Observation of the $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay and measurement of its branching ratio at NA62

Francesco Brizioli (INFN Perugia, IT) on behalf of the NA62 collaboration <u>francesco.brizioli@cern.ch</u>

June 30 - July 4 Aula Magna Architettura

11TH WORKSHOP

Flavor Symmetries and Consequences in Accelaratores and Cosmology

Aula Magna Architettura "Adalberto Libera", Università Roma Tre

The NA62 experiment at CERN

~200 collaborators from ~30 institutions.

- Primary goal: measurement of $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$
- **New Technique:** *K*⁺ decay-in-flight
- Run1 results: [PLB 791 (2019) 156] [JHEP 11 (2020) 042] [JHEP 06 (2021) 093]
- Broader physics programme:
 - Precision measurements of kaon and pion decays
 - HNL and LNV/LFV searches in kaon decays
 - Hidden Sector searches with kaons and in dump mode
- Data taking
 - 2016 Commissioning + Physics run (45 days).
 - 2017 Physics run (160 days).
 - 2018 Physics run (217 days).
 - 2021 Physics run (85 days [10 beam dump]). New result!
 - 2022 Physics run (215 days).
 - 2023 Physics run (150 days [10 beam dump]).
 - 2024 Physics run (204 days [12 beam dump, 7 low int.]).
 - 2025 Physics run (~210 days foreseen, started in April)

les)	New	result!				
20	021	2022	2023	2024	2025	2026
HEP	02 (2	2025) 1	<u>91</u>			2

- $\mathcal{B}(K \to \pi \nu \overline{\nu})$ highly suppressed in SM
- Theoretically clean \Rightarrow high precision SM predictions
 - Dominated by short distance contributions.
 - Hadronic matrix element extracted from $\mathcal{B}(K \to \pi l \nu)$ decays via isospin rotation.

Decay Mode BR	SM [Buras et al. EPJC 82 (2022) 7, 615]	SM <u>D'Ambrosio et al. JHEP 09 (2022) 148</u>	Experimental Status
$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$	$(8.60 \pm 0.42) \times 10^{-11}$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.1}_{-3.5}) \times 10^{-11}$ (NA
$\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu})$	$(2.94 \pm 0.15) \times 10^{-11}$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 2.2 \times 10^{-9}$ (кот
Difference	ces in SM calculations from ch	oice of CKM parameters:	52 (2016–18 data): [<u>JHEP 06 (2021) 093]</u> KOTO (2021 data):

[EPJC 84 (2024) 4, 377]

[PRL 134 (2025) 081802]

$K \rightarrow \pi \nu \overline{\nu}$: Beyond the SM

- Correlations between BSM contributions to BRs of K^+ and K_L modes [JHEP 11 (2015) 166]. Must measure both to discriminate between BSM scenarios.
- Correlations with other observables ($\varepsilon' / \varepsilon$, ΔM_B , B-decays) [JHEP 12 (2020) 097][PLB 809 (2020) 135769].
- Leptoquarks [EPJ.C 82 (2022) 4, 320], Interplay between CC and FCNC [JHEP 07 (2023) 029], NP in neutrino sector [EPJ.C 84 (2024) 7, 680] and additional scalar/tensor contributions [JHEP 12 (2020) 186][arXiv:2405.06742] ...
- **Green:** CKM-like flavour structure
 - Models with Minimal Flavour Violation
- Blue: new flavour-violating interactions where LH or RH currents dominate
 - Z' models with pure LH/RH couplings
- **Red:** general NP models without above constraints
- **Grossman-Nir Bound:** model-independent relation

 $\underbrace{\begin{array}{l} \left[\begin{array}{c} \text{PLB 398 (1997) 163-168} \right] \\ \mathcal{B}(K_L \to \pi^0 \nu \overline{\nu}) \\ \mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) \\ \mathcal{T}_{K_L} \end{array} \lesssim 1$ $\Rightarrow \mathcal{B}(K_L \to \pi^0 \nu \overline{\nu}) \leq 4.3 \cdot \mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at NA62

NA62 Strategy:

- Tag K^+ and measure momentum.
- Identify π^+ and measure momentum.
- Match K^+ and π^+ in time & form vertex.
 - Determine $m_{miss}^2 = (P_K P_\pi)^2$

 $P_{\overline{\nu}}$

• Reject any additional activity.

 P_{K^+}

INFŃ

 $m_{miss}^2 = (P_{K^+} - P_{\pi^+})^2$

NA62 Performance Keystones:

- $\mathcal{O}(100)ps$ timing between detectors
- $\mathcal{O}(10^4)$ background suppression from kinematics
- $| \bullet > 10^7$ muon rejection
- > 10⁷ rejection of π^0 from $K^+ \to \pi^+ \pi^0$ decays

Decay mode	Branching Ratio [PDG]
$K^+ \to \mu^+ \nu_\mu$	(63.56 ± 0.11)%
$K^+ \to \pi^+ \pi^0$	(20.67 ± 0.08)%
$K^+ \to \pi^+ \pi^+ \pi^-$	(5.583 ± 0.024)%
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-5}$
$K^+ \to \pi^+ \nu \overline{\nu}$	$\approx 10^{-10}$

• Designed & optimised for study of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$:

- Particle tracking: beam particle (GTK) & downstream tracks (STRAW)

• PID: K^+ - KTAG, π^+ - RICH, Calorimeters (LKr, MUV1,2), MUV3 (μ detector) • Comprehensive veto systems: CHANTI (beam interactions), LAV, LKr, IRC, SAC (γ)

NA62 upgrades for 2021-22 data taking

- New detectors, installed during LS2:

 - 4th GTK (Kaon beam tracker) & rearrange GTK achromat (GTK2 upstream of scraper). • New upstream veto (VetoCounter) & veto hodoscope (ANTIO) upstream of decay volume. • Additional veto detector (HASC2) at end of beam-line.
- Intensity increased by $\sim 35\%$ with respect to 2018 [450 \rightarrow 600 MHz].
- Improvements to the trigger configuration. New detectors installed in 2021:

Efficiency improved (+10%) and mistagging probability maintained.

Kinematic constraints & signal regions

 π^+ momentum range: 15—45 GeV/c

Signal sensitivity: acce

Analysis is performed in (5 GeV/c) bins of momentum:

Acceptances evaluated at 0 intensity. Intensity dependence captured in \mathcal{E}_{RV}

$Cepta$ $N_{\pi\nu\overline{\nu}}^{exp}(p_i) = \frac{1}{2}$	$\frac{B_{\pi\nu\bar{\nu}}^{SM}}{B_{\pi\nu\bar{\nu}}} = \frac{B_{\pi\nu}^{SM}}{B_{\pi\tau}}$	$\frac{1}{\overline{\nu}} \frac{A_{\pi \overline{\nu} \overline{\nu}}(p_i)}{A_{\pi \pi}(p_i)} D_0$	$N_{\pi\pi}(p_i)\varepsilon_{trig}$	(<i>p</i> i
al, K ⁺ →π ⁺ ν⊽				
	Case	OLD 2018 (S2)	NEW 2021-22	
	Norm.	11.8%	13.4%	+ '
	Signal	(6.37±0.64)%	(7.62±0.22)%	+2
	 Increased s New K-pi Re-tunec 	selection ef i matching f d vertex cor	ficiencies. technique. nditions.	
40 45	Relayatic	n of some	vetos	

Improved precision (plus improved systematic uncertainty evaluation).

Signal sensitivity: trigger efficiencies

Analysis is performed in (5 GeV/c) bins of momentum:

- Trigger efficiency ratio:
 - New: several components in both normalisation & signal triggers: partial cancellation.
 - Old: in 2016—18 data normalised with fully independent min bias trigger (no cancellation).
- Improved precision by factor 3 with reduced systematic uncertainty.

Signal sensitivity: random veto

 ε_{RV} is independent of track momentum (related to additional activity only)

• ε_{RV} = Random Veto Efficiency:

- $1 \varepsilon_{RV}$ = Probability of rejecting a signal event due to additional activity.
- Balance:
 - Strict vetos \Rightarrow lower efficiency
 - Loose vetos \Rightarrow higher background
- **Operational intensity higher** but re-tuning vetos means \mathcal{E}_{RV} is comparable:

 $\varepsilon_{RV}(new, \lambda_{21-22} \approx 600 MHz) = (63.2 \pm 0.6)\%$ 1200 $\varepsilon_{RV}(old, \lambda_{2018} \approx 400 MHz) = (66 \pm 1)\%$

Signal sensitivity: results

λ

λŢ	$N_{\pi\pi}D_0$ \Box	 Display integrals (1 	5–45 GeV/c, 2021+22) for summary t
N_K =	$= \frac{D_{SES}}{B_{\pi\pi}A_{\pi\pi}} \qquad D_{SES} = \frac{1}{N_K \varepsilon_{RV} \varepsilon_{tria} A_{\pi}}$	* Acceptances eval	luated at 0 intensity.
			\mathcal{B}^{SM}
$N_{\pi\pi}^{\mathrm{eff}}$	Effective number of normalisation events	$(1.953 \pm 0.005) \times 10^8$	$N_{\pi\nu\overline{\nu}}^{exp} = \frac{\omega_{\pi\nu\nu}}{\pi}$
$A_{\pi\pi}$	Normalisation acceptance	$(13.410 \pm 0.005)\%$	$HVV B_{SES}$
N_K	Effective number of K^+ decays	$(2.85 \pm 0.01) \times 10^{12}$	Assuming $\mathcal{B}_{\pi\nu\overline{\nu}}^{SM} = 8.4 \times 10^{-11}$:
$A_{\pi\nu\bar{\nu}}$	Signal acceptance	$(7.62 \pm 0.22)\%$	2021-22: $N_{\pi\nu\overline{\nu}} = 9.91 \pm 0.34$
$arepsilon_{\mathrm{trig}}$	Trigger efficiency ratio	$(85.9 \pm 1.4)\%$	c.f. 2016–18 : $N_{\pi\nu\overline{\nu}} = 10.01 \pm$
$\varepsilon_{ m RV}$	Random veto efficiency	$(63.2 \pm 0.6)\%$	
$\mathcal{B}_{ ext{SES}}$	Single event sensitivity	$(8.48 \pm 0.29) \times 10^{-12}$	•
V^{SM}	Number of expected SM $K^+ \to \pi^+ \nu \bar{\nu}$ events	9.91 ± 0.34	Double expected signal

 $\pi \nu \bar{\nu}$

• Significant improvement in SES uncertainty:

- old: 6.3% -> new: 3.5%. Due to:
 - trigger efficiency cancellations
 - improved procedures for evaluation of acceptances and \mathcal{E}_{RV}

1

including 2021–22 data.

Backgrounds from kinematic tails

Radiative decays: $K^+ \to \pi^+ \pi^0 \gamma$ & $K^+ \to \mu^+ \nu \gamma$ • $K^+ \to \pi^+ \pi^0 \gamma$: not included in "kinematic tails" estimation if the radiative photon

- is detected in LAV, LKr, IRC or SAC.
- Suppression: photon vetos, rejection with additional γ is 30x stronger.
- Validation: m_{miss}^2 control regions (CR1,2)
- $K^+ \rightarrow \mu^+ \nu \gamma$: not included in "kinematic tails" estimation if γ overlaps μ^+ at LKr, leading to misID as π^+
 - Suppression: based on $(P_K P_\mu P_\gamma)^2$ and E_γ with γ = LKr cluster (mis)associated to muon.
 - Necessary for 2021–22 data, since Calorimetric PID degraded at higher intensities.
 - Estimation: min. Bias data control sample with signal in MUV3 : $N_{ba}(K^+ \rightarrow \mu^+ \nu \gamma) = 0.82 \pm 0.43$
 - Validation: data sample without $K^+ \rightarrow \mu^+ \nu \gamma$ veto and PID = "less pion-like" (Calo BDT bins below π^+ bin).

• Estimation: tails from MC + measured single photon rejection efficiency : $N_{ba}(K^+ \rightarrow \pi^+ \pi^0 \gamma) = 0.07 \pm 0.01$

Upstream background mechanism

- A kaon decays upstream the fiducial decay region
- Only a π + enters the fiducial decay region
- There is an in-time pileup beam particle (in GTK)
- The upstream π + is scattered in the first STRAW chamber, and a fake vertex in the fiducial decay region is reconstructed

Upstream background evaluation

$$N_{bg} = \sum_{i} N_i f_{cda} P_i^{match}$$

Upstream Reference Sample: signal selection but invert CDA cut (CDA>4mm) fcda Scaling factor : bad cda —> good cda

Pmatch Probability to pass $K^+ - \pi^+$ matching

> Calculate using bins (i) of $(\Delta T_+, N_{GTK})$ [Updated to fully data-driven procedure]

N = 51 $f_{CDA} = 0.20 \pm 0.03$ $< P_{match} > = 73\%$

 $N_{bg}(Upstream) = 7.4^{+2.1}_{-1.8}$

- Upstream reference sample contains all known upstream mechanisms
 - N provides normalisation
 - f_{CDA} depends only on geometry
 - P_{match} depends on $(\Delta T_+, N_{GTK})$

VALIDATION SAMPLES:

invert & loosen upstream vetos to enrich with different mechanisms

Summary of expectations

		$\mathcal{B}_{CEC} =$
Background	Events	~ 3E3
$\tau \tau = $		l
$K^+ \to \pi^+ \pi^0(\gamma)$	0.83 ± 0.05	Assuming
$K^+ \to \mu^+ \nu(\gamma)$	1.70 ± 0.47	2021-22:
$K^+ \to \pi^+ \pi^+ \pi^-$	0.11 ± 0.03	c.f. 2016-
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.89\substack{+0.33 \\ -0.27}$	
$K^+ \to \pi^+ \gamma \gamma$	0.01 ± 0.01	
$K^+ \to \pi^0 \ell^+ \nu$	< 0.001	$ \bullet N_{\pi\nu} \overline{\nu} p$
Upstream	$7.4^{+2.1}_{-1.8}$	• c.f. 1
Total	$11.0^{+2.1}_{-1.9}$	 Sensitive respect

Signal Sensitivity

 $= (0.848 \pm 0.029) \times 10^{-11}$

 $\mathcal{B}_{\pi\nu\overline{\nu}}^{SM} = 8.4 \times 10^{-11}$: $N_{\pi\nu\overline{\nu}} = 9.91 \pm 0.34$ $-18: N_{\pi\nu\overline{\nu}} = 10.01 \pm 0.42$

Expected signal doubled by including 2021-22 data

er SPS burst: 2.5×10^{-5} in 2022

 $.7 \times 10^{-5}$ in 2018. \Rightarrow signal yield increased by 50%

vity for BR ~ $\sqrt{S + B}/S$ similar but improved with respect to 2018 analysis, for same amount of data

Signal regions: 2021–22 Data

2021—22 data

1D projection with differential background predictions & SM signal expectation [not a fit]:

Results: 2021–22 Data

Evaluate statistical-only component by repeating procedure assuming exact knowledge of signal and background expectations

A 62 A Combining NA62 results: 2016–22 • Integrating 2016–22 data: $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$. • Background-only hypothesis p-value = $2 \times 10^{-7} \Rightarrow$ significance Z > 5

Results in context

 $\mathcal{B}_{\pi\nu\overline{\nu}}^{BNL} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ [PRD 79 (2009) 092004]

- $\mathcal{B}_{\pi\nu\overline{\nu}}^{16-18} = (10.6^{+4.1}_{-3.5}) \times 10^{-11}$ [JHEP 06 (2021) 093]
- $\mathcal{B}_{\pi\nu\bar{\nu}}^{21-22} = (16.2^{+5.1}_{-4.5}) \times 10^{-11}$
- $\mathcal{B}_{\pi\nu\overline{\nu}}^{16-22} = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$
- NA62 results are consistent
- Central value moved up (now $1.5-1.7\sigma$ above SM)
- Fractional uncertainty decreased: 40% to 25%
- Bkg-only hypothesis rejected with significance Z>5

Results in context

- Fractional uncertainty: 25%
- Bkg-only hypothesis rejected with significance Z>5
- Observation of the $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay with BR consistent with SM prediction, within 1.7σ
 - Need full NA62 data-set to clarify SM agreement or tension

 $\mathcal{B}_{\pi\nu\overline{\nu}}^{16-22} = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$ 2σ range : [7.4 — 19.7] × 10⁻¹¹

Correlations with other meson decays

• New study of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay using NA62 2021–22 dataset, combined with 2016–18:

[JHEP 02 (2025) 191]

- $\mathcal{B}_{16-22}(K^+ \to \pi^+ \nu \overline{\nu}) = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$
- BR consistent with SM prediction within 1.7 σ
- Need full NA62 data-set to clarify SM agreement or tension, considering also correlations with other meson decay channels

Fig. 6. Correlation between $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$ and $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$, normalized to their SM predictions. The red areas denote the parameter regions favored at 1σ and 2σ from a global fit in the limit of minimal $U(2)_q$ breaking ($\kappa = 1$). The dashed and dotted blue curves are 1σ and 2σ regions from a global fit where κ is a free parameter. The gray bands indicate the current experimental constraints, while the dashed gray lines highlight near-future projections assuming halved experimental uncertainties.

$K^+ \nu \bar{\nu})$

23-24 working-in-progress data analysis MA62

- 2024 data-taking conditions lead to a slightly higher signal yield per spill:
 - lower signal loss due to random activity in veto detectors that compensates the lower number of normalization events
- increase of the overall expected signal yield, given the smoother and therefore more efficient collection of SPS spills

NFN

The addition of the 2023-2024 dataset is expected at least to double the signal yield of the already published 2016-2022 dataset, with the same level of relative background

[2025 NA62 SPSC Report]

Dataset	2022	2023	2
Number of spills $[10^3]$	326	363	C J
$\langle \text{Beam intensity} \rangle [\text{GHz}]$	0.57	0.48	0
$< N_{\pi\pi}/\text{spill} > [10^2]$	4.9	4.7	Z
$N_{K} [10^{12}]$	2.3	2.5	و
$\varepsilon_{\rm RV}$	0.63	0.68	0
$N_{\pi\nu\nu}$	8	9	
$N_{\pi\nu\nu}/\text{spill} [10^{-5}]$	2.5	2.5	د 2
$B_{\rm total}/N_{\pi\nu\nu}$	1.1	1.1	-

Conclusions

- New study of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay using NA62 2021–22 dataset, combined with 2016–18: [JHEP 02 (2025) 191]
- $\mathcal{B}_{16-22}(K^+ \to \pi^+ \nu \overline{\nu}) = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$
- 25% relative precision achieved
- BR consistent with SM prediction within 1.7σ
- Background-only hypothesis rejected with significance Z>5 • First observation of the $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay
- Need full NA62 data-set to clarify SM agreement or tension 2023—LS3 data-set collection & analysis in progress, to achieve precision better than 20%

The story so far: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ with 2016–18 data

Data-taking year	[Refere			
2016	[PLB 7]	91 (2019) 156]	0.152	
2017	[JHEP	11 (2020) 042]	1.46 :	
2018	[JHEP	06 (2021) 093]	5.42	
2016 - 18	[JHEP	06 (2021) 093]	7.03	
Statistical combination	$\mathfrak{B}(l$	$K^+ \to \pi^+ \nu \overline{\nu}) =$	$(10.6^+$	
	Back	around-only hype	thosis	
	Juach	packy ound-only hypothesis.		

 $|^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst} \times 10^{-11} @ 68\% CL$

 $p = 3.4 \times 10^{-4} \Rightarrow$ significance = 3.4σ

Particle ID performance : 2021–22 data MA62 **Calorimeters** RICH

• Use BDT classifier for LKr & MUV1,2

 $P(\mu^+ \Rightarrow \pi^+) = (1.3 \pm 0.2) \times 10^{-8}$

30

• Meets target: combined γ/π^0 rejection of $\mathcal{O}(10^8)$

4th GTK station

- Si Pixel detector exposed to ~1GHz beam.
- Essential for $K^+ \pi^+$ matching.
 - Measures K^+ 3-mom. & time
- 4th GTK station improves efficiency & pileup resilience.

New upstream vetos: VetoCounter & ANTIONA62

[FELIX readout: Streaming Readout Workshop talk 2021]

ANTIO

[SPSC report 2023][EP Newsletter, Dec21]

VetoCounter

Detect particles from decays upstream of final collimator.

 Factor ~3 rejection with ~2% accidental veto.

• Detect particles up to ~1 m from beam line.

Reject ~20% of upstream background with <1% signal loss.

HASC2 veto

• $K^+ \rightarrow \pi^+ \pi^0$ was 2nd largest background for 2018 analysis.

Ζ

 10°

- Addition of HASC2:
 - 30% less $K^+ \rightarrow \pi^+ \pi^0$
 - 18% less $K^+ \rightarrow \pi^+ \pi^+ \pi^-$
 - 3.5% less $K^+ \rightarrow \mu^+ \nu$
 - with only 1.5% signal loss

Events passing $\pi^+ \nu \overline{\nu}$ selection

(modifying HASC veto: study integral of background regions)

~**30** × **10**¹¹ ppp on T10

• NA62 "Full intensity" with 4.8s spill = 600 MHz

2021 instantaneous beam intensity

Remove events in first 1s of 4.8s spill for 2021 data only.

• DAQ overwhelmed by instantaneous rates up to 10x higher than design.

Analysis strategy

Triggers:

- Minimum Bias: $K^+ \rightarrow \mu^+ \nu$
- Normalisation: $K^+ \rightarrow \pi^+ \pi^0$
- Signal: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ candidates

Selection:

- Normalisation $K^+ \rightarrow \pi^+ \pi^0$: 1 downstream track (only); identified as π^+ ; K^+ $-\pi^+$ matching (space & time); upstream vetos.
- Signal $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ candidates: same as normalisation selection + full photon and detector multiplicity cuts (reject all extra activity).

Bayesian classifier for $K^+ - \pi^+$ matching MA62

- Inputs: spatial (CDA) & time (ΔT_+) matching, intensity/pileup (N_{GTK}) [prior]
 - Models for PDFs/Prior from $K^+ \to \pi^+ \pi^+ \pi^-$ data.

Example of selection update

- Output: posterior probability of GTK track = true K^+
 - Use likelihoods of kaons (K) and pileup (P)

Likelihood ratio used to select true match when $N_{GTK} > 1$ Efficiency improved (+10%) and mistagging probability maintained.

Signal sensitivity

• Normalisation channel: $K^+ \rightarrow \pi^+ \pi^0$, momentum range $p \in [15, 45] GeV/c$.

Effective number of K^+ decays, N_K :

Single event sensitivity:

(Branching ratio corresponding to expectation of 1 event)

Optimum NA62 intensity

Selected signal yield vs intensity

Instantaneous intensity [MHz]

1000

- Saturation of expected signal yield with intensity. Mainly due to:
 - Paralyzable effects from TDAQ dead time and trigger veto windows.
 - Offline selection, due to veto conditions.
 - Main sources of uncertainty for model:
 - Online time-dependent mis-calibrations.
 - Fit uncertainty.
 - From August 2023 operate at optimal intensity (~75% of full) to maximise $\pi\nu\nu$ sensitivity
 - Maximise signal yield
 - lower expected background
 - Higher DAQ efficiency
- Studies of **2021—22 data** at high intensity were crucial to establish optimal intensity

- momentum μ^+ ($p \gtrsim 35 GeV/c$).

- (i.e. towards signal regions).

$K^+ \rightarrow \mu^+ \nu \gamma$ **Background**

- Kinematically select $K^+ \rightarrow \mu^+ \nu \gamma$ events: $m_{miss}^2(K_{\mu 2\gamma}) = (P_K - P_\mu - P_\gamma)^2$

 - cluster (and position of K^+ - μ^+ vertex).

Evaluate background expectation using $\mu\nu\gamma$ control sample from MinimumBias trigger, not applying Calorimetric BDT classifier and MUV3 signal: • P_K : 4-momentum of K^+ from GTK (as normal) **Minimum Bias Data** • P_{μ} : 4-momentum of track with μ^+ mass hypothesis. P_v)² [GeV²/c⁴] **R1** 10⁵ • P_{γ} : reconstructed from energy and position of LKr 0.05 10⁴ Validation: data sample with PID = "less pion-like" **10³** (Calo BDT bins below π^+ bin). ^{لس}اعة –0.05 10² eef teol Expected + Observed -0.1 10 ¥₀ ₀50 **Κ**_{μ2} $K_{\mu 2\gamma}$ Upstream –0.15^L 0.02 0.04 0.06 0.08 0.1 $m_{miss}^2 = (P_{\kappa} - P_{\pi})^2 [GeV^2/c^4]$ -0.06 -0.04 -0.02 0

- Before $K^+ \rightarrow \mu^+ \nu \gamma$ veto: found excess of events at p > 35 GeV/c in Region 2 relative to 2016–18 data.
- Additional background identified and studied in data control samples & MC.
- $K^+ \rightarrow \mu^+ \nu \gamma$ veto added to selection criteria for final analysis.

Other backgrounds

• $K^+ \rightarrow \pi^+ \pi^- e^+ \nu (K_{e4})$

Random veto & trigger efficiencies Effective # of K+ $N_{b,g}(K^+ \to \pi^+ \pi^- e^+ \nu) = N_K \varepsilon_{RV} \varepsilon_{trig} \mathcal{B}_{K_{e4}} A_{K_{e4}} \qquad N_{bg}(K^+ \to \pi^+ \pi^- e^+ \nu) = 0.89^{+0.33}_{-0.27}$ Branching ratio of $K_{\rho 4}$ (from PDG)

• $K^+ \rightarrow \pi^0 \ell^+ \nu$ and $K^+ \rightarrow \pi^+ \gamma \gamma$:

- Evaluated with simulations.
- Negligible contributions to total bac

• No clean control samples for K_{e4} in data: Use 2×10^9 simulated decays.

$$N_{bg}(K^+ \to \pi^0 \ell^+ \nu) < 1 \times 10^{-3}$$
kground. $N_{bg}(K^+ \to \pi^+ \gamma \gamma) = 0.01 \pm 0.01$

Upstream background evaluation

$$N_{bg} = \sum_{i} N_i f_{cda} P_i^{match}$$

Upstream Reference Sample: signal selection but invert CDA cut (CDA>4mm) C Scaling factor : bad cda —> good cda

Probability to pass $K^+ - \pi^+$ matching match

Calculate using bins (i) of $(\Delta T_+, N_{GTK})$ [Updated to fully data-driven procedure]

N = 51 $f_{CDA} = 0.20 \pm 0.03$ $< P_{match} > = 73\%$

$N_{bg}(Upstream) = 7.4^{+2.1}_{-1.8}$

- N provides normalisation.
- f_{CDA} depends only on geometry.
 - P_{match} depends on $(\Delta T_+, N_{GTK})$.

Upstream background evaluation

$$N_{bg} = \sum_{i} N_i f_{cda} P_i^{match}$$

Upstream Reference Sample: signal selection but invert CDA cut (CDA>4mm) Scaling factor : bad cda —> good cda Jcda

Probability to pass $K^+ - \pi^+$ matching match

Calculate using bins (i) of $(\Delta T_+, N_{GTK})$ [Updated to fully data-driven procedure]

N = 51 $f_{CDA} = 0.20 \pm 0.03$ $< P_{match} > = 73\%$

$N_{bg}(Upstream) = 7.4^{+2.1}_{-1.8}$

- Upstream reference sample contains all known upstream mechanisms.
 - N provides normalisation.
- f_{CDA} depends only on geometry.
 - P_{match} depends on $(\Delta T_+, N_{GTK})$.

A 62 A Kinematic regions and control regions 0.12 Signal regions

- Signal regions
- Control regions: used to validate background predictions.

• Background regions: used as "reference samples" for some background estimates.

Results in context: the long story of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

• Experimental measurements:

- Camerini et al. [PRL 23 (1969) 326-329]
- Klems et al. [PRD 4 (1971) 66-80]
- Ljung et al. [PRD 8 (1973) 1307-1330]
- Cable et al. [PRD 8 (1973) 3807-3812]
- Asano et al. [PLB 107 (1981) 159]
- E787 :
 - [PRL 64 (1990) 21-24]
 - [PRL 70 (1993) 2521-2524]
 - [PRL 76 (1996) 1421-1424]
 - [PRL 79 (1997) 2204-2207]
 - [PRL 84 (2000) 3768-3770]
 - [PRL 88 (2002) 041803]
- E949 (+E787)
 - [PRL 93 (2004) 031801]
 - [PRL 101 (2008) 191802]
- NA62:
 - 2016 data: [PLB 791 (2019) 156]
 - 2016+17 data: [JHEP 11 (2020) 042]
 - 2016–18 data: [JHEP 06 (2021) 093]
 - 2016-22 data: [JHEP 02 (2025) 191]
- Theory:
 - [Phys.Rev. 163 (1967) 1430-1440]
 - [PRD 10 (1974) 897]
 - [Prog.Theor.Phys. 65 (1981)]
 - [PLB 133 (1983) 443-448]
- [PLB 192 (1987) 201-206]
- [Nucl.Phys.B 304 (1988) 205-235]
- [PRD 54 (1996) 6782-6789]
- [PRD 76 (2007) 034017]
- [PRD 78 (2008) 034006]
- [PRD 83 (2011) 034030]
- [JHEP 11 (2015) 033]
- [JHEP 09 (2022) 148]

51

The NA62 published results (2022-25)

1. Search for hadronic decays of feebly-interacting, particles at NA62, EPJC 85 (2025) 571. 2. First detection of a tagged neutrino in the NA62 experiment, Phys. Lett. B 863 (2025) 139345. 3. Observation of the K+ $\rightarrow \pi$ +v v decay and measurement of its branching ratio, JHEP 02 (2025) 191. 4. First search for $K \rightarrow \pi 0\pi\mu e$ decays, Phys. Lett. B 859 (2024) 139122. **5.** Search for leptonic decays of the dark photon at NA62, Phys. Rev. Lett. 133 (2024) 111802. 6. Measurement of the K+ $\rightarrow \pi$ + $\gamma\gamma$ decay, Phys. Lett. B 850 (2024) 138513. /. Search for K+ decays into the π +e+e-e+e- final state, Phys. Lett. B 846 (2023) 138193. 8. A study of the K+ $\rightarrow \pi 0e + v\gamma$ decay, JHEP 09 (2023) 040. **9.** Search for dark photon decays to $\mu+\mu-\mu$ at NA62, JHEP 09 (2023) 035. 10.A search for the K+ \rightarrow µ-ve+e+ decay, Phys. Lett. B 838 (2023) 137679. 11.A measurement of the K+ $\rightarrow \pi$ +µ+µ– decay, JHEP 11 (2022) 011. 12. Searches for lepton number violating K+ $\rightarrow \pi$ -(π 0) e+e+ decays, Phys. Lett. B 830 (2022) 137172.

The NA62 published results (2018-21)

- 1. Search for Lepton Number and Flavor Violation in K+ and $\pi 0$ Decays, Phys. Rev. Lett. 127 (2021) 131802.
- 2. Measurement of the very rare $K^+ \rightarrow \pi^+ v$ v decay, JHEP 06 (2021) 093.
- **3.** Search for K+ decays to a muon and invisible particles, Phys. Lett. B 816 (2021) 136259.
- 4. Search for a feebly interacting particle X in the decay $K \rightarrow \pi + X$, JHEP 03, (2021) 058.
- **5.** Search for $\pi 0$ decays to invisible particles, JHEP 02, (2021) 201.
- **6.** An investigation of the very rare $K^+ \rightarrow \pi^+ v$ v decay, JHEP 11 (2020) 042.
- 7. Search for heavy neutral lepton production in K+ decays to positrons, Phys. Lett. B 807 (2020) 135599.
- 8. Searches for lepton number violating K+ decays, Phys. Lett. B 797 (2019) 134794.
- **9.** Search for production of an invisible dark photon in $\pi 0$ decays, JHEP 1905 (2019) 182.
- 10. First search of K+ $\rightarrow \pi$ +v v using the decay-in-flight technique, Phys. Lett. B 791 (2019) 156.
- 11. Search for heavy neutral lepton production in K+ decays, Phys. Lett. B 778 (2018) 137.

