
Modular-Symmetry Protected Seesaw Mechanism

S. T. Petcov

INFN/SISSA, Trieste, Italy, and

Kavli IPMU, University of Tokyo, Japan

FLASY 2025

The University of Rome III

Rome, Italy

July 1, 2025



The Flavour Problem

Understanding the origins of flavour in both quark and lepton sectors, i.e., of the patterns

of quark masses and mixing, and of the charged lepton and neutrino masses and of

neutrino mixing and of CP violation in the quark and lepton sectors, is one of the most

challenging still unresolved fundamental problem in contemporary particle physics.

“Asked what single mystery, if he could choose, he would like to see solved in his lifetime,

Weinberg doesnt have to think for long: he wants to be able to explain the observed

pattern of quark and lepton masses.”

From Model Physicist, CERN Courier, 13 October 2017.

The renewed attempts to seek new better solutions of the flavour problem than those

already proposed were stimulated primarily by the remarkable progress made in the studies

of neutrino oscillations, which began 25 years ago with the discovery of oscillations of

atmospheric νµ and ν̄µ by SuperKamiokande experiment. This lead, in particular, to the

determination of the pattern of the 3-neutrino mixing, which turn out to consist of two

large and one small mixing angles.

In what follows we will discuss a new approach to the flavour problem within the three

family framework.
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The Lepton Flavour Problem
Consists of three basic elements (sub-problems), namely, understanding:

• Why mνj <<< me,µ,τ ,mq, q = u, c, t, d, s, b (mνj ∼< 0.5 eV, ml ≥ 0.511

MeV, mq ∼> 2 MeV);

• The origins of the patterns of

i) neutrino mixing of 2 large and 1 small angles (θl12 = 33.65◦, θl23 = 47.1◦, θl13 = 8.49◦),
and of ii) ∆m2

ij, i.e., of ∆m2
21 ≪ |∆m2

31|, ∆m2
21/|∆m2

31| ∼= 1/30.

• The origin of the hierarchical pattern of charged lepton masses:

me ≪ mµ ≪ mτ , me/mµ
∼= 1/200, mµ/mτ

∼= 1/17.

The first two added new important aspects to the flavour problem.

mνj <<< me,µ,τ ,mq, q = u, c, t, d, s, b:
seesaw mechanism(s), Weinberg operator, radiative ν mass generation, extra dimensions.

However, additional input (symmetries) needed to explain the pattern of lepton mixing

and to get specific testable predictions.
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The most natural explanation of

•mνj <<< me,µ,τ ,mq, q = u, c, t, d, s, b:

is arguably provided by the seesaw mechanism of
neutrino mass generation in its simplest version -
the type I seesaw.
However, additional input, typically in the form of
symmetries needed to explain the hierarchical pat-
tern of charged lepton masses and the peculiar pat-
tern of neutrino mixing and to get specific testable
predictions.

In the present talk: the additional symmetry - mod-
ular invariance.

The talk is based on the following study:
“Modular-Symmetry Protected Seesaw Mecha-
nism”, A. Granelli, D. Meloni, M. Parriciatu,
J.T. Penedo, S.T.P., arXiv:2505.21405.
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The type I seesaw mechanism: SM + 2 or 3 RH
νs, νκR, κ = 1, . . . , nR.
The Lagrangian we will use has the form:

L ⊃ −(Y ∗
e )αβ ℓαL H̃d eβR− (Y ∗

D)ακ ℓαL H̃u νκR− 1

2
(M∗

R)κρ ν
c
κLνρR+

where we have anticipated the supersymmetric ori-
gin of these terms,
ℓαL ≡ (νTαL, e

T
αL)

T , H̃u,d ≡ iσ2H
∗
u,d; the Higgs doublets

take VEVs < Hu >= (0, vu)T and < Hd >= (vd, 0)
T ,

vu = v sinβ = 0.98v, vd = v cosβ = 0.20v (tanβ = 5),

v = 174 GeV; νcκL = C(νκR)
T , MT

R = MR. After
the EWSB, the following well known neutrino mass
terms are generated:

−Lν =
1

2
VcRMVL+ h.c. ≡ 1

2
VcR





0 mD

mT
D MR



VL+h.c. ,

VL ≡ (νTαL, (ν
c
κL)

T)T ; mD and MR denote the complex
Dirac-type and Majorana-type neutrino mass matri-
ces, respectively, with (mD)ακ = (YD)ακ vu.
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The diagonalisation of Lν: 3 light massive neutrinos
νi, mi . 0.5 eV, i = 1,2,3 + 2 or 3 Heavy Majorana
Neutrinos (Neutral Heavy Leptons (NHL)) Nj, Mj,
j = 1,2 (3).

The effective Majorana mass term for the active
flavour neutrinos is given by:

mν
∼= −mDM

−1
R mT

D = − v2u YDM
−1
R Y TD .

The couplings of the NHL Nis in weak CC and NC
interaction Lagrangian:

R ∼ mDM
−1
R = vu YDM

−1
R , Mj ∼MR .

|mν| ∼ 0.1 eV, |YD| ∼ 1: |MR| ∼ 1014 GeV: high scale
seesaw inspired by GUTs; very difficult to test.

|mν| ∼ 0.1 eV, |MR| ∼ 10 GeV:|YD| ∼ 10−7: low scale

seesaw; with |YD| ∼ 10−7 very difficult to test.
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Low-scale seesaw with enhanced |YD|: seesaw
mechanism “protected” by approximate conserva-
tion of a non-standard lepton charge L′ (Wyler,
Wolfenstein 1982 (see also Leung, STP 1983); Mo-
hapatra, Valle,1986; Malinsky et al., 2005; Sha-
poshnikov, 2006; Kersten, Smirnov, 2007; Gavela
et al., 2009; Ibarra et al., 2010; Antusch et al.,
2015): inverse, linear,..., seesaw scenarios.
Relies on a “small” breaking of L′.

Assume L′ = Le+ Lµ+ Lτ + L1 − L2 is conserved,
L1(2)(ν1(2)R) = 1, 0 for other fields; L′(ν1R) = 1,

L′(ν2R) = −1, L′(ν3R) = 0-decoupled.

In this case |n+ − n−| = 4 − 1 = 3 massless states
(light νi), min(n+, n−) = 1 massive Dirac νs (ν1R and

νc2L ≡ C (ν2R)
T form a Dirac N).

C.N. Leung, S.T.P., PL B125 (1983) 461; S.M. Bilenky, S.T.P., RMP 59 (1987) 671
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If L′ = Le + Lµ + Lτ + L1 − L2 is conserved (U(1)L′
symmetry):
νlL, l = e, µ, τ , can couple only to ν1R (the couplings
to ν2R are forbidden), of the couplings between ν1R
and ν2R only the term M12ν1R ν

c
2L ≡ M12ν1RC(ν2R)

T

is allowed.

The neutrino mass matrix M takes the form:

M →

































0 0 0 y11 vu 0 0

0 0 0 y21 vu 0 0

0 0 0 y31 vu 0 0

y11 vu y21 vu y31 vu 0 M12 0

0 0 0 M12 0 0

0 0 0 0 0 M3

































.

MR - “Pauli-like” structure.
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The L′ conservation can be broken in different ways.
Suppose it is broken by a Majorana mass term of
ν2R: M22 ν2R ν

c
2L.

In this case ν1R and ν2R form a pseudo-Dirac pair
with mass splitting ∆M = (M2 −M1) ∝M22.

L. Wolfenstein, NP B186 (1981) 147; S.T.P., PL B110 (1982) 245

mν
∼= − v2u YDM

−1
R Y TD → − v2u YDM

−1
R M22M

−1
R Y TD .

If M22M
−1
R is sufficiently small we can have |YD| ≫

10−7 for Mj ∼ 10 GeV, and thus much larger R ∼
vu|YD|/MR and possibly observablle effects of the
NHL Ni in low-energy experiments, and testable ver-
sion of the seesaw mechanism.
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L′ conservation can be broken by modifications of
mD or/and MR. Suppose the breaking is charac-
terised by a small parameter ǫ≪ 1 (ǫ ∼ 0.01):

mD = m0 + ǫdm1 ,MR = M0 + ǫrM1 ,M
T
0,1 =M0,1 ,

d, r - the smallest exponents for the powers of ǫ in
the perturbation matrices m1 and M1 (d, r = 1 or 2).

In the symmetric limit m0M
−1
0 mT

0 = 0.

In the case of L′-nonconservation due to ǫdm1 6= 0
and ǫrM1 6= 0 of interest, the mass matrix in the
light flavour neutrino Majorana mass term L ⊃
−1

2(mν)αβν
c
αRνβL+ h.c. is given by:

mν ≃ −mDM
−1
R mT

D

= ǫrm0M
−1
0 M1M

−1
0 mT

0 − (ǫdm1M
−1
0 mT

0 + transpose)

+ O
(

|ǫ|2r, |ǫ|2d, |ǫ|r+d
)

6= 0 .
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The light flavour neutrino mass scale,

mν
i ∼ max(|ǫ|r, |ǫ|d)×y

2v2u
M

,M ∼MR , y−combination of (YD)αj

Thus, for given mi and M ∼MR (M ∼Mj), the neu-

trino Yukawa coupling y2 is enhanced with respect
to the one in the standard seesaw scenario by the
factor (max(|ǫ|r, |ǫ|d))−1:

y2 ∝ (max(|ǫ|r, |ǫ|d))−1 (∼ (102 − 104)) .

This opens up the possibility of testing the low-scale
seesaw scenario by observing the associated heavy
Majorana neutrinos in low-energy experiments.

The diagonalization of the full neutrino mass ma-
trix M gives also 3 heavy Majorana neutrinos Nj,
Mj. Their mass matrix MN is given by MR plus cor-
rections:
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MN ≃MR+
1

2

(

(M∗
R)

−1m
†
DmD + transpose

)

= M0 + ǫrM1 +
1

2

(

δM0 + δMT
0

)

+
1

2

(

ǫd∗ δMa+ ǫd δMb − ǫr∗ δMc+ transpose
)

+O
(

|ǫ|2r, |ǫ|2d, |ǫ|r+d
)

,

δMa ≡ (M∗
0)

−1m
†
1m0 , δMb ≡ (M∗

0)
−1m

†
0m1 ,

δMc ≡ (M∗
0)

−1M∗
1(M

∗
0)

−1m
†
0m0 . (1)

δM0 ≡ (M∗
0)

−1m
†
0m0 does not provide the mass split-

ting ∆M of ν1R and ν2R.
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If M1 is non-zero, it is expected to provide the lead-
ing contribution to the splitting ∆M,

∆M ∼ |ǫ|r ×M1 (M1 ∼M ∼Mj) .

If, instead, M1 = 0 but ǫdm1 6= 0, to leading order

∆M ∼ |ǫ|d × y2v2u
M

∼ mν
i .

Thus, the splitting is proportional to the size of the
light neutrino mass scale mν

i .
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The aim of our study: by using the modular sym-
metry to mimic the conservation and breaking of L′
in the low-scale type I seesaw scenario,
construct minimal phenomenologically viable mod-
els (without flavons), which in addition of explaining
the smallness of neutrinos masses provide:

i) non-fine-tuned description of the hierarchies
of the charged lepton masses (following P.P.
Novichkov et al., arxiv:2102.07488),

ii) prediction for ∆Mjk = (Mj −Mk) of Nj,

iii) enhanced neutrino Yukawa couplings and thus
enhanced Nj CC and NC couplings and thus testable
low-scale seesaw scenarios,

iv) investigate the phenomenological predictions of
the so constructed low-scale seesaw models.
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In our study the role of L′ - the residual symmetry
of the homogeneous modular group Γ ≃ SL(2,Z) and
a chosen finite modular group Γ′

N, N = 2,3,4,5, at
one of their two fixed (symmetric) points in the
fundamental domain D of Γ ≃ SL(2,Z):
• τsym = i∞, invariant under T , preserving Z

T
N ;

• τsym = ω ≡ exp(2πi/3), invariant under ST , preserving Z
ST
3 .

P.P. Novichkov et al., arXiv:1811.04933 and arXiv:2006.03058

τsym - the VEV of the modulus τ , τvev, at the two
fixed points; τ - a complex scalar field acquiring a
VEV; τvev - the only source of breaking of SL(2,Z)
and Γ′

N; Z
T
N or Z

ST
3 - residual symmetries.

The breaking of L′ corresponds to deviation of the
VEV of τ from τsym, τvev 6= τsym,

and thus to the breaking of Z
T
N or Z

ST
3 ;

the L′ breaking small parameter introduced earlier
|ǫ| is related to a sufficiently small deviation of τvev
from τsym.
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In the modular invariance approach to the flavour
problem the same small parameter |ǫ| originating
from τvev having a value in the “vicinity” of τsym
can be used for a no-fine-tuning description of the
charged lepton and quark mass hierarchies

P.P. Novichkov et al., arxiv:2102.07488
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The Modular Invariance Approach to Flavour

S.T. Petcov, FLASY 2025, Rome, 01/07/2025



The Modular-symmetry protected seesaw - many possibilities. One has to be selective.

0. The group Γ′
N must provide a natural non-fine-tuned realisation of me/mτ , mµ/mτ

hierarchies in the vicinity of τsym. The hierarchies reliable only if dictated by the relative

sizes of the different components within the same Y (kY )
r multiplet. This excludes Γ′

N that

do not have triplet irreps.

1. Γ′
N must allow for a non-fine-tuned realisation of the Pauli-like structure of the νR

Majorana mass matrix M0 at the chosen τsym (i.e., in the exact L′ symmetry limit).

Should be achieved without fine-tuning of constant parameters, i.e. should follow from

the irreps furnished by N c
i (νR related) superfields and their weights. Implies N c

i cannot

be singlets.

2. Γ′
N must allow the realisation of the structure of the neutrino Dirac mass matrix m0

at the chosen τsym (i.e., in the exact L′ symmetry limit). This fixes the possible irreps

of the LH lepton doublets Li.
3. After ensuring that 0,1,2 are fulfilled, one has to verify that the chosen irreps and

modular weights allow the non-fine-tuned construction of the me/mτ , mµ/mτ hierarchies

via the residual symmetry approach of arXiv:2102.07488. One can have, e.g., in the

vicinity of the chosen τsym for Me (or MT
e ):

Me ∼









1 1 1
ǫ ǫ ǫ

ǫ2 ǫ2 ǫ2









, mτ(1 : ǫ : ǫ2) ,

with ǫ ∼ 10−2 in order to reproduce the observed hierarchies; each column in Me is a triplet

of modular forms (or a combination thereof).
4. Since n(Y (kY )

r grows linearly with kY , in order to retain only a limited number of free

parameters in the superpotential and to increase the predictive power of the models we

choose to limit the weights kY by the smallest possible value which still yields viable

models: kY ≤ 5 or 6.
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We have explored the first three Γ′
N groups that

furnish triplet representations, i.e. Γ′
3 ≃ T ′, Γ′

4 ≃ S′
4

and Γ′
5 ≃ A′

5.
In the next two tables we list all potential models
passing our criteria, as well as the expected magni-
tude of the HNL splitting ∆M within each model.
We exclude from our list those models where me = 0
and/or M1 = 0.
The surviving models are either
i) based on Γ′

3 ≃ T ′, with τ ≃ {ω, i∞} and leading to
∆M ∼ ǫM or ∆M ∼ mν (shown in the 1st table),
or ii) on Γ′

4 ≃ S′
4, with τ ≃ i∞ and ∆M ∼ ǫ2M (shown

in the 2nd table).
No A′

5-based models are permitted, irrespective of
the upper bound on kY .
Note that, even if a model is included in these ta-
bles, a fit to lepton data is not guaranteed.
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T ′-based symmetry-protected seesaw models passing our criteria at τ ≃ τsym, kY ≤ 6.

τsym L Ec N c ∆M

ω

(1′′,0)⊕ (1,+2)⊕ (1′,+4) (3,+2) (2̂,+1)
∼ ǫM(1,−1)⊕ (1′,+1)⊕ (1′′,+3) (3,+3) (2̂′′,+2)

(1′,−2)⊕ (1′′,0)⊕ (1,+2) (3,+4) (2̂′,+3)

(1′′,+2)⊕ (1,+4)⊕ (1′,+6)
(3,0) (3,0) ∼ mν

(1,+2)⊕ (1′,+4)⊕ (1′′,+6)

(1,+1)⊕ (1′,+3)⊕ (1′′,+5)
(3,+1) (3,+1)

∼ ǫM

(1′,+1)⊕ (1′′,+3)⊕ (1,+5)

(1′,0)⊕ (1′′,+2)⊕ (1,+4)
(3,+2) (3,+2)

(1′′,0)⊕ (1,+2)⊕ (1′,+4)

(1′′,−1)⊕ (1,+1)⊕ (1′,+3)
(3,+3) (3,+3)

(1,−1)⊕ (1′,+1)⊕ (1′′,+3)

i∞

(1′,0)⊕ (1′,+2)⊕ (1′,+4) (3,+2) (2̂′,+1)
∼ ǫM(1′,−1)⊕ (1′,+1)⊕ (1′,+3) (3,+3) (2̂′,+2)

(1′,−2)⊕ (1′,0)⊕ (1′,+2) (3,+4) (2̂′,+3)

(1′,+2)⊕ (1′,+4)⊕ (1′,+6)
(3,0) (3,0) ∼ mν

(1′′,+2)⊕ (1′′,+4)⊕ (1′′,+6)

(1′,+1)⊕ (1′,+3)⊕ (1′,+5)
(3,+1) (3,+1)

∼ ǫM

(1′′,+1)⊕ (1′′,+3)⊕ (1′′,+5)

(1′,0)⊕ (1′,+2)⊕ (1′,+4)
(3,+2) (3,+2)

(1′′,0)⊕ (1′′,+2)⊕ (1′′,+4)

(1′,−1)⊕ (1′,+1)⊕ (1′,+3)
(3,+3) (3,+3)

(1′′,−1)⊕ (1′′,+1)⊕ (1′′,+3)
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S′
4, τ ≃ i∞, kY ≤ 5: L Ec N c ∆M

(3̂,+1)
(1̂′,+3)⊕ (2̂,+3)

(2̂,+1)

∼ ǫ2M

(1,+2)⊕ (1̂′,+3)⊕ (1,+4)

(3̂′,+1)
(1̂,+3)⊕ (2̂,+3)

(1,0)⊕ (1,+2)⊕ (1,+4)

(3̂,+3)
(1̂′,+1)⊕ (2̂,+1)

(1,0)⊕ (1̂′,+1)⊕ (1,+2)

(3̂′,+3)
(1̂,+1)⊕ (2̂,+1)

(1,−2)⊕ (1,0)⊕ (1,+2)

(3̂,0)
(1̂′,+4)⊕ (2̂,+4)

(2̂,+2)

(1,+3)⊕ (1̂′,+4)⊕ (1,+5)

(3̂′,0)
(1̂,+4)⊕ (2̂,+4)

(1,+1)⊕ (1,+3)⊕ (1,+5)

(3̂,+2)
(1̂′,+2)⊕ (2̂,+2)

(1,+1)⊕ (1̂′,+2)⊕ (1,+3)

(3̂′,+2)
(1̂,+2)⊕ (2̂,+2)

(1,−1)⊕ (1,+1)⊕ (1,+3)

(1̂,+3)⊕ (1,+4)⊕ (1̂,+5)
(3,0) (3,0) ∼ mν(1̂′,+3)⊕ (1,+4)⊕ (1̂′,+5)

(1̂,+3)⊕ (1′,+4)⊕ (1̂,+5) (3′,0) (3′,0)

(1̂,+2)⊕ (1,+3)⊕ (1̂,+4)
(3,+1) (3,+1)

∼ ǫ2M

(1̂′,+2)⊕ (1,+3)⊕ (1̂′,+4)

(1̂,+2)⊕ (1′,+3)⊕ (1̂,+4) (3′,+1) (3′,+1)

(1̂,+1)⊕ (1,+2)⊕ (1̂,+3)
(3,+2) (3,+2)

(1̂′,+1)⊕ (1,+2)⊕ (1̂′,+3)

(1̂,+1)⊕ (1′,+2)⊕ (1̂,+3) (3′,+2) (3′,+2)
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In what follows, we focus on four benchmark models that successfully accommodate

charged-lepton masses and oscillation data, and explore their phenomenological predic-

tions.

Model Group τsym L Ec N c ∆M

A
A4 ω

(1,+2)⊕ (1′,+4)⊕ (1′′,+6) (3,0) (3,0) ∼ mν

B (1′,+1)⊕ (1′′,+3)⊕ (1,+5) (3,+1) (3,+1) ∼ ǫM

C
S′
4 i∞ (1̂,+2)⊕ (1,+3)⊕ (1̂,+4)

(3,+1) (3,+1) ∼ ǫ2M
D (1̂′,+2)⊕ (1,+3)⊕ (1̂′,+4)

Summary of benchmark models. For each model, we specify the finite modular group,

the value of the symmetric point, with τ ≃ τsym, the modular assignments of lepton

superfields, with ψ ∼ (r, kψ), and the expected magnitude of the HNL splitting ∆M.

The superpotential in the considered models has the form:

W = (Ye)αβLαE
c
βHd+ (YD)ακLαN

c
κHu+

1

2
(MR)κρN

c
κN

c
ρ .

The constant parameters are included in the Yukawa couplings and Majorana mass ma-

trices Ye, YD and MR.

To increase the predictivity of the models the gCP symmetry is imposed on each of them,

so that all constants in W are real (in a suitable basis, ST = S, T T = T).

P.P. Novichkov et al., arXiv:1905.11970

τvev - the only source of flavour (modular) and CP symmetries breaking.

Under the CP-transformation, τvev → − τ∗vev.
Thus, |τvev| = 1 and |Re(τvev)| = 0,1/2 conserve CP.
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We assume the minimal form for the Khler potential:

K(Φ, Φ̄) = −hΛ2
τ log(−iτ + iτ̄) +

∑

I(−iτ + iτ̄)−kI |ϕI|2 ,
which gives rise to the kinetic terms. Here, h > 0 and Λτ has mass-dimension of one, ϕI
- all the matter superfields.

More general K(τ, τ , ψ, ψ) and the possible consequences they can have for flavour model

building are discussed in

Mu-Chun Chen et al., arXiv:1909.06910 and 2108.02240; Y. Almumin et al.,

arXiv:2102.11286.

After the modulus τ acquires a VEV, ϕI will need to be rescaled as ϕI → (2 Im τvev)
kI/2 ϕI

to yield canonical kinetic terms.

Hence, the original superpotential parameters - hereafter denoted with hats β̂i, are

rescaled by the relevant powers of 2 Im τvev. Further we drop the hats,

β̂i → βi = β̂i(2 Im τvev)
ki, to indicate that this rescaling has already taken place (see the

expressions for Ye and YD).

Finally, we note that, in the presence of reducible representations among different fam-

ilies, each matrix column or row may potentially emerge from different modular form

multiplets, for whose absolute normalization there is no top-down prescription. In order

to safeguard the reliability of the obtained matrix structures, one should employ a defi-

nite prescription to control the relative sizes of these columns or rows. To this end, we

choose to normalize the modular forms according to S.T.P., arXiv:2311.04185.
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Model A: A4, τvev ≃ τsym = ω, Z
ST
3

ǫ(≡ u) = (τ − ω)/(τ − ω2) (P.P. Novichkov et al.,arXiv:2102.07488)

YD =







g1
(

Y (2)
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)

1
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(

Y (2)
3

)

3
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(
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(
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(
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(
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(
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(
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(
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





,

Ye =






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(
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(
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(
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(
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(
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(
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(
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





,

gi and αi are constant superpotential parameters (including the (2 Im τvev)
ki factors).

In the ST -diagonal basis,

MR = Λ

(

1 0 0
0 0 1
0 1 0

)

, Y ′
D ∼

(

ǫ2 1 ǫ
ǫ2 1 ǫ
ǫ2 1 ǫ

)

, Y ′
e ∼
(

1 1 1
ǫ ǫ ǫ
ǫ2 ǫ2 ǫ2

)

, mτ(1 : ǫ : ǫ2) ,

Λ has the dimension of a mass and corresponds to the HNL mass scale.

The relevant flavour-fit parameters are:

Λ > 0 , Re τ ∈ [−1/2,1/2] , Im τ >
√
3/2 ,

g1 ≥ 0 , g2 ≥ 0 , g3,1 ≥ 0 , g3,2 ∈ R ,

α1 ≥ 0 , α2 ∈ R , α3,1 ∈ R , α3,2 ∈ R .

There are, in total, 11 real parameters (including τ) for 15 observables (the 12 lepton

observables + 3 NHL masses Mj).
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Model C: S′
4, τvev ≃ τsym = i∞, ZST4 ; T -diagonal basis.

ǫ = q1/4 ≡ q4 = exp(iπτvev/2) (P.P. Novichkov et al.,arXiv:2102.07488)

MR = Λ







2√
3

(

Y (2)
2

)

1
0 0

0
(

Y (2)
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)

2
− 1√
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(
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3

(

Y (2)
2

)

1

(

Y (2)
2

)

2







∼ Λ

(

1 0 0
0 ǫ2 1
0 1 ǫ2

)

at τvev ≃ τsym .

YD =






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(
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ǫ2 ǫ ǫ3
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)

; m0 − symmetry protected .

Ye =






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Y (3)
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)

1
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(
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3̂′
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α3

(

Y (5)

3̂′
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2







∼

(

ǫ3 ǫ2 1
ǫ2 ǫ ǫ3

ǫ3 ǫ2 1

)

, mτ(1 : ǫ : ǫ3) .

gi and αi are 6 real constant superpotential parameters (including the (2 Im τvev)
ki factors),

Λ has the dimension of a mass and corresponds to the HNL mass scale.

Thus, the relevant parameters are:

Λ > 0 , Re τ ∈ [−1/2,1/2] , Im τ >
√
3/2 ,

g1 ≥ 0 , g2 ≥ 0 , g3 ≥ 0 , α1 ≥ 0 , α2 ∈ R , α3 ∈ R .

There are, in total, 9 real parameters (including τ) for 15 observables.
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Input Data in the Statistical analysis

Observable Best-fit value and 1σ range

me/mµ 0.0048± 0.0002
mµ/mτ 0.0565± 0.0045

NO IO

∆m2
21/(10

−5 eV2) 7.49± 0.19
|∆m2

31(32)
|/(10−3 eV2) 2.513± 0.020 2.484± 0.020

r ≡ ∆m2
21/|∆m2

31(32)
| 0.0298± 0.0008 0.0301± 0.0008

sin2 θ12 0.308± 0.012 0.308± 0.012
sin2 θ13 0.02215± 0.00057 0.02231± 0.00056
sin2 θ23 0.510± 0.025 0.512± 0.024

Best-fit values and 1σ ranges for neutrino oscillation parameters obtained from the NuFit

6.0 global analysis, I. Esteban et al., arXiv:2410.05380, and for charged-lepton mass

ratios given at the scale 2 × 1016 GeV with tanβ ≡ vu/vd
∼= 5. For sin2 θ23, in place of the

non-Gaussian one-dimensional projections, we have considered a Gaussian approximation

based on the 3σ ranges given in arXiv:2410.05380.

We use the standard parametrisation of the PMNS neutrino mixing matrix.
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Viable regions for the modulus VEV τ within the fundamental domain D, for the bench-

mark modular-symmetry-protected models A, B, C and D. Green, yellow and red fills

correspond to the 1σ, 2σ and 3σ credible regions. These regions are symmetric under the

gCP transformation that flips the sign of Re τ. The panel on the right shows a zoomed-in

view near τsym = ω.

In the next Table we show the central values and limits of the 3σ credible regions for the

parameters and observables in each of the benchmark models. Also shown are the Nσ,

the root of a Gaussian χ2, at the point of maximum likelihood.

ǫ = (τ − ω)/(τ − ω2) for cases A and B and ǫ = eπiτvev/2 for cases C and D. In cases with a

nearly massless neutrino, we report the single relevant Majorana phase: α23 ≡ α21 − α31

for NO and α21 for IO.
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Model (ordering) A (NO) B (NO) C (IO) D (NO) D (IO)

Re τ −0.472+0.017
−0.028 −0.475+0.036

−0.024 [−1/2,+1/2] [−1/2,+1/2] [−1/2,+1/2]

Im τ 0.892+0.019
−0.042 0.912+0.015

−0.062 2.55+0.07
−0.04 2.31+0.25

−0.82 1.68+0.37
−0.24

α̂2/α̂1 −0.286+0.674
−0.106 0.590+0.125

−0.083 −0.593+0.102
−0.078 0.31+1.06

−1.05 −0.058+0.348
−0.084

α̂3(,1)/α̂1 −0.160+0.145
−0.481 −0.0502+0.0501

−0.1540 0.0339+0.0026
−0.0024 0.33+2.08

−0.12 −1.38+0.70
−0.85

α̂3,2/α̂1 0.0202+0.0094
−0.0514 −0.0185+0.0037

−0.0062 — 0.20+4.25
−0.79 −0.71+2.30

−2.39

ĝ2/ĝ1 0.712+0.052
−0.076 0.219+0.011

−0.008 0.0799+0.0137
−0.0125 1.56+1.30

−1.19 2.55+1.29
−0.61

ĝ3(,1)/ĝ1 0.491+0.196
−0.461 0.336+0.062

−0.161 13.2+1.1
−1.2 0.129+0.011

−0.073 0.0651+0.0172
−0.0163

ĝ3,2/ĝ1 0.214+0.119
−0.551 0.289+0.018

−0.020 — 0.853+0.077
−0.734 0.798+0.224

−0.231

vd α̂1, GeV 0.594+0.070
−0.121 0.363+0.047

−0.055 0.176+0.005
−0.007 0.0689+0.0132

−0.0427 0.0384+0.0126
−0.0061

v2u ĝ
2
1/Λ, eV 0.0328+0.0145

−0.0070 0.0568+0.0192
−0.0120 0.00032+0.00005

−0.00003 0.0184+0.0069
−0.0066 0.0120+0.0108

−0.0035

me/mµ 0.0048+0.0006
−0.0005 0.0047+0.0006

−0.0005 0.0048+0.0005
−0.0006 0.0047+0.0005

−0.0006 0.0048+0.0005
−0.0006

mµ/mτ 0.0560+0.0115
−0.0114 0.0571+0.0114

−0.0121 0.0577+0.0109
−0.0134 0.0550+0.0129

−0.0105 0.0572+0.0099
−0.0117

sin2 θ12 0.307+0.034
−0.030 0.308+0.032

−0.030 0.312+0.019
−0.018 0.310+0.030

−0.034 0.308+0.032
−0.034

sin2 θ13 0.0220+0.0017
−0.0014 0.0221+0.0014

−0.0014 0.0222+0.0016
−0.0014 0.0222+0.0016

−0.0016 0.0224+0.0013
−0.0015

sin2 θ23 0.506+0.067
−0.065 0.507+0.065

−0.062 0.519+0.049
−0.058 0.512+0.070

−0.065 0.507+0.070
−0.030

m1, eV < 10−4 < 10−4 0.0491+0.0002
−0.0002 0.00267+0.00048

−0.00132 0.0620+0.0025
−0.0032

m3, eV 0.0501+0.0001
−0.0002 0.0501+0.0002

−0.0002 < 10−4 0.0502+0.0002
−0.0002 0.0379+0.0038

−0.0054

Σimi, eV 0.0588+0.0001
−0.0001 0.0588+0.0001

−0.0001 0.0990+0.0003
−0.0004 0.0619+0.0006

−0.0017 0.163+0.009
−0.012

mββ, meV 1.49+0.31
−0.28 1.49+0.27

−0.28 17.8+1.7
−1.8 2.06+0.98

−0.22 60.0+2.4
−3.1

δ ≃ 0, π ≃ 0 ≃ 0 ≃ π ≃ 0, π
α21(23) ≃ π ≃ π ≃ 0 ≃ π ≃ 0
α31 — — — ≃ π ≃ π

|ǫ(τ)| 0.0218+0.0047
−0.0046 0.0292+0.0076

−0.0067 0.0182+0.0013
−0.0018 0.0267+0.0700

−0.0087 0.0713+0.0320
−0.0312

minNσ 0.412 0.411 0.548 0.488 0.362
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Correlation between the solar and atmospheric mixing angles in model C. Green, yellow

and red fills correspond to the 1σ, 2σ and 3σ credible regions. For comparison, we

show the prospective 1σ sensitivities of future long-baseline and reactor experiments

HyperKamiokande and JUNO taking into account the found central values for sin2 θ23
and sin2 θ12, respectively.
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Heavy Majorana Neutrino Phenomenology

The heavy Majorana neutrinos that result from the diagonalization of the neutrino mass

terms (mD and MR) mix with the active flavour ones. In the basis for which the charged-

lepton Yukawa and the RHν mass matrices are diagonal, the mixing relation reads:

νlL ≃ Uli νiL+
vuŶlj

Mj
NjL , l = e, µ, τ ,

Ŷαj are the neutrino Yukawa couplings in the considered basis; νiL and NjL - the LH

components of the massive light and heavy Majorana neutrinos with masses mi, i = 1,2,3,

and Mj, j = 1,2,3.

Due to this mixing Nj appear in the CC and NC weak interaction Lagrangian:

LNCC ≃ − g√
2
Θlj lL W NjL + h.c. ,

LNNC ≃ − g

2cw
Θlj νlL Z NjL + h.c. , l = e, µ, τ ,

Θlj ≡ vuŶlj/Mj , Ŷαj = U†
e(Y

∗
DV

∗), Y ∗
D is the neutrino Yukawa coupling in the “non-

diagonal” basis, V is a unitary matrix diagonalising the RH neutrino Majorana mass matrix

MR, U
†
e is one of the two unitary matrices diagonalising the charged lepton mass matrix

with UPMNS = U†
eUν.
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The fact that the heavy Majorana neutrinos Nj (NHL) couple to the weak bosons implies

testable phenomenology, which has been extensively studied.

If Nj have masses Mj < EW scale and Θlj is sufficiently large - can be copiously produced

at colliders or beam-line facilities and identified via the subsequent decay (either prompt

or displaced) into charged particles (see, e.g., A.M. Abdullahi et al., arXiv:2203.08039,

C. Antel et al., arXiv:2305.01715 and references therein).

In these Nj (HNL) searches, the phenomenologically-relevant parameters are combina-

tions of |Θlj|2; we consider the following two key combinations:

Θ2
l ≡

3
∑

j=1
|Θlj|2 and Θ2 ≡ ∑

α=e, µ, τ
Θ2
l ,

Θ2
l quantifies the overall contribution of the Nj (NHL) fixed flavour couplings to the

Nj (HNL) signals, Θ2
quantifies the total mixing irrespective of the flavour and the

specific heavy neutrino state.
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The ratios Θ2
e/Θ

2 –Θ2
µ/Θ

2 –Θ2
τ/Θ

2 associated to the considered models. The coloured

points – top panel in turquoise for model A, middle left in brown for model B, middle

right in yellow for model C, and bottom panels in blue for model D (left for NO, right for

IO) – are those for which χ2 ≤ 10, with the stars marking the point of maximum posterior

probability (minimum Gaussian χ2). The orange regions correspond to the full parameter

space of the type-I seesaw, in the cases with either two (lighter colour) and three (darker

colour) RHνs, with the oscillation data varied within the 3σ regions obtained in the NuFit

6.0 global analysis, I. Esteban et al., arXiv:2410.05380. To obtain the region associated

to generic type-I scenario with 3 RHνs, the lightest neutrino mass is varied randomly in

the range allowed by the corresponding model when compared against oscillation data.
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Model A: Θ2
µ
∼= 4.0× 10−10, Θ2

τ
∼= 0.97× 10−10, Θ2

e
∼=

0.03× 10−10 at Mav = 1.0 GeV.
There is a second “solution” with dominating Θ2

τ .

Model B: Θ2
τ
∼= 2.5 × 10−10, Θ2

µ
∼= 0.7 × 10−10, Θ2

e
∼=

0.02× 10−10 at Mav = 1.0 GeV.

Model C: Θ2
e
∼= 1.2 × 10−6, Θ2

τ
∼= 0.08 × 10−10, Θ2

µ
∼=

0.001× 10−10 at Mav = 1.0 GeV.

Model D(NO): Θ2
τ

∼= 1.4 × 10−8, Θ2
µ

∼= 0.3 × 10−8,

Θ2
e
∼= 0.03× 10−8 at Mav = 1.0 GeV.

Model D(IO): Θ2
µ

∼= 3.4 × 10−9, Θ2
e

∼= 1.6 × 10−9,

Θ2
τ
∼= 1.4× 10−9 at Mav = 1.0 GeV.

Mav =
1

3
(M1 +M2 +M3)
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Parts of the parameter space in the Θ2
l −Mav plane

of each of the models can be probed in upcom-
ing, planned and proposed experiments (Hyper-
Kamiokande, DUNE, SHiP, HL-LHC, FCC-ee), as
is illustrated by the following figures.
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The parameter space in the Θ2 – plane of the type-I seesaw scenario for the discussed benchmark

models. The black solid curve represents the seesaw limit. The darker gray regions are excluded

by several experiments on HNL production via meson decays (PS191, BEBC, PIENU, E949,

NA62, T2K, NuTeV, MicroBooNE, CHARM, searches at KEK, tau lepton decays (BELLE) and at

colliders (DELPHI, CMS, ATLAS. The lighter gray region is excluded by BBN. The dashed curves

represent the sensitivities of the upcoming, planned and proposed experiments PIONEER(cyan),

Hyper-K(blue), DUNE(pink), MATHUSLA(orange), SHiP(purple), and searches at HL-LHC(red),

FCC-ee and CEPC(green). Current constraints and future sensitivities are only indicative, as they

are given for Θ2
e : Θ2

µ : Θ2
τ = 1 : 0 : 0 (upper panel), 0 : 1 : 0 (middle panels) and 0 : 0 : 1 (lower

panels) – such ratios hold only approximately in the scenarios considered here – and in the case

of a single HNL.
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Summary

The proposed link between modular symmetry and
L′ symmetry, in the context of the considered low-
scale type-I seesaw mechanism, which connects
charged-lepton masses, neutrino masses, neutrino
mixing, leptonic CP violation and heavy Majorana
neutrino (HNL) phenomenology, while also avoiding
fine-tuning and retaining minimality and predictiv-
ity, opens up the possibility to probe the modular
paradigm in new ways.

S.T. Petcov, FLASY 2025, Rome, 01/07/2025



Supporting Slides

S.T. Petcov, FLASY 2025, Rome, 01/07/2025



Matter Fields and Modular Forms

The matter(super)fields (charged lepton, neutrino, quark) transform under Γ ≃
PSL(2,Z) = SL(2,Z)/Z2, Z2 = {I,−I} (Γ ≃ SL(2,Z)) as ”weighted” multiplets:

ψi
γ−→ (cτ + d)−kψ ρij(γ̃)ψj , γ ∈ Γ (γ ∈ Γ) ,



γτ = aτ+b
cτ+d , γ =





a b
c d



 , a, b, c, d ∈ Z , ad− bc = 1 , Imτ > 0





kψ is the weight of ψ; kψ ∈ Z (or rational number).

Γ(N) - principal congruence (normal) subgroup of SL(2,Z).

ρ(γ̃) is a unitary representation of the inhomogeneous (homogeneous) finite modular group

ΓN = Γ/Γ(N) (Γ′
N = Γ/Γ(N)), γ̃ – representation of γ in ΓN (Γ′

N)

F. Feruglio, arXiv:1706.08749; S. Ferrara et al., Phys.Lett. B233 (1989) 147, B225 (1989) 363

As we have indicated in brackets, one can consider also the case of Γ and γ ∈ Γ(N). Then

ρ(γ) will be a unitary representation of the homogeneous finite modular group Γ′
N .
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The group Γ ≡ SL(2,Z) is generated by the matrices

S =





0 1
−1 0



 , T =





1 1
0 1



 , R =





−1 0
0 −1



 ,

obeying S2 = R, (ST )3 = R2 = I, and RT = TR.

Thus,

S τ = − 1

τ
T τ = τ +1 .
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Remarkably, for N ≤ 5, the inhomogeneous finite modular groups ΓN are isomorphic to

non-Abelian discrete groups widely used in flavour model building:

Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5.

ΓN is presented by two generators S and T satisfying:

S2 = (ST )3 = TN = I .

The group theory of Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5 is summarized, e.g., in P.P.

Novichkov et al., JHEP 07 (2019) 165, arXiv:1905.11970.

Γ ≃ SL(2,Z) – homogeneous modular group, Γ(N) and the quotient groups Γ′
N ≡ Γ/Γ(N)

– homogeneous finite modular groups. For N = 3,4,5, Γ′
N are isomorphic to the double

covers of the corresponding non-Abelian discrete groups:

Γ′
3 ≃ A′

4 ≡ T ′, Γ′
4 ≃ S′

4 and Γ′
5 ≃ A′

5.

Γ′
N is presented by two generators S and T satisfying:

S4 = (ST )3 = TN = I , S2 T = T S2 (S2 = R) .

The group theory of Γ′
3 ≃ A′

4, Γ
′
4 ≃ S′

4 and Γ′
5 ≃ A′

5 for flavour model building was developed

in X.-G. Liu, G.-J. Ding, arXiv:1907.01488 (A′
4);

P.P. Novichkov et al., arXiv:2006.03058 (S′
4); C.-Y. Yao et al., arXiv:2011.03501 (A′

5).
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The Fundamental Domain of Γ shown for Imτ ≤ 2 (the red dots correspond to solutions

of the lepton flavour problem, see further).

P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933.
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Relevant sub-groups of ΓN and Γ′
N: :

Z
ST
3 = {I, ST, (ST )2}

Z
T
N = {I, T, (T )2, ..., TN−1}

ΓN : Z
S
2 = {I, S}

Γ′
N : Z

S
4 = {I, S, S2, S3} (R2 = I, Z

R
2 = {I, R}, Rτ = τ)
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Modular Forms

Within the considered framework the elements of the Yukawa coupling and fermion mass

matrices in the Lagrangian of the theory are expressed in terms of modular forms of a

certain level N and weight kf .

The modular forms are functions of a single complex scalar field – the modulus τ – and

have specific transformation properties under the action of the modular group.

Both the Yukawa couplings and the matter fields (supermultiplets) are assumed to trans-

form in representations of an inhomogeneous (homogeneous) finite modular group Γ
(′)
N .

Once τ acquires a VEV, the modular forms and thus the Yukawa couplings and the form

of the mass matrices get fixed, and a certain flavour structure arises.

Quantitatively and barring fine-tuning, the magnitude of the values of the non-zero ele-

ments of the fermion mass matrices and therefore the fermion mass ratios are determined

by the modular form values (which in turn are functions of the τ’s VEV).
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Modular Forms (contd.)

The key elements of the considered framework are modular forms f(τ) of weight kf and

level N – holomorphic functions of τ, which transform under Γ (Γ) as follows:

F (γτ) = (cτ + d)kF ρr(γ̃)F(τ) , γ ∈ Γ (γ ∈ Γ) ,

F. Feruglio, arXiv:1706.08749

ρr is a unitary representation of the finite modular group ΓN (Γ′
N).

In the case of Γ (Γ) non-trivial modular forms exist only for positive even integer (positive

integer) weight kF .

For given k, N (N is a natural number), the modular forms span a linear space of finite

dimension:

of weight k and level 3, Mk(Γ
(′)
3 ≃ A(′)

4 ), is k+1;

of weight k and level 4, Mk(Γ
(′)
4 ≃ S(′)

4 ), is 2k+1;

of weight k and level 5, Mk(Γ
(′)
5 ≃ A(′)

5 ), is 5k+1.

Thus, dimM1(Γ′
3 ≃ A′

4) = 2, dimM1(Γ′
4 ≃ S′

4) = 3, dimM1(Γ′
5 ≃ A′

5) = 6.

Multiplets of ΓN (Γ′
N) of higher weight modular forms can be constructed from tensor

products of the lowest weight 2 (weigh 1) multiplets (they represent homogeneous poly-

nomials of the lowest weight modular forms).
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Following arXiv:1706.08749, it was of highest priority and of crucial importance for model

building to find the basis of modular forms of the lowest weight 2 (weight 1) transforming

in irreps of ΓN (Γ′
N).

It took about two years to find the requisite bases for ΓN (Γ′
N), N = 2,3,4,5.

F. Feruglio, 1706.08749 (Γ3 ≃ A4, kf = 2: the 3 mod.forms form a 3 of A4);

T. Kobayashi et al., 1803.10391 (Γ2 ≃ S3, kf = 2: the 2 mod. forms form a 2 of S3);

J. Penedo, STP, 1806.11040 (Γ4 ≃ S4, kf = 2: the 5 mod. forms form a 2 and 3′ of S4);

P.P. Novichkov et al., 1812.02158; G.-J. Ding et al., 1903.12588 ((Γ5 ≃ A5), kf = 2: the

11 basis modular forms were shown to form a 3, a 3′ and a 5 of A5).

More elegant constuction: modular forms for A′
4, S

′
4, A

′
5 (and A4, S4, A5).

The weight 1 modular forms

i) of A′
4 form a 2 of A′

4, ii) of S′
4 form a 3̂ of S′

4, iii) of A′
5 form a 5 of A′

5,

as was proven respectively in X.-G. Liu, G.-J. Ding, 1907.01488, P.P. Novichkov et al.,

2006.03058 and C.-Y. Yao et al., 2011.03501.

In each of the cases of A′
4, S

′
4 and A′

5 the lowest weight 1 modular forms, and thus all

higher weight modular forms, icluding those (of even weight) associated with A4, S4 and

A5, constructed from tensor products of the weight 1 multiplets, were shown in the three

quoted articles to be expressed in terms of only two independent functions of τ.

These pairs of functions are different for the three different groups; but they all are

related (in different ways) to the Dedekind η-function (in the case of A′
5 (A5) - to two

Jacobi theta constants also) and have similar (fastly converging) q−expansions, i.e., power

series expansions in q = e2πiτ.
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Thus, in the case of a flavour symmetry described by a finite modular group Γ
(′)
N , N =

2,3,4,5, the elements of the matices of the Yukawa couplings in the considered approach

represent homogeneous polynomials of various degree of only two (holomorphic) functions

of τ. They include also a limited (relatively small) number of constant parameters.
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The modular forms of level N = 2,3,4,5 for Γ
(′)
2,3,4,5 ≃ S3, A

(′)
4 , S

(′)
4 , A(′)

5 have been constructed

by use of the Dedekind eta function, η(τ):

η(τ) = q
1
24

∞
∏

n=1
(1−qn) = q

1
24

∞
∑

n=−∞
(−1)n q

n(3n−1)
2 , q = ei2πτ .

In the cases of Γ
(′)
5 ≃ A(′)

5 two “Jacobi theta constants” are also used.

Modular forms of level N = 4 for Γ′
4 ≃ S′

4 (Γ4 ≃ S4) – in terms of θ(τ), ε(τ):

θ(τ) ≡ η5(2τ)

η2(τ)η2(4τ)
= Θ3(2τ) , ε(τ) ≡ 2 η2(4τ)

η(2τ)
= Θ2(2τ) .

Θ2(τ) and Θ3(τ) are the Jacobi theta constants, η(aτ), a = 1,2,4, is the Dedekind eta.

Modular forms of level N = 3 for Γ′
3 ≃ A′

4 (Γ3 ≃ A4) – in terms of ê1 and ê2:

ê1 =
η3(3τ)

η(τ)
, ê2 =

η3(τ/3)

η(τ)
.

Modular forms of level N = 5 for Γ′
5 ≃ A′

5 (Γ5 ≃ A5) – in terms of θ5(τ) and ε5(τ):

θ5(τ) = exp(− iπ/10)Θ 1
10
,1
2
(5τ) η−3/5(τ), ε5(τ) = exp(− i3π/10)Θ 3

10
,1
2
(5τ) η−3/5(τ).
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Example: S′
4

P.P. Novichkov, J.T. Penedo. S.T.P., arXiv:2006.03058

Weight 1 modular forms furnishing a 3̂ of S′
4:

Y (1)

3̂
(τ) =

(√
2 ε θ

ε2

−θ2

)

Modular S4 lowest-weight 2 multiplets furnish a 2 and a 3′ irreducible representations of

S4 (S′
4) and are given by: :

Y (2)
2

(τ) =

(

1√
2

(

θ4 + ε4
)

−
√
6 ε2 θ2

)

=

(

Y1
Y2

)

, Y (2)
3′ (τ) =

(

1√
2

(

θ4 − ε4
)

−2 ε θ3

−2 ε3 θ

)

=

(

Y3
Y4
Y5

)

.

At weight k = 3, a non-trivial singlet and two triplets exclusive to S′
4 arise:

Y (3)

1̂′ (τ) =
√
3
(

ε θ5 − ε5 θ
)

,

Y (3)

3̂
(τ) =





ε5 θ+ ε θ5

1

2
√
2

(

5 ε2 θ4 − ε6
)

1

2
√
2

(

θ6 − 5 ε4 θ2
)



 , Y (3)

3̂′ (τ) =
1

2

(

−4
√
2 ε3 θ3

θ6 +3 ε4 θ2

−3 ε2 θ4 − ε6

)

.

At weight k = 4 one again recovers the S4 result: the modular forms furnish a 1, 2, 3

and 3′ irreducible representations of S4 (S′
4).

Y (4)
1

(τ) =
1

2
√
3

(

θ8 +14 ε4 θ4 + ε8
)

, Y (4)
2

(τ) =

(

1
4

(

θ8 − 10 ε4 θ4 + ε8
)

√
3
(

ε2 θ6 + ε6 θ2
)

)

,

Y (4)
3

(τ) =
3

2
√
2

(√
2
(

ε2 θ6 − ε6 θ2
)

ε3 θ5 − ε7 θ

−ε θ7 + ε5 θ3

)

, Y (4)
3′ (τ) =





1
4

(

θ8 − ε8
)

1

2
√
2

(

ε θ7 +7 ε5 θ3
)

1

2
√
2

(

7 ε3 θ5 + ε7 θ
)



 ,
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The functions θ(τ) and ε(τ) are given by:

θ(τ) ≡ η5(2τ)

η2(τ)η2(4τ)
= Θ3(2τ) , ε(τ) ≡ 2 η2(4τ)

η(2τ)
= Θ2(2τ) .

Θ2(τ) and Θ3(τ) are the Jacobi theta constants, η(aτ), a = 1,2,4, is the Dedekind eta

function.

The functions θ(τ) and ε(τ) admit the following q-expansions - power series expansions

in q4 ≡ exp(iπτ/2) (Im(τ) ≥
√
3/2, |q4| . 0.26) :

θ(τ) = 1+ 2

∞
∑

k=1

q(2k)
2

4 = 1+ 2 q44 +2 q164 + . . . ,

ε(τ) = 2

∞
∑

k=1

q(2k−1)2

4 = 2 q4 +2 q94 +2 q254 + . . . .

In the “large volume” limit Im τ → ∞, θ → 1, ε→ 0.
In this limit ε ∼ 2 q4 and ε can be used as an expansion parameter instead of q4.

Due to quadratic dependence in the exponents of q4, the q−expansion series converge

rapidly in the fundamental domain of the modular group, where Im(τ) ≥
√
3/2 and |q4| ≤

exp(−π
√
3/4) ≃ 0.26.

Similar conclusions are valid for the pair of functions in terms of which the lowest weight

1 modular forms, and thus all higher weight modular forms of A′
4 and A′

5 are expressed.
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The Framework

N = 1 rigid (global) SUSY, the matter action S reads:

S =
∫

d4xd2θ d2θ K(τ, τ , ψ, ψ) +
(∫

d4xd2θ W (τ, ψ) + h.c.
)

,

K is the Kähler potential, W is the superpotential, ψ denotes a set of chiral supermultiplets

ψi, θ and θ are Grassmann variables;

τ is the modulus chiral superfield, whose lowest component is the complex scalar field

acquiring a VEV (we use in what follows the same notation τ for the lowest complex

scalar component of the modulus superfield and call this component also “modulus”).

τ and ψi transform under the action of Γ (Γ) in a certain way (S. Ferrara et al., PL B225

(1989) 363 and B233 (1989) 147). Assuming that ψi = ψi(x) transform in a certain irrep

ri of ΓN (Γ′
N), the transformations read:

γ =





a b
c d



 ∈ Γ (Γ) :



















τ → aτ + b

cτ + d
,

ψi → (cτ + d)−ki ρri(γ)ψi .

ψi is not a modular form multiplet, the integer (−ki) can be > 0, < 0, 0.

Invariance of S under these transformations implies (global SUSY):
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













W (τ, ψ) → W (τ, ψ) ,

K(τ, τ , ψ, ψ) → K(τ, τ , ψ, ψ) + fK(τ, ψ) + fK(τ , ψ) .

The second line represents a Kähler transformation.

An example Kähler potential that is widely used in model building reads:

K(τ, τ , ψ, ψ) = −Λ2
0 log(−iτ + iτ) +

∑

i

|ψi|2
(−iτ + iτ)ki

,

Λ0 > 0 having mass dimension one.

More general K(τ, τ , ψ, ψ) and the possible consequences they can have for flavour model

building are discussed in

Mu-Chun Chen et al., arXiv:1909.06910 and 2108.02240; Y. Almumin et al.,

arXiv:2102.11286.
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W (τ, ψ) →W (τ, ψ) ,

The superpotential can be expanded in powers of ψi:

W (τ, ψ) =
∑

n

∑

{i1,...,in}

∑

s

gi1 ... in,s (Yi1 ... in,s(τ)ψi1 . . . ψin)1,s ,

1 stands for an invariant singlet of ΓN (Γ′
N). For each set of n fields {ψi1, . . . , ψin}, the

index s labels the independent singlets. Each of these is accompanied by a coupling

constant gi1 ... in,s and is obtained using a modular multiplet Yi1 ... in,s of the requisite weight.

To ensure invariance of W under ΓN (Γ′
N), Yi1 ... in,s(τ) must transform as:

Y (τ)
γ−→ (cτ + d)kY ρrY (γ)Y (τ) ,

rY is a representation of ΓN (Γ′
N), and kY and rY are such that

kY = ki1 + · · ·+ kin , (2)

rY ⊗ ri1 ⊗ . . .⊗ rin ⊃ 1 . (3)

Thus, Yi1 ... in,s(τ) represents a multiplet of weight kY and level N modular forms trans-

forming in the representation rY of ΓN (Γ′
N).
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Mass Matrices

Consider the bilinear (i.e., mass term)

ψci M(τ)ij ψj ,

where the superfields ψ and ψc transform as

ψ
γ−→ (cτ + d)−kρr(γ)ψ (ρ(γ) , Γ

(′)
N , N = 2,3,4,5) ,

ψc
γ−→ (cτ + d)−k

c

ρcrc(γ)ψ
c , (ρc(γ) , Γ

(′)
N ) .

Modular invariance: M(τ)ij must be modular form of level N and weight K ≡ k+ kc,

M(τ)
γ−→ M(γτ) = (cτ + d)Kρc(γ)∗M(τ)ρ(γ)† .
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CP Symmetry in Modular Invariant Flavour Models

The formalism of combined finite modular and generalised CP (gCP) symmetries for

theories of flavour was developed in P.P. Novichkov et al., arXiv:1905.11970.

gCP invariance was shown to imply that the constants g, which accompany each invariant

singlet in the superpotential, must be real (in a symmetric basis of S and T and at least

for Γ
(′)
N , N ≤ 5). Thus, the number of free parameters in modular-invariant models which

also enjoy a gCP symmetry gets reduced, leading to “minimal” models which have higher

predictive power.

In these models, the only source of both modular symmetry breaking and CP violation

is the VEV of the modulus τ.

The “minimal” phenomenologically viable modular-invariant flavour models with gCP

symmetry constructed so far

– of the lepton sector with massive Majorana neutrinos (12 observables) contain ≥ 7 (6)

real parameters – 5 (4) real couplings + the complex τ (6 (5) real constants + 1 phase);

– of the quark sector contain ≥ 9 real parameters – 7 real coulplings + the complex τ;

– while the models of lepton and quark flavours (22 observables) have ≥ 14 real param-

eters - 12 real couplings + the complex τ.

See, e.g., B.-Y. Qu et al., arXiv:2106.11659
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Under the CP transformatoion,

τ
CP−−→ − τ∗ .

P.P. Novichkov et al., 1905.11970; A. Baur et al., 1901.03251 and 1908.00805

It was further demonstrated that CP is conserved for

Reτ = ±1/2 ; τ = eiθ , θ = [π/3,2π/3] ;Reτ = 0 , Imτ ≥ 1 .

i.e., for the values of τ’s VEV at the boundary of the fundamental domain and on the

imaginary axis.
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Residual Symmetries

The breakdown of modular symmetry is parameterised by the VEV of τ.

There is no value of τ’s VEV which preserves the full symmetry Γ(′) (Γ
(′)
N ).

At certain “symmetric points” τ = τsym, Γ(′) (Γ
(′)
N ) is only partially broken, with the

unbroken generators giving rise to residual symmetries.

The R = S2 generator (Γ
(′)
N ) is unbroken for any value of τ, thus a Z

R
2 symmetry is always

preserved.

There are only 3 inequivalent symmetric points in D:

• τsym = i∞, invariant under T , preserving Z
T
N ;

• τsym = i, invariant under S, preserving Z
S
2 (ZS4, S

2 = R);

• τsym = ω ≡ exp(2πi/3), invariant under ST , preserving Z
ST
3 .

P.P. Novichkov et al., arXiv:1811.04933 and arXiv:2006.03058

These symmetric values of τ preserve the CP (ZCP2 ) symmetry of a CP- and modular-

invariant theory (e.g. a modular theory where the couplings satisfy a reality condition).

P.P. Novichkov et al., arXiv:1911.04933 and arXiv:2006.03058

The CP (ZCP
2 ) symmetry is preserved for Re τ = 0 or for τ lying on the border of the

fundamental domain D, but is broken at generic values of τ.
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The fundamental domain D of the modular group Γ and its three symmetric points

τsym = i∞, i, ω. At the solid and dotted lines (which include the three points) CP is

also preserved. The value of τ can always be restricted to D by a suitable modular

transformation.

Figure from P.P. Novichkov et al., arXiv:2006.03058
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