	N_2	N_3	ϵ	NO	L_1	L_2	$_2 L$	$_3 \bar{e}$	1	\bar{e}_2	$ar{e}_3$	ϵ	$\log \Lambda_{\!_{V}}$,NO	
6	5	5	-3	-2	0	9	8	8	0.10	96	2	0	-]	. 7	7	6	4	0.24	15	91	
3	3	3	2	-1	-6	9	9	8	0.07	99	5	5	-2	2 7	7.	-2 ·	-3	0.08	12	3	
3	3	3	2	-5	-6	9	9	8	0.07	99	4	4	3	L U	5	2	0	0.23	11	96	
7	7	6	-4	-2	0	9	9	9	0.14	99	7	6	5	7	7	3	0	0.39	11	97	
7	7	6	-4	-3	-1	9	7	7	0.11	99	6	6	5		5	1 .	-1	0.30	10	96	
3	3	3	2	0	-5	9	9	8	0.07	99	7	7	6	2	2	-1 ·	-3	0.23	7.6	96	
3	3	3	2	0	-1	9	9	8	0.07	99	5	5	4	6	3	2	0	0.30	11	96	
6	5	5	-3	-2	0	9	7	7	0.08	97	7	7	6	4	1	0 .	-2	0.30	9	96	
7	3	3	2	0	-5	9	9	9	0.08	93	5	5	-2	2 7	7.	-2 ·	-7	0.08	12	3	% of "models" predicting
6	6	6	-4	-3	-1	9	6	5	0.07	99	1	1	-1	'	7	-5 -	-4	0.18	15	2	normal ordering

Textures reproducing masses and mixings within a factor $\delta_{max} < 5, 2, 1.35$ for $\sim 50\%$, 2-5% and 0.03% of O(1) coefficient choices.

- Dirac requires large FN charges for RH neutrinos.
- FN favours normal ordering. Majorana neutrinos can also have inverted ordering.

0

CLFV predictions from Dirac FN models

Average predicted cLFV decay rates (relative to current constraint) for the 100 top Dirac FN textures

CLFV predictions from Dirac FN models

Average predicted cLFV decay rates (relative to current constraint) for the 100 top Dirac FN textures

CLFV predictions from Dirac FN models

Average predicted cLFV decay rates (relative to current constraint) for the 100 top Dirac FN textures

For this best-case scenario, Dirac FN textures yield **measurable** $\mu \rightarrow 3e$ and μ -e conversion in nuclei, the latter with significant spread between different textures

CLFV predictions from Majorana FN models

Average predicted cLFV decay rates (relative to current constraint) for the 100 top Majorana FN textures

CLFV predictions from Majorana FN models

Average predicted cLFV decay rates (relative to current constraint) for the 100 top Majorana FN textures

 $\mu \to e\gamma, \mu \to 3e$ and $\mu - e$ conversion are the most promising observables with $\Lambda = \Lambda_W$, only some textures give signals measurable in the near future

Discriminating FN textures via cLFV correlation

Correlations between $\mu \rightarrow 3e$ and μ –e conversion for two good Dirac textures

Different textures predict not just different signal strengths, but also different **correlations** between observables.

 \Rightarrow Detecting **multiple** cLFV signals could help **favour or exclude** certain textures.

(for the 100 best Majorana FN textures)

All these textures are either detectable in next-gen $0\nu\beta\beta$ or within a 10x improvement \Rightarrow opens the door to a **complete "near"-future test** of the FN Majorana scenario

Conclusions

- We aimed at giving a bird's eye view of FN models in the quark & lepton sectors, ranking textures by how "generically" they reproduce data with O(1) coefficients and studying their phenomenology.
- In the quark sector:
 - Top textures involve quasi-degenerate RH down-quark charges \Rightarrow large RH rotations, hence large FCNCS, hence $\Lambda_F \gtrsim 10^5 \,\text{TeV}$
 - Direct collider phenomenology unlikely in the minimal setup without additional hypothesis (higher charges, discrete symmetries...)
- In the lepton sector:
 - FN favors normal ordering and predicts interesting cLFV patterns
 - Most top Majorana FN textures predict measurable rates for 0vββ
- These ideas can be extended to other symmetry-based solutions to the flavor puzzle