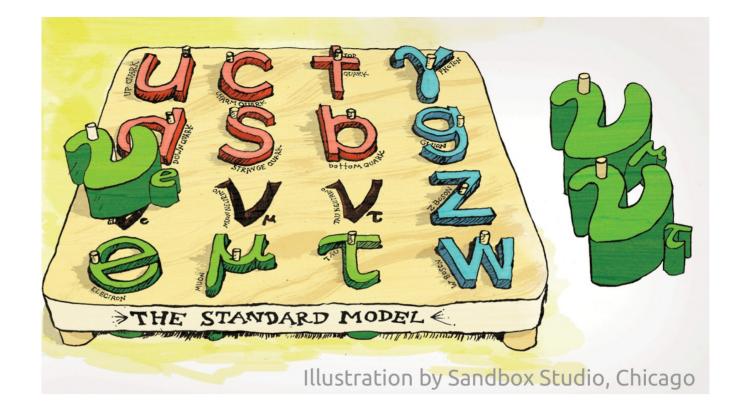
Lepton Number Violation: From the Cosmos to the Lab

Julia Harz

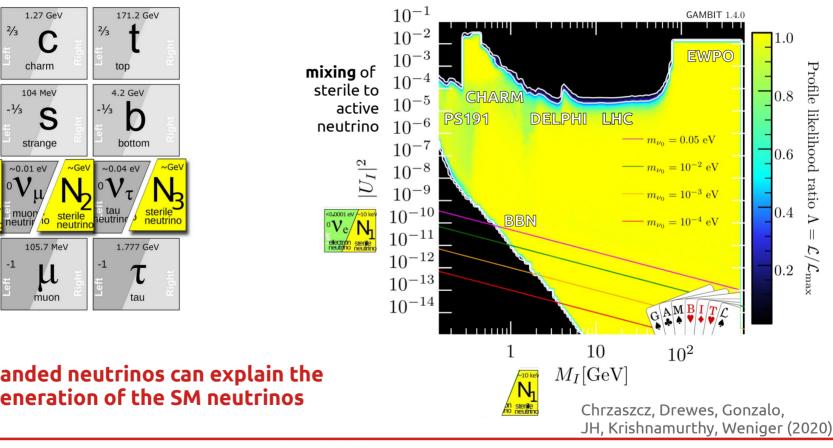
Johannes Gutenberg University Mainz

FLASY 2025, Rome 30.06. - 04.07.2025



Why is there more matter than antimatter?

Lepton Number Violation: From the Cosmos to the Lab


Where do neutrinos get their mass from?

Lepton Number Violation: From the Cosmos to the Lab

Extending the SM with right-handed neutrinos

Global fit: SM extended with 3 right-handed neutrinos

right-handed neutrinos can explain the mass generation of the SM neutrinos

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

2.4 MeV

up

4.8 MeV

down

<0.0001 eV /

electro

neutri

1/3

2/3

Quarks

Leptons

2/3

-1/3

e muon neutrir

~keV

on sterile

0.511 MeV

electron

JGU

Lepton Number Violation: From the Cosmos to the Lab

Julia Harz

Profile likelihood ratio

 $\mathcal{L}/\mathcal{L}_{ ext{max}}$

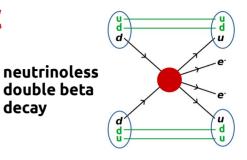
The nature of Neutrinos – Majorana vs Dirac

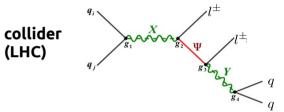
Right-handed neutrinos can give rise to two different mass terms:

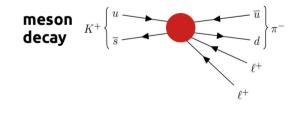
Dirac

Majorana

 $M_M \bar{\nu}_R \nu_R^c$


 $M_D \nu_L \overline{\nu}_R$

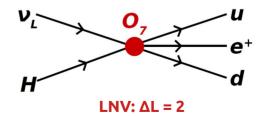

Lepton number conservation (LNC) Lepton number violation (LNV)


• LNV interaction smoking gun signal for Majorana nature

• LNV interaction could source baryogenesis via leptogenesis

LNV: Δ**L** = 2

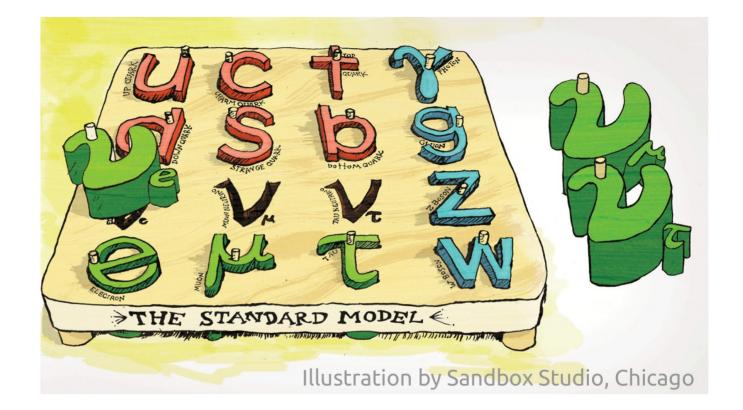
Standard Model Effective Field Theory (SMEFT)


• General interactions can be described by the Standard Model Effective Field Theory (SMEFT)

$$\mathcal{L} = \mathcal{L}_{SM} + C_5 \mathcal{O}_5 + \sum_i C_6^i \mathcal{O}_6^i + \sum_i C_7^i \mathcal{O}_7^i + \dots$$

• At dim-7 several LNV ($\Delta L = 2$) SMEFT operators exist, e.g.

\mathcal{O}	Operator
$\mathcal{O}_{ar{d}LQLH1}^{prst}$	$\epsilon_{ij}\epsilon_{mn} \left(\overline{d_p}L_r^i\right) \left(\overline{Q_s^c}^j L_t^m\right) H^n$
$\mathcal{O}^{prst}_{ar{e}LLLH}$	$\epsilon_{ij}\epsilon_{mn} \left(\overline{e_p}L_r^i\right) \left(\overline{L_s^c}^j L_t^m\right) H^n$

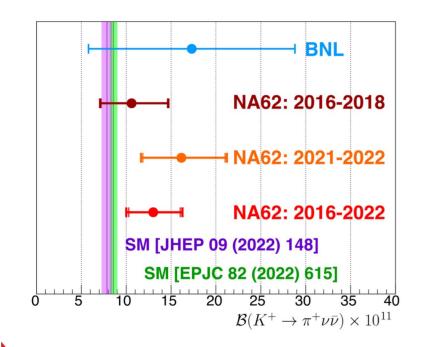

:

Lepton Number Violation: From the Cosmos to the Lab

Lepton Number Violation (LNV) & Meson decays

Lepton Number Violation: From the Cosmos to the Lab

Probing LNV interactions with Kaon decays


$K^{+} \left\{ \begin{array}{c} u \\ \overline{s} \\ \ell^{+} \\ \ell^{+} \end{array} \right\} \pi^{-}$	 Same-sign leptonic final state LNV is directly tested dim-9 SMEFT only for first generation, 0vββ stronger constraints very weak 	Liu, Zhang, Zhou (2016) Quintero (2017) Chun, Das, Mandal, Mitra, Sinha (2019)
$K^0 \begin{cases} d & \nu \\ \overline{s} & \nu \\ \nu \\ \end{pmatrix}$	 Decay into neutrino final state No explicit experimental searches? dim-7 SMEFT 	Gninenko (2014)
$K^{+} \left\{ \begin{array}{c} u & & \\ \hline s & & \\ \hline v & \\ \nu & \\ \end{array} \right\} \pi^{+}$	 Neutrino final state LNV needs to be independently confirmed dim-7 SMEFT 	Li, Ma, Schmidt (2019) Deppisch, Fridell, JH (2020) Buras, JH, Mojahed (2024)
$K^+ \begin{cases} u & \ell^+ \\ \overline{s} & \overline{\nu} \end{cases}$	 Charged lepton + neutrino final state Neutrino needs to be detected (Cooper et al. 1982) dim-7 SMEFT 	Deppisch, Fridell, JH (2020)
JOHANNES GUTENBERG UNIVERSITÄT MAINZ	Lepton Number Violation: From the Cosmos to the Lab	Julia Harz

Probing LNV interactions with Kaon decays

$K^{+} \left\{ \begin{matrix} u \\ \overline{s} \\ \ell^{+} \\ \ell^{+} \end{matrix} \right\} \pi^{-}$	 Same-sign leptonic final state LNV is directly tested dim-9 SMEFT only for first generation, 0vββ stronger constraints very weak 	Liu, Zhang, Zhou (2016) Quintero (2017) Chun, Das, Mandal, Mitra, Sinha (2019)
$K^0 \begin{cases} d & \nu \\ \overline{s} & \nu \\ \hline \nu & \nu \end{cases}$	 Decay into neutrino final state No explicit experimental searches? dim-7 SMEFT 	Gninenko (2014)
$K^{+} \left\{ \begin{matrix} u & & & u \\ \overline{s} & & & u \\ \hline s & & & u \\ \nu & & \nu \\ \nu & & \nu \\ \end{matrix} \right\} \pi^{+}$	 Neutrino final state LNV needs to be independently confirmed dim-7 SMEFT 	Li, Ma, Schmidt (2019) Deppisch, Fridell, JH (2020) Buras, JH, Mojahed (2024)
$K^+ \begin{cases} u & \ell^+ \\ \overline{s} & \overline{\nu} \end{cases}$	 Charged lepton + neutrino final state Neutrino needs to be detected (Cooper et al. 1982) dim-7 SMEFT 	Deppisch, Fridell, JH (2020)
JOHANNES GUTENBERG UNIVERSITÄT MAINZ	Lepton Number Violation: From the Cosmos to the Lab	Julia Harz

Lepton number violation in Kaon decays

Precise theoretical predictions with unprecedented measurements

Theoretical prediction:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.60 \pm 0.42) \times 10^{-11}$$

Buras, Buttazzo, Girrbach-Noe, Knegjens (2015) Buras, Venturini (2021)

Golden Channel!

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.94 \pm 0.15) \times 10^{-11}$

Buras, JH, Mojahed (2025) Deppisch, Fridell, JH (2020)

Lepton Number Violation: From the Cosmos to the Lab

Lepton number violation in Kaon decays?

As neutrinos are not explicitly measured, a new physics contribution could also be lepton number violating!

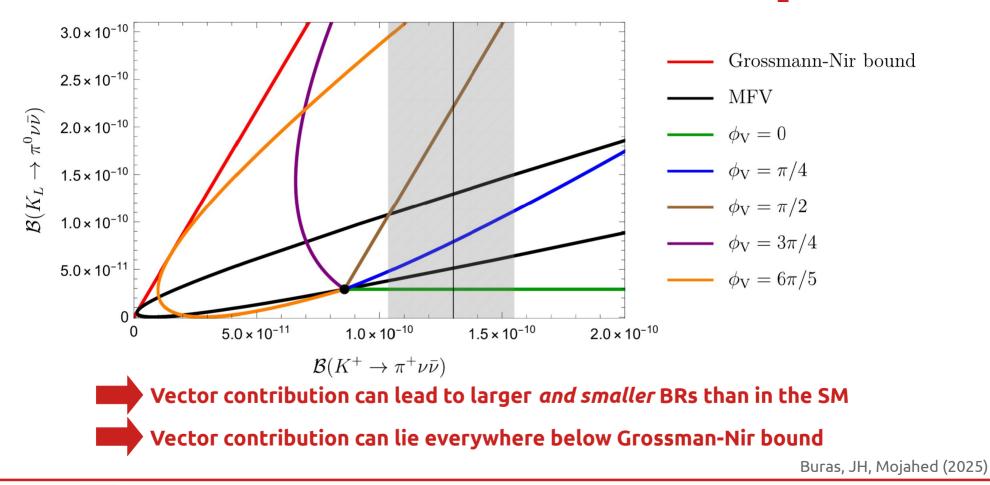
General NP contribution in $K^+ \rightarrow \pi^+ \nu \nu$ or $K_L \rightarrow \pi^0 \nu \nu$

Allow for most generic NP contribution from dim-6 LEFT operators:

Dim-6 LEFT operators (lepton number conserving) $\mathcal{O}_{uL}^{V} = (\overline{u_L}\gamma^{\mu}u_L)(\overline{\nu}\gamma^{\mu}\nu) , \qquad \qquad \mathcal{O}_{dL}^{V} = (\overline{d_L}\gamma^{\mu}d_L)(\overline{\nu}\gamma^{\mu}\nu) ,$

 $\mathcal{O}_{uR}^{V} = (\overline{u_R}\gamma^{\mu}u_R)(\overline{\nu}\gamma^{\mu}\nu) , \qquad \mathcal{O}_{dR}^{V} = (\overline{d_R}\gamma^{\mu}d_R)(\overline{\nu}\gamma^{\mu}\nu) ,$

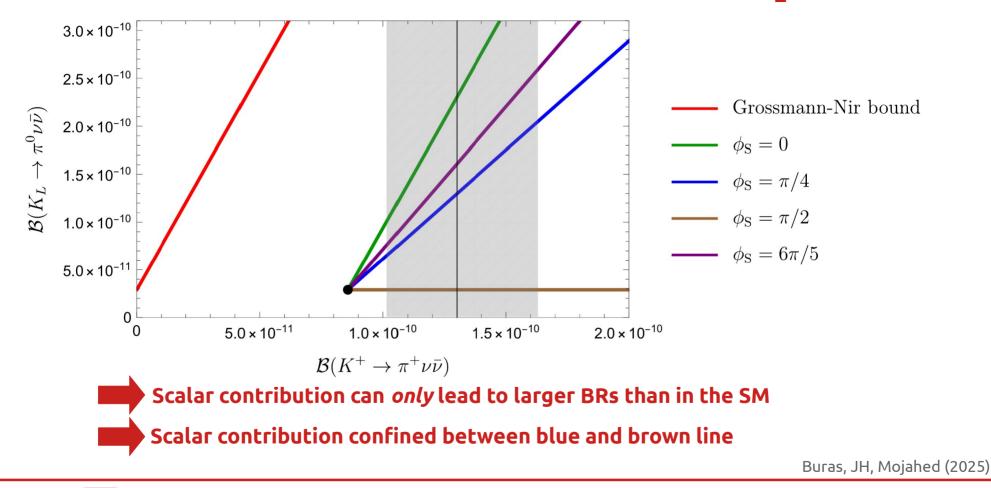
Dim-6 LEFT operators (lepton number violating)


$$\begin{split} \mathcal{O}_{uRL}^{S} &= (\overline{u_{R}}u_{L})(\overline{\nu^{C}}\nu) , & \mathcal{O}_{dRL}^{S} &= (\overline{d_{R}}d_{L})(\overline{\nu^{C}}\nu) , \\ \mathcal{O}_{uLR}^{S} &= (\overline{u_{L}}u_{R})(\overline{\nu^{C}}\nu) , & \mathcal{O}_{dLR}^{S} &= (\overline{d_{L}}d_{R})(\overline{\nu^{C}}\nu) , \\ \mathcal{O}_{u}^{T} &= (\overline{u_{R}}\sigma^{\mu\nu}u_{L})(\overline{\nu^{C}}\sigma_{\mu\nu}\nu) , & \mathcal{O}_{d}^{T} &= (\overline{d_{R}}\sigma^{\mu\nu}d_{L})(\overline{\nu^{C}}\sigma_{\mu\nu}\nu) \end{split}$$

Note:

JGU

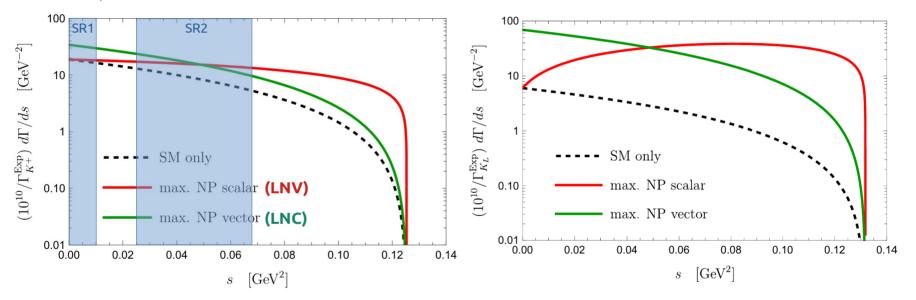
- For flavour diagonal contributions tensor contribution vanishes
- In the presence of light RHNs, LNV and LNC identification may be different within vSMEFT


New vector contribution in $K^+ \rightarrow \pi^+ vv$ and $K_{L} \rightarrow \pi^0 vv$

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

New scalar contribution in $K^+ \rightarrow \pi^+ vv$ and $K_{L} \rightarrow \pi^0 vv$



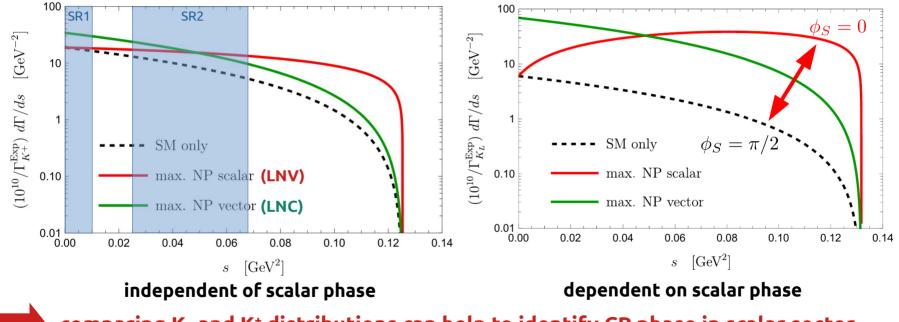
Disentangling the NP contribution

Allow for a NP scalar or vector contribution additionally to the SM such that the experimental upper bound $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 1.63 \times 10^{-10}$ is saturated.

We fixed $\phi_V = \pi/2$ and $\phi_S = 0$.

A NP scalar contribution additionally to the SM leads to a striking difference in the distribution when comparing to a vector contribution only.

Buras, JH, Mojahed (2025)



IGU

Disentangling the NP contribution

Allow for a NP scalar or vector contribution additionally to the SM such that the experimental upper bound $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 1.63 \times 10^{-10}$ is saturated.

We fixed $\phi_V = \pi/2$ and $\phi_S = 0$.

comparing K_L and K⁺ distributions can help to identify CP phase in scalar sector

Buras, JH, Mojahed (2025)

IGU

Disentangling the NP contribution

$$\mathcal{D}^{\exp}_{+}(s) \equiv \frac{d\Gamma(K^+ \to \pi^+ \nu \widehat{\nu})}{ds}$$
$$= C^+_S f^+_S(s) + C^+_V f^+_V(s) + C^+_T f^+_T(s)$$

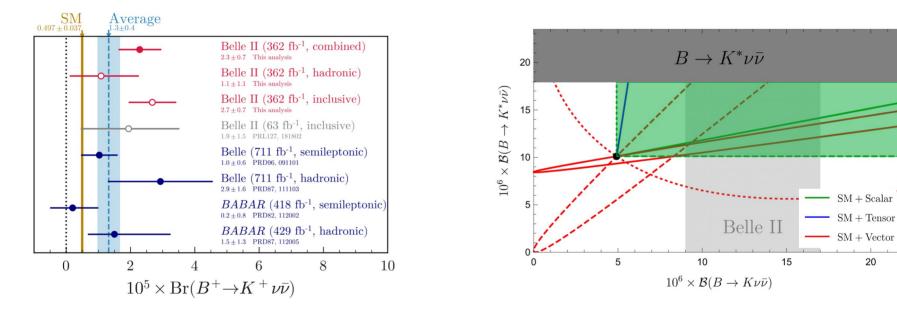
Measuring distribution at three different values s_1, s_2 and s_3 :

$$C_{S}^{+} = \frac{D_{+}^{\exp}(s_{1}) \left[f_{V}^{+}(s_{2}) f_{T}^{+}(s_{3}) - f_{V}^{+}(s_{3}) f_{T}^{+}(s_{2}) \right] + \text{cyclic}}{f_{S}^{+}(s_{1}) \left[f_{V}^{+}(s_{2}) f_{T}^{+}(s_{3}) - f_{V}^{+}(s_{3}) f_{T}^{+}(s_{2}) \right] + \text{cyclic}}$$

$$C_{V}^{+} = \frac{D_{+}^{\exp}(s_{1}) \left[f_{S}^{+}(s_{2}) f_{T}^{+}(s_{3}) - f_{S}^{+}(s_{3}) f_{T}^{+}(s_{2}) \right] + \text{cyclic}}{f_{V}^{+}(s_{1}) \left[f_{S}^{+}(s_{2}) f_{T}^{+}(s_{3}) - f_{S}^{+}(s_{3}) f_{T}^{+}(s_{2}) \right] + \text{cyclic}}$$

$$C_{T}^{+} = \frac{D_{+}^{\exp}(s_{1}) \left[f_{S}^{+}(s_{2}) f_{V}^{+}(s_{3}) - f_{S}^{+}(s_{3}) f_{V}^{+}(s_{2}) \right] + \text{cyclic}}{f_{T}^{+}(s_{1}) \left[f_{S}^{+}(s_{2}) f_{V}^{+}(s_{3}) - f_{S}^{+}(s_{3}) f_{V}^{+}(s_{2}) \right] + \text{cyclic}}$$

measuring non-zero C_s or C_τ implies the existence of a scalar or tensor current measuring non-zero C_v not in agreement with SM, implies new vector currents

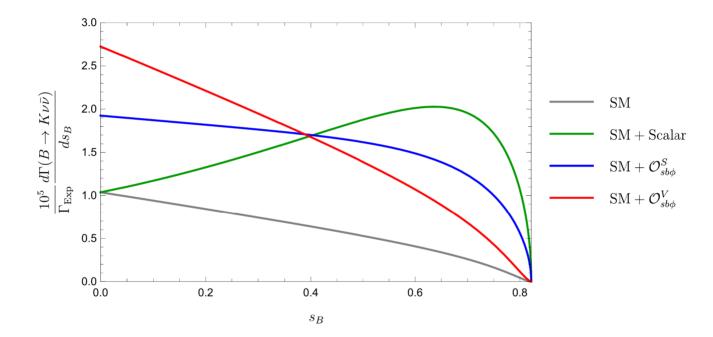

Buras, JH, Mojahed (2025)

Lepton number violation in B-decays?

Belle II reports deviation from SM

$$BR(B^+ \to K^+ \nu \bar{\nu})_{SM}^{SD} = (4.92 \pm 0.30) \times 10^{-6}$$

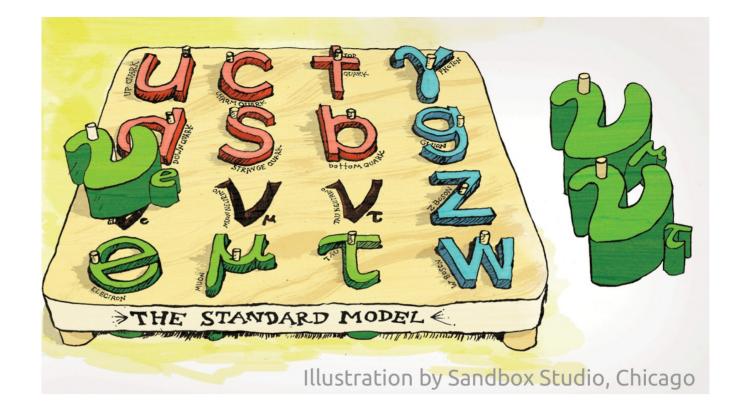
Scalar currents are confined to green area tensor current disfavoured See also Felkl, Giri, Mohanta, Schmidt (2023)


Buras, JH, Mojahed (2025)

Lepton Number Violation: From the Cosmos to the Lab

Neutrinos or dark sector particles?

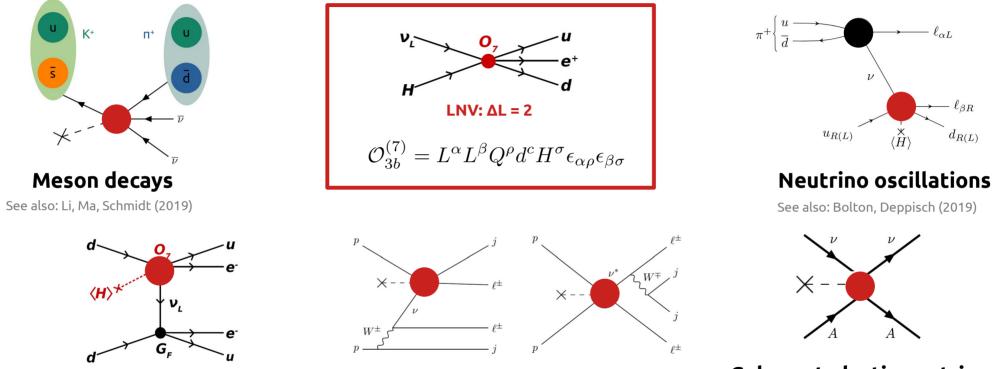
Example for comparison with dark sector final state particles: scalar dark matter



Distinguishable from various dark final states via kinematic distributions, dark fermions with similar Dirac structure as scalar SMEFT would require further analysis

Buras, JH, Mojahed (2025)

JGU


Search for Lepton Number Violation (LNV)

Lepton Number Violation: From the Cosmos to the Lab

Non-exhaustive list of references!!

Neutrinoless double beta decay

See also: Cirigiliano et al. (2017)

See also: Cepedello, Hirsch, Helo (2017), Deppisch, Dev, Pilaftsis (2015), del Aquila et al. (2012)

Collider searches

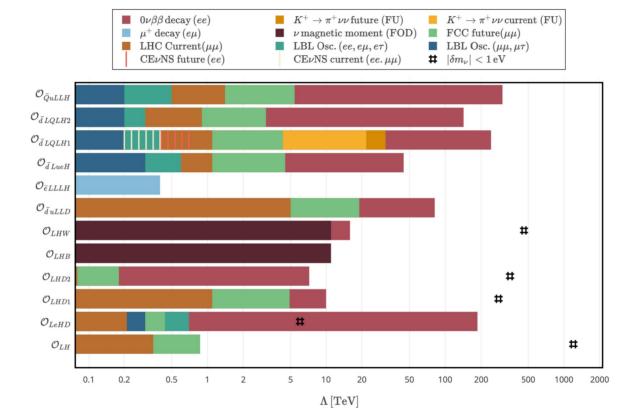
Coherent elastic neutrino nucleus scattering (CEvNS)

See also: Lindner, Rodejohann, Xu (2017)

Lepton Number Violation: From the Cosmos to the Lab

Туре	O	Operator	
$\Psi^2 H^4$	\mathcal{O}_{LH}^{pr}	$\epsilon_{ij}\epsilon_{mn} \left(\overline{L_p^c}{}^i L_r^m\right) H^j H^n \left(H^{\dagger} H\right)$	
$\Psi^2 H^3 D$	\mathcal{O}_{LeHD}^{pr}	$\epsilon_{ij}\epsilon_{mn} (\overline{L_p^c}^i \gamma_\mu e_r) H^j (H^m i D^\mu H^n)$	
$\Psi^2 H^2 D^2$	\mathcal{O}_{LHD1}^{pr}	$\epsilon_{ij}\epsilon_{mn} \left(\overline{L_p^c}{}^i D_\mu L_r^j \right) \left(H^m D^\mu H^n \right)$	
	\mathcal{O}_{LHD2}^{pr}	$\epsilon_{im}\epsilon_{jn} \left(\overline{L_p^c}^i D_\mu L_r^j\right) \left(H^m D^\mu H^n\right)$	
$\Psi^2 H^2 X$	\mathcal{O}_{LHB}^{pr}	$g\epsilon_{ij}\epsilon_{mn} \left(\overline{L_p^c}{}^i\sigma_{\mu\nu}L_r^m\right)H^jH^nB^{\mu\nu}$	
	\mathcal{O}_{LHW}^{pr}	$g'\epsilon_{ij}(\epsilon\tau^{I})_{mn}(\overline{L_{p}^{c}}^{i}\sigma_{\mu\nu}L_{r}^{m})H^{j}H^{n}W^{I\mu\nu}$	
$\Psi^4 D$	$\mathcal{O}_{ar{d}uLLD}^{prst}$	$\epsilon_{ij} (\overline{d_p} \gamma_\mu u_r) (\overline{L_s^c}{}^i i D^\mu L_t^j)$	
	$\mathcal{O}^{prst}_{ar{e}LLLH}$	$\epsilon_{ij}\epsilon_{mn} \left(\overline{e_p}L_r^i\right) \left(\overline{L_s^c}^j L_t^m\right) H^n$	
$\Psi^4 H$	$\mathcal{O}_{ar{d}LueH}^{prst}$	$\epsilon_{ij} \left(\overline{d_p} L_r^i ight) \left(\overline{u_s^c} e_t ight) H^j$	
	$\mathcal{O}_{ar{d}LQLH1}^{prst}$	$\epsilon_{ij}\epsilon_{mn} \left(\overline{d_p}L_r^i\right) \left(\overline{Q_s^c}^j L_t^m\right) H^n$	
	$\mathcal{O}_{ar{d}LQLH2}^{prst}$	$\epsilon_{im}\epsilon_{jn} \left(\overline{d_p}L_r^i\right) \left(\overline{Q_s^c}^j L_t^m\right) H^n$	Desises
	$\mathcal{O}_{ar{Q}uLLH}^{prst}$	$\epsilon_{ij} ig(\overline{Q_p} u_r ig) ig(\overline{L_s^c} L_t^i ig) H^j$	Basis ac Liao, Ma

Basis according to Lehmann (2014), Liao, Ma (2017)


Fridell, Graf, JH, Hati (2023)

Operator	Collider	0 uetaeta	LBL Osc.	$\mu_{ u}$	μ^+ -decay	$CE\nu NS$	Meson decay
\mathcal{O}_{LH}	\checkmark	\checkmark	-	-	-	-	-
\mathcal{O}_{LeHD}	\checkmark	\checkmark	\checkmark	-	-	-	-
\mathcal{O}_{LHD1}	\checkmark	\checkmark	-	-	-	-	-
\mathcal{O}_{LHD2}	\checkmark	\checkmark	-	-	-	-	-
\mathcal{O}_{LHB}	-	-	-	\checkmark	-	\checkmark	-
\mathcal{O}_{LHW}	-	\checkmark	-	\checkmark	-	\checkmark	-
$\mathcal{O}_{ar{d}uLLD}$	\checkmark	\checkmark	-	-	-	-	-
$\mathcal{O}_{ar{e}LLLH}$	-	-	-	-	\checkmark	-	-
$\mathcal{O}_{ar{d}LueH}$	\checkmark	\checkmark	\checkmark	-	-	-	-
$\mathcal{O}_{ar{d}LQLH1}$	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark
$\mathcal{O}_{ar{d}LQLH2}$	\checkmark	\checkmark	\checkmark	-	-	-	-
$\mathcal{O}_{ar{Q}uLLH}$	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-

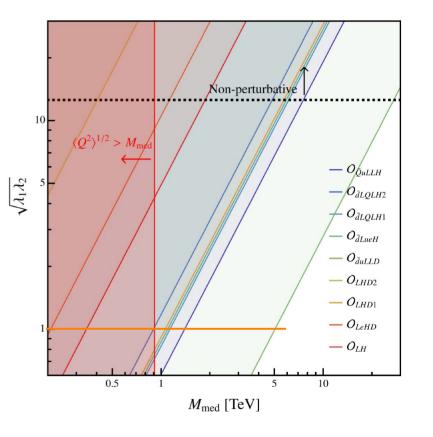
Fridell, Graf, JH, Hati (2023)

Potential to disentangle different operators due to interplay of different observables

Fridell, Graf, JH, Hati (2023)

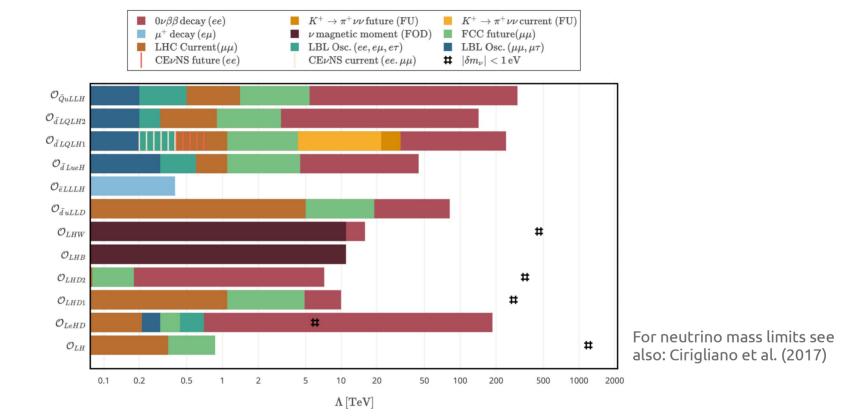
Lepton Number Violation: From the Cosmos to the Lab

Limitations of the EFT analysis – LHC


Validity of the EFT dependent on momentum exchange

$$\frac{g^2}{Q^2 - M_{\text{med}}^2} = -\frac{g^2}{M_{\text{med}}^2} \left(1 + \frac{Q^2}{M_{\text{med}}^2} + \mathcal{O}\left(\frac{Q^4}{M_{\text{med}}^4}\right)\right)$$

generally valid only when $M_{
m med}^2 > Q^2$


Limits on the new physics' masses dependent on actual UV model couplings:

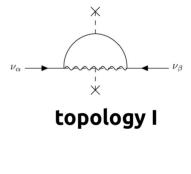
$$\frac{\lambda_1 \lambda_2}{M_{\rm med}^3} = \frac{1}{(\Lambda_{\rm LNV})^3}$$

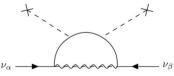
Fridell, Graf, JH, Hati (2023)

' Neutrino mass limits can be competitive, but are heavily dependent on the actual model

Fridell, Graf, JH, Hati (2023)

Lepton Number Violation: From the Cosmos to the Lab

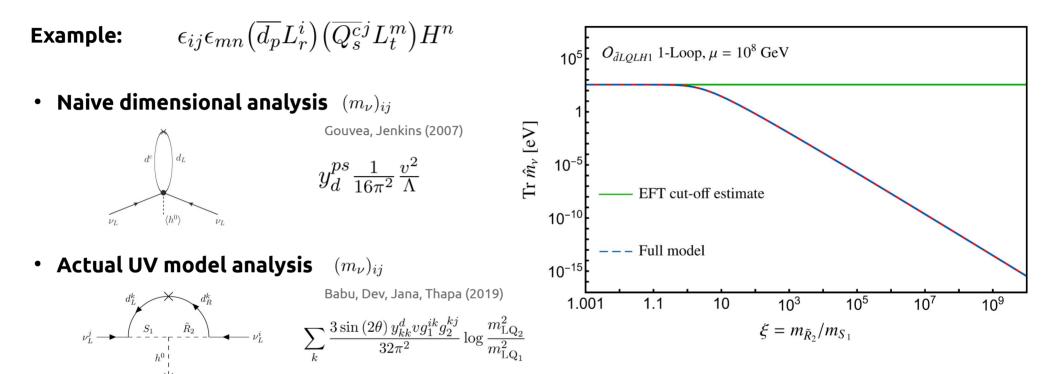

Limitations of the EFT analysis – simplified models


Identification of all possible tree-level UV completions incl. their neutrino mass topology

	Δ	φ	S_1	\tilde{R}_2	S_3	N	Σ	Q_5^\dagger	T_2
Δ		igodot						•	•
φ	•					0	0		
S_1				Ι		0		II	
$\frac{S_1}{\tilde{R}_2}$			Ι		Ι	0	0		II
S_3				Ι			0	II	
N		0	0	0					
Σ		0		0	\bigcirc				
$\begin{array}{c} Q_5^{\dagger} \\ T_2 \end{array}$	•		II		II				
T_2	•			II					

 $\mathcal{O}_{\bar{d}LQLH1} = \epsilon_{ij}\epsilon_{mn} (\overline{d_p}L_r^i) (\overline{Q_s^c}{}^j L_t^m) H^n$

For exploding dim-7 operators see also: Gargalionis, Volkas (2021)



topology II

Fridell, Graf, JH, Hati (2024)

Limitations of the EFT analysis – neutrino masses

Large mass hierarchies in the new physics are not captured – is there an intermediate way?

Fridell, Graf, JH, Hati (2024)

Lepton Number Violation: From the Cosmos to the Lab

A simplified multi-scale approach

Based on dimensional regularisation and method of regions

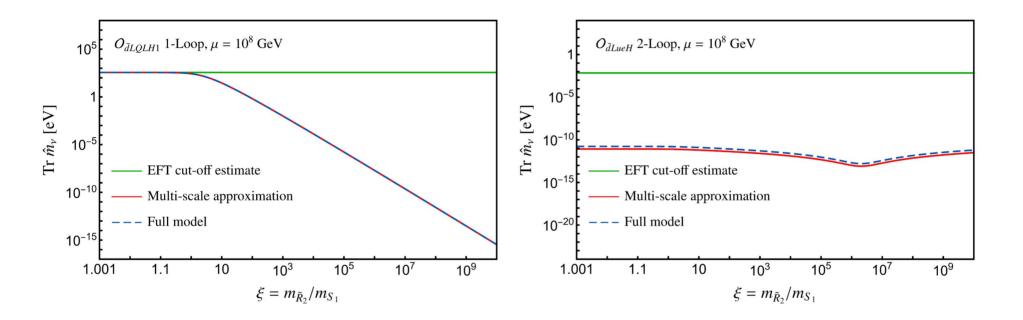
Beneke, Smirnov (1998) Manohar (1997)

Generalised to general topology I (1-loop)

$$(m_{\nu})_{ij}^{\mathrm{I}} \approx \frac{1}{16\pi^2} \frac{\nu\mu}{m_{\Phi_1}^2 - m_{\Phi_2}^2} \log\left(\frac{m_{\Phi_1}^2}{m_{\Phi_2}^2}\right) \left(\lambda_{\Phi_1} M_f \lambda_{\Phi_2}^T + \lambda_{\Phi_2} M_f^T \lambda_{\Phi_1}^T\right)_{ij}$$

topology I (1-loop)

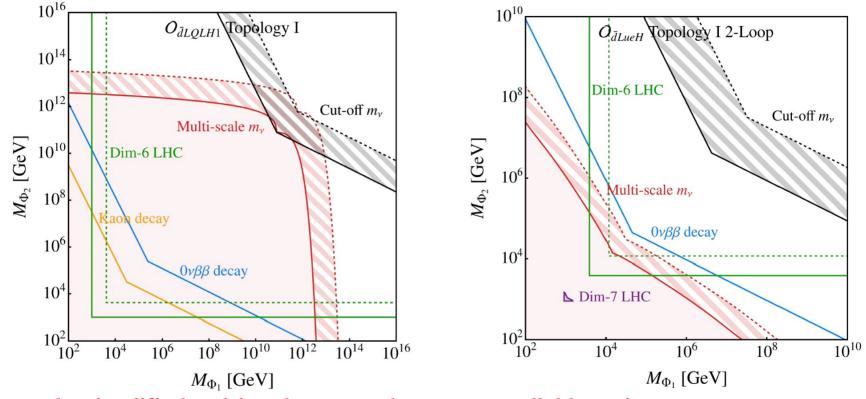
Generalised to general topology I (2-loop)


$$(m_{\nu})_{ij}^{\text{I, two-loop}} \approx \frac{1}{(16\pi^2)^2} \frac{v^3 \mu}{m_{\Phi_1}^2 - m_{\Phi_2}^2} \left[f_{\ell}(m_{\Phi_1}, m_W) - f_{\ell}(m_{\Phi_2}, m_W) \right] \\ \times \left(\lambda_{\Phi_1} M_f \lambda_{\Phi_2}^T + \lambda_{\Phi_2} M_f^T \lambda_{\Phi_1}^T \right)_{ij}$$

Fridell, Graf, JH, Hati (2024)

Lepton Number Violation: From the Cosmos to the Lab

A simplified multi-scale approach


The simplified multi-scale approach captures all relevant features of a UV theory

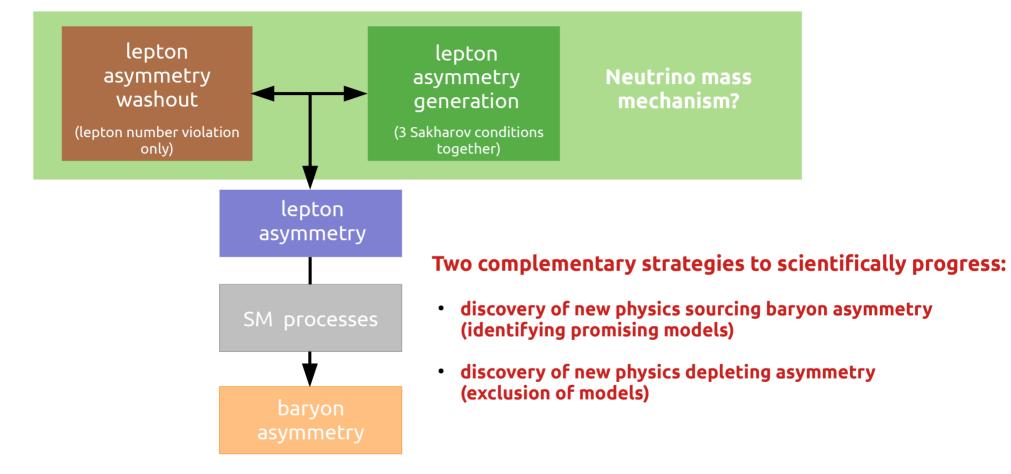
Fridell, Graf, JH, Hati (2024)

Lepton Number Violation: From the Cosmos to the Lab

Impact on the parameter space

The simplified multi-scale approach as a more reliable estimate Opens up parameter space featuring interplay of experimental observables

Fridell, Graf, JH, Hati (2024)



From the lab to the cosmos: link to leptogenesis

Lepton Number Violation: From the Cosmos to the Lab

Basic principle of leptogenesis

Implications of low-scale LNV new physics on baryogenesis

Lepton Number Violation: From the Cosmos to the Lab

Falsifying baryogenesis with LHC & 0vββ decay

Observation of any LNV washout process at the LHC would falsify high-scale baryogenesis

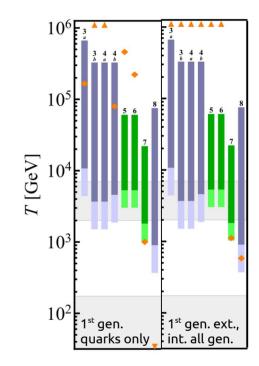
Deppisch, JH, Hirsch (2014)

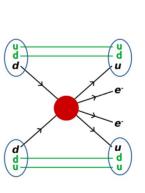
Observation of neutrinoless double beta decay with new physics from > dim-5 LNV operators would falsify high-scale baryogenesis

Deppisch, Graf, JH, Huang (2018) Deppisch, JH, Huang, Hirsch, Päs (2015)

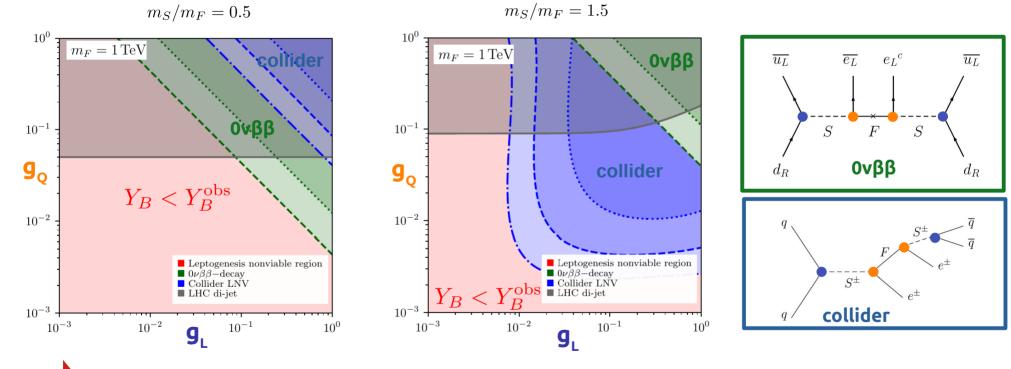
Asymmetry stored in another flavour sector?

- \rightarrow measurement in all flavours
- → low-scale LFV leading to equilibration


For the impact **BNV interactions** from Nnbar oscillations, meson oscillations and the LHC on Baryogenesis, see


Fridell, JH, Hati (2021)

BUT: Limitations of EFT approach



 $pp \rightarrow l^{\pm}l^{\pm}aa$

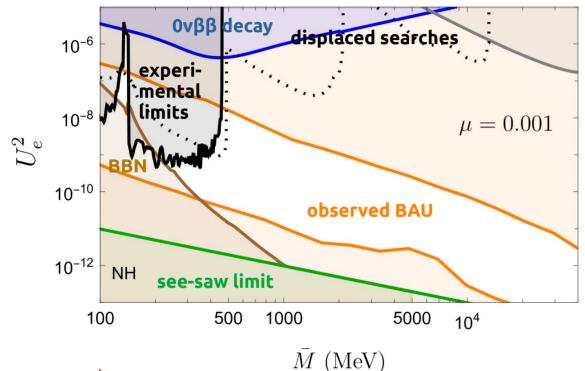
Falsifying baryogenesis with LHC & 0vßß decay

Impact of observation of TeV-scale LNV on standard leptogenesis $\tilde{\mathcal{L}} \supset g_Q \overline{Q} S d_R + g_L \overline{L} (i\tau^2) S^* F$

Depending on mass hierarchy of new physics, collider or 0vßß decay is more sensitive

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Lepton Number Violation: From the Cosmos to the Lab


Implications of new low-scale LNC physics on baryogenesis and neutrinoless double beta decay

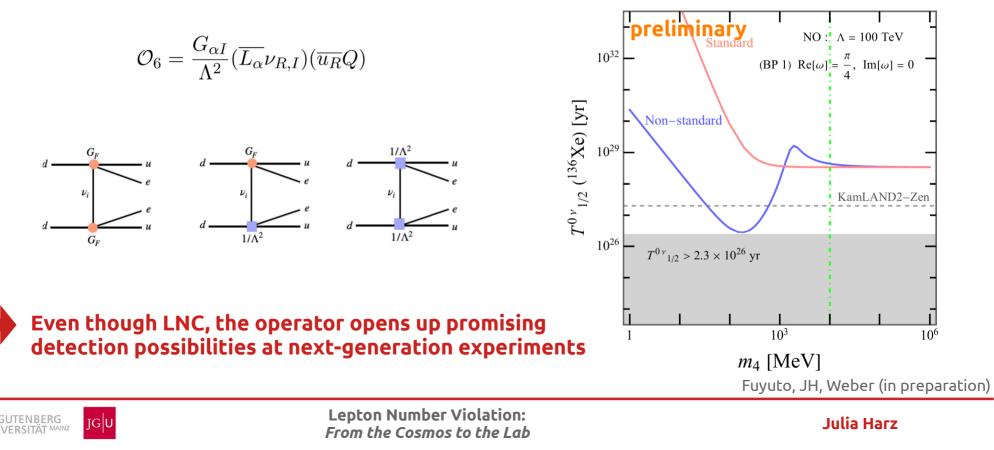
Lepton Number Violation: From the Cosmos to the Lab

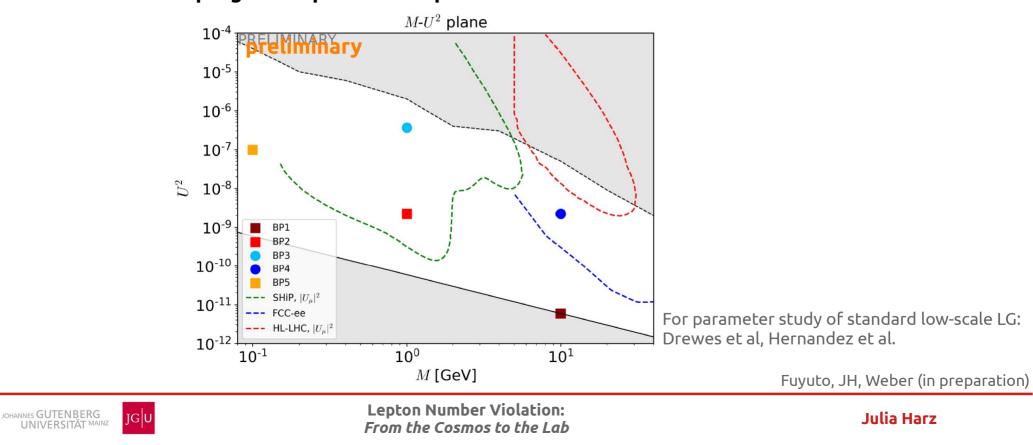
Low-scale leptogenesis

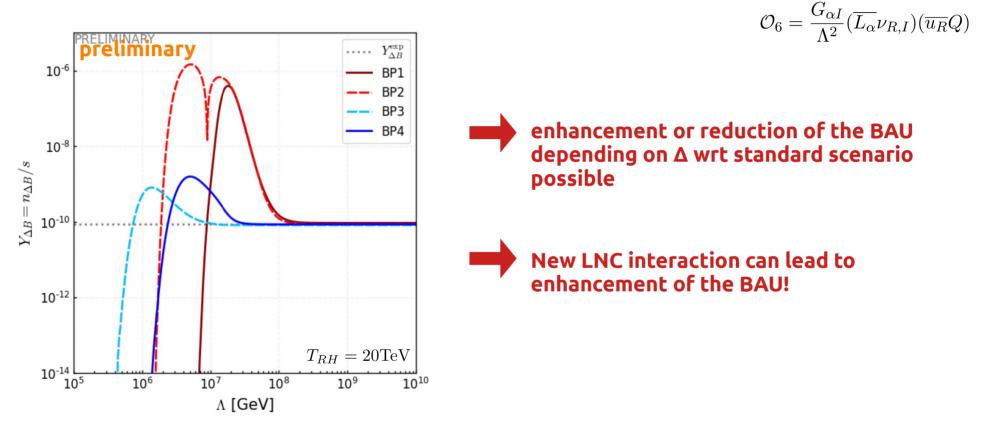
Low-scale leptogenesis is an interesting alternative possibility to high-scale leptogenesis

- Testability via collider searches
- Link to neutrinoless double beta decay

de Vries, Drewes, Georis, Klaric, Plakkot (1998) Several works on low-scale leptogenesis by other authors: Drewes et al, Klaric et al, Hernandez et al., etc.


How is the parameter space impacted by new LNC non-standard interactions (NSIs)?


Impact of LNC operators on 0vββ decay

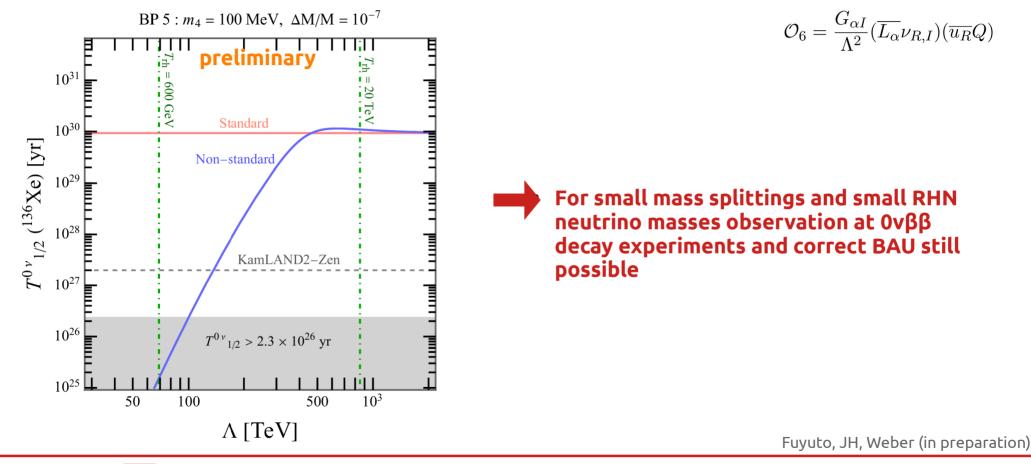

LNC vSMEFT operators can lead to an altered half life of neutrinoless double beta decay

See also Dekens, de Vries, Fuyuto, Mereghetti, Zhou(2020)

Investigation of the impact of a new LNC vSMEFT interaction $\mathcal{O}_6 = \frac{G_{\alpha I}}{\Lambda^2} (\overline{L_{\alpha}} \nu_{R,I}) (\overline{u_R} Q)$ on the low-scale leptogenesis parameter space



Fuyuto, JH, Weber (in preparation)



Lepton Number Violation: From the Cosmos to the Lab

Fuyuto, JH, Weber (in preparation)

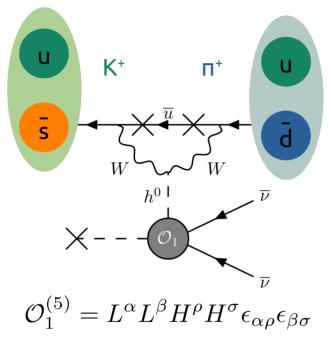
Lepton Number Violation: From the Cosmos to the Lab

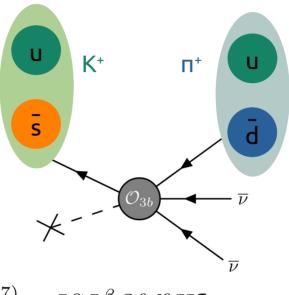
Conclusions

- Observation of Lepton Number Violation (LNV) would have far reaching consequences on neutrino physics and leptogenesis
- "invisible" decay modes as in B- or Kaon-decays can give relevant insights
- Only comprehensive consideration of ALL observables can help disentangling the new physics (operator)
- Simplified models and multi-scale approach for model independent study with reliable limits
- Leptogenesis will be impacted, even for new low-scale lepton-number conserving interactions

Exciting complementary insights from the early Universe and laboratory experiments!

Thank you for your attention!



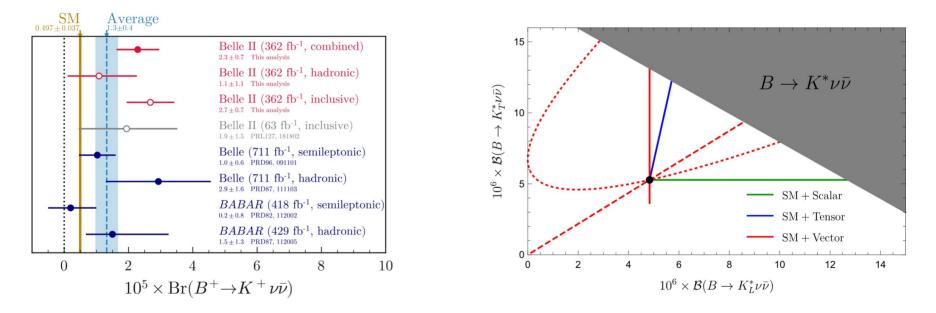


Lepton number violation in Kaon decays?

- GIM suppressed
- Majorana neutrino mass

- $\mathcal{O}_{3b}^{(7)} = L^{\alpha} L^{\beta} Q^{\rho} d^c H^{\sigma} \epsilon_{\alpha\rho} \epsilon_{\beta\sigma}$
 - No GIM suppression
 - Majorana contribution to neutrino masses

• Footprints of Majorana neutrinos in rare meson decays?


JG

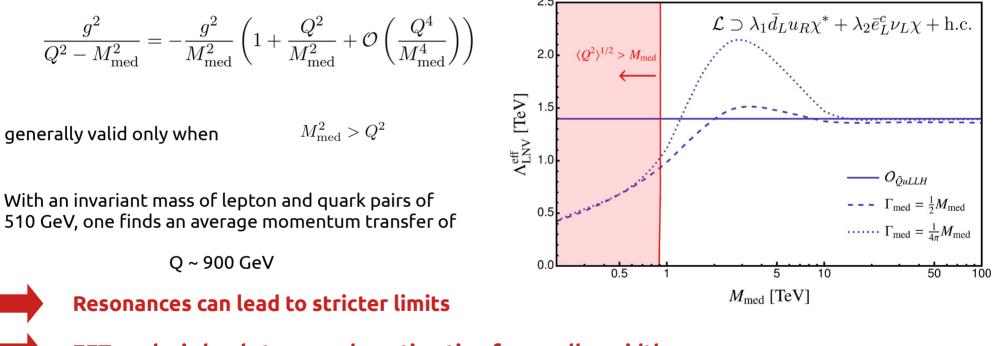
Lepton Number Violation: From the Cosmos to the Lab

Lepton number violation in B-decays

Belle II reports deviation from SM

$$\mathrm{BR}(B^+ \to K^+ \nu \bar{\nu})_{\mathrm{SM}}^{\mathrm{SD}} = (4.92 \pm 0.30) \times 10^{-6}$$

Tensor (scalar) current confined to blue (green) line, beyond indication for vector current


Buras, JH, Mojahed (2025)

Lepton Number Violation: From the Cosmos to the Lab

Limitations of the EFT analysis – LHC

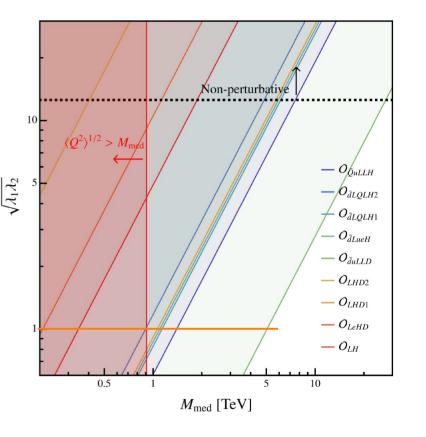
Validity of the EFT dependent on momentum exchange

Fridell, Graf, JH, Hati (2023)

JG U

Lepton Number Violation: From the Cosmos to the Lab

Limitations of the EFT analysis – LHC

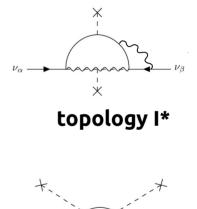

Limits on the new physics' masses dependent on actual UV model couplings:

$$\frac{\lambda_1 \lambda_2}{M_{\rm med}^3} = \frac{1}{(\Lambda_{\rm LNV})^3}$$

Careful interpretation of EFT limits necessary

For large momentum observables simplified models more reliable

Fridell, Graf, JH, Hati (2023)

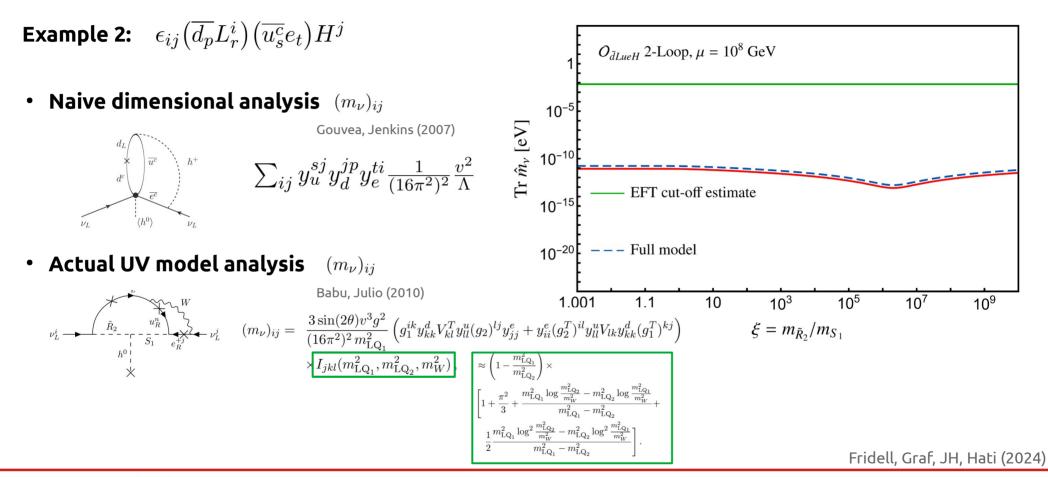

Lepton Number Violation: From the Cosmos to the Lab

Limitations of the EFT analysis – simplified models

Identification of all possible tree-level UV completions incl. their neutrino mass topology

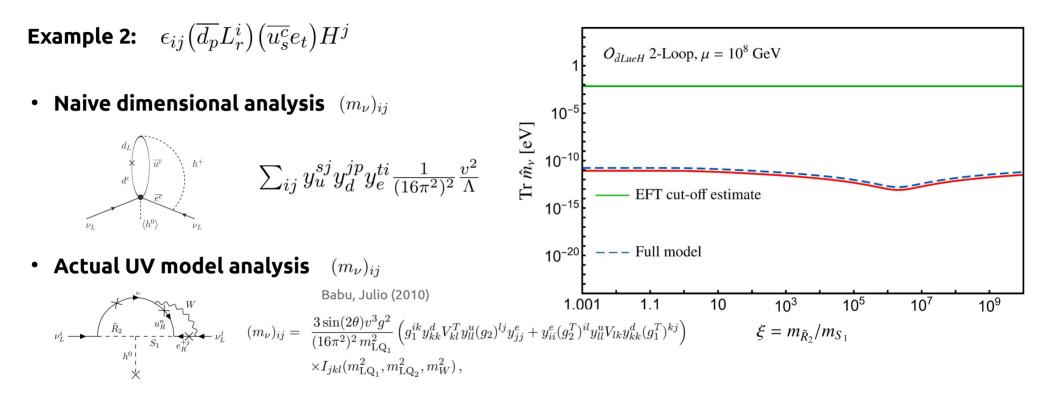
$\mathcal{O}_{ar{d}LueH} = \epsilon_{ij}ig(\overline{d_p}L_r^iig)ig(\overline{u_s^c}e_tig)H^j$										
	S_1	\tilde{R}_2	N	Δ_1^\dagger	Q_5^\dagger	Q_7	W_1'	V_3	U_1	\bar{V}_2^\dagger
S_1		I*	0		II*					
\tilde{R}_2	I*			II*		II*				
N	\bigcirc						\bigcirc		0	
Δ_1^\dagger		II*					II*			II*
Q_5^\dagger	II*							II*		II*
Q_7		II*						II*	II*	
W_1'			0	II*				I*		
V_3					II*	II*	I*			
U_1			0			II*				I*
\bar{V}_2^\dagger				II*	II*				I*	

For exploding dim-7 operators see also: Gargalionis, Volkas (2021)



topology II*

Fridell, Graf, JH, Hati (2024)


Limitations of the EFT analysis – neutrino masses

Lepton Number Violation: From the Cosmos to the Lab

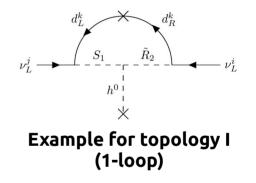
Limitations of the EFT analysis – neutrino masses

Is there an intermediate way to correctly estimate neutrino masses without full UV calculation?

Fridell, Graf, JH, Hati (2024)

A simplified multi-scale approach

Based on dimensional regularisation and method of regions


Beneke, Smirnov (1998) Manohar (1997)

1) Integrating out first heavy scale (hard region)

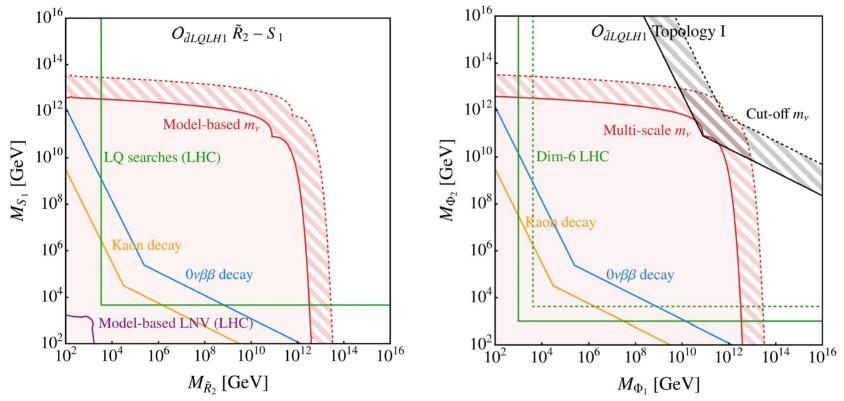
$$I_1^{\text{I-EFT}} \approx -c_m \, \frac{i}{16\pi^2} \frac{1}{(m_{\tilde{R}_2}^2 - m_{S_1}^2)} \left[1 + \log\left(\frac{\mu_r^2}{m_{S_1}^2}\right) \right]$$

2) Matching to recover full result (soft region)

$$I_1^{\text{ana}} \approx c_m \, \frac{i}{16\pi^2} \frac{1}{(m_{\tilde{R}_2}^2 - m_{S_1}^2)} \left[1 + \log\left(\frac{\mu_r^2}{m_{\tilde{R}_2}^2}\right) \right]$$

3) Total result combining both contributions

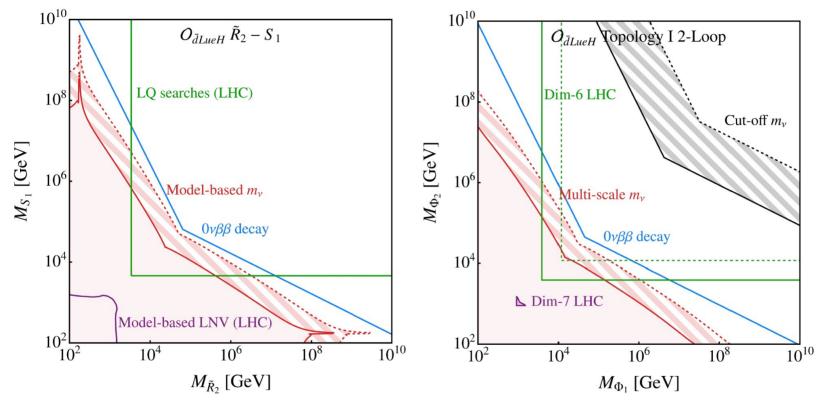
 I_1


$$\begin{aligned} {}^{\text{total}}_{\text{MS}} &= {I_1}^{\text{EFT}} + {I_1}^{\text{ana}} \\ &\approx c_m \, \frac{i}{16\pi^2} \frac{1}{(m_{\tilde{R}_2}^2 - m_{S_1}^2)} \log\left(\frac{m_{S_1}^2}{m_{\tilde{R}_2}^2}\right) \end{aligned}$$

Fridell, Graf, JH, Hati (2024)

Lepton Number Violation: From the Cosmos to the Lab

Impact on the parameter space – 1-loop


The simplified multi-scale approach is a more reliable estimate than the NDA approach, capturing the main features of a possible UV model

Fridell, Graf, JH, Hati (2024)

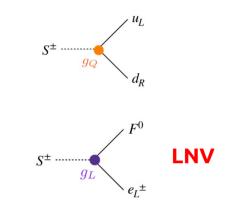
JG U

Impact on the parameter space – 2-loop

, Opens up parameter space implying interesting interplay of experimental observables

Fridell, Graf, JH, Hati (2024)

Falsifying baryogenesis with LHC & 0vββ decay


Impact of observation of TeV-scale LNV on standard leptogenesis

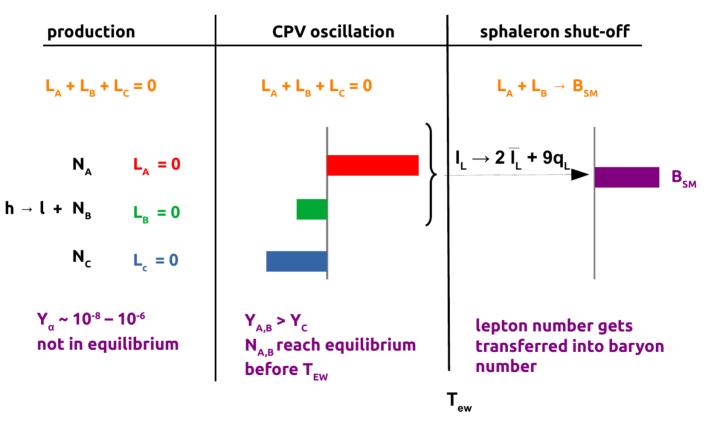
High-scale source of lepton asymmetry

 $\mathcal{L} \supset y_{\nu} \bar{L}HN - \frac{m_N}{2} \bar{N}^c N + \text{h.c.}$

TeV-scale LNV "washout" interactions

$$\tilde{\mathcal{L}} \supset g_{Q}\overline{Q}Sd_{R} + g_{L}\overline{L}(i\tau^{2})S^{*}F - m_{S}^{2}S^{\dagger}S - \frac{m_{F}}{2}\overline{F^{c}}F + \text{h.c.}$$

Link to EFT study:

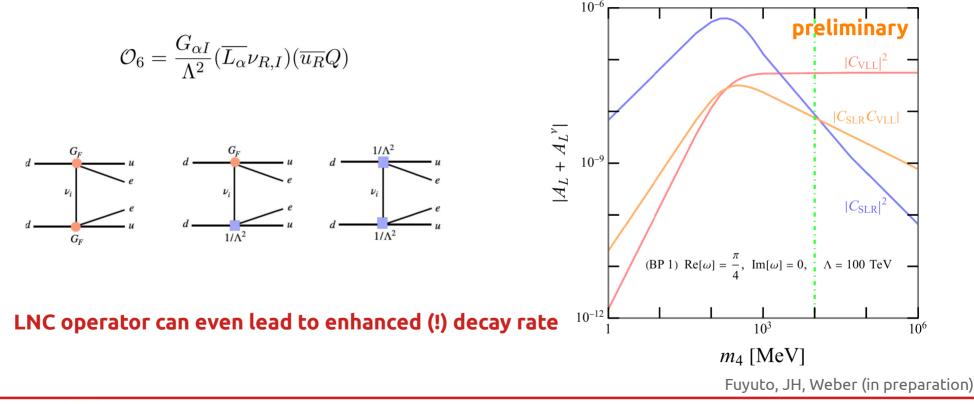

$$\frac{1}{\Lambda^5} = \frac{g_L^2 g_Q^2}{m_S^4 m_F}$$

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Lepton Number Violation: From the Cosmos to the Lab

Concept of low-scale leptogenesis

Akhmedov, Rubakov, Smirnov (1998)

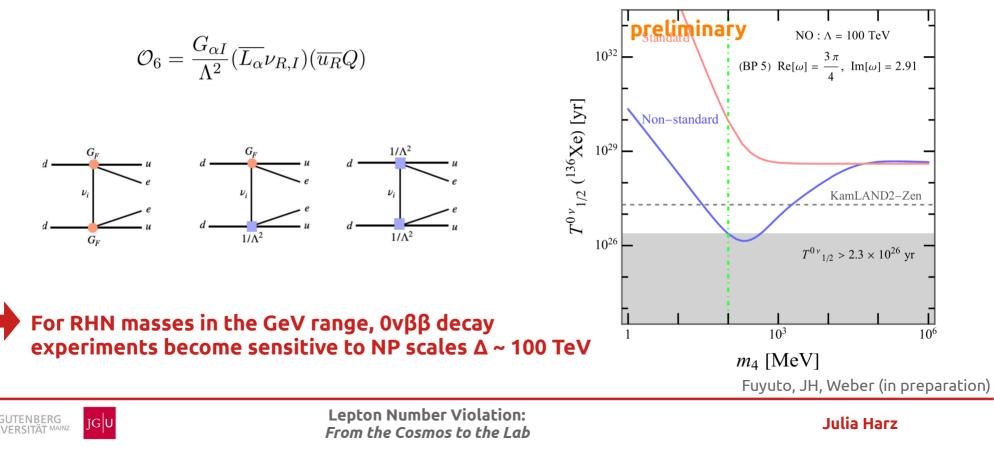


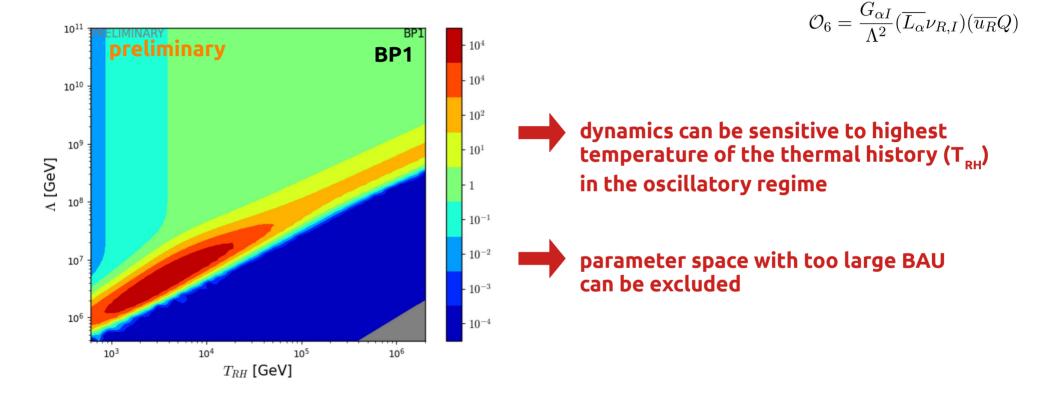
Lepton Number Violation: From the Cosmos to the Lab

Impact of LNC operators on 0vββ decay

LNC vSMEFT operators can lead to an altered half life of neutrinoless double beta decay

See also Dekens, de Vries, Fuyuto, Mereghetti, Zhou(2020)




Lepton Number Violation: From the Cosmos to the Lab

Impact of LNC operators on 0vββ decay

LNC vSMEFT operators can lead to an altered half life of neutrinoless double beta decay

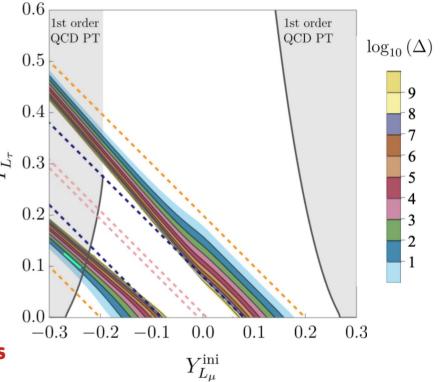
See also Dekens, de Vries, Fuyuto, Mereghetti, Zhou(2020)

Fuyuto, JH, Weber (in preparation)

Implications of high-scale LNV new physics on baryogenesis and GWs

Lepton Number Violation: From the Cosmos to the Lab

Large lepton asymmetries, baryogenesis and GWs


Large lepton asymmetries are constrained by CMB and BBN to

 $|Y_L| \le 1.2 \times 10^{-2}$

and can lead to

- 1st order QCD phase transition sourcing GWs potentially in reach of proposed µAres experiment
- non-restoration of the EW symmetry at large temperatures suppressing sphaleron processes

Gao, Harz, Hati, Lu, Oldengott, White (2023, 2024)

JG U