

Searches for lepton-flavor violation in t decays at Belle II

FLASY, June 30 – July 4, 2025, Roma Laura Salutari – INFN Roma 3, on behalf of the Belle II collaboration laura.salutari@roma3.infn.it

τ physics: motivation and challenges

τ pairs produced in e⁺e⁻
collisions are a unique
laboratory to **test** the
standard model (SM)
through precision
measurements and
search for non-SM
physics (BSM)

Precision physics

- Study allowed processes to test SM au mass, lifetime, lepton flavor universality (LFU)
- High statistics
- Mainly dominated by systematic uncertainties
- Detector performances must be well understood (tracking, particle identification, calorimeter ..)

New physics

- Study rare or forbidden processes to probe BSM
- Low statistics
- Need high luminosity to collect suitable data set
- Develop techniques to mantain good signal /background ratio

au physics: lepton flavor violation

- Allowed due to neutrinos oscillation
- Predicted rates at level of 10^{-50} , far from any experiment sensitivity
- any LFV observation indicates new physics!

Belle II: experiment and detector

B-factory at SuperKEKB

- Asymmetric e^+e^- beams colliding at $\Upsilon(nS)$ ($b\bar{b}$ bound state)
 - Mainly at $\Upsilon(4S)$: $\sqrt{s} =$ 10.58 GeV

Main production cross sections:

$$\sigma(e^-e^+ \to b\bar{b}) \cong 1.1 \text{ nb}$$

 $\sigma(e^-e^+ \to \tau^-\tau^+) \cong 0.9 \text{ nb}$

World record \mathcal{L} : 5.1 x 10³⁴ cm⁻²s⁻¹

- Target \mathcal{L} : 6 x 10³⁴ cm⁻²s⁻¹
- Target $\int \mathcal{L} = 50$ ab⁻¹

Belle II @ superKEKB: collected more than 575 fb $^{-1}$ between run1 (2018-2023) and run2 (ongoing since feb. 2024)

- Well known collision conditions
- Low multiplicity collisions
- Hermetic detector
- Trigger lines specific for low multiplicity event

excellent reconstruction of events even with missing energy & low multiplicity

τ physics at BelleII

- Pair production is collinear in the center of mass frame (CM)
- Presence of neutrinos
 (missing energy) in the
 final state > impossible to
 reconstruct exactly the
 flight direction

Study methodology:

- Characterize the τ flight direction with the Thrust (T) $T = \max_{\hat{n}_T} (\frac{\sum_i |p_i \cdot \hat{n}_T|}{\sum_i |p_i|})$ vector
- Separate the event in two distinct hemispheres: tag & signal
- Reconstruct different topologies of events «3x1» o «1x1» to suppress background

- In many LFV channels, the signal side has no missing energy:
 - invariant mass of decay products M_{inv} coincide with M_{τ}
 - decay products energy are half of the available energy in CM frame: $\Delta E = E_{inv}^{CM} \frac{\sqrt{s}}{2}$ peaks at 0
 - these analyses exploit the 2D plane given by M_{inv} and ΔE to minimize background

Search for $\tau \to K_s^0 \ell$

arXiv.2504.15745, accepted from JHEP

- New leptoquark mediators could enhance decay rate
- First LFV search with joint Belle (980 fb^{-1}) and Belle II (428 fb^{-1})
- 1.6· 10^9 au pairs analyzed in **two final states** $au o e K_s^0$ and $au o \mu K_s^0$

1.80

 $M(\mu K_s^0)$ [GeV/c²]

1.85

1.90

-0.75

1.60

1.65

1.70

- Tag side: one prong
- Signal side: combination of one charged lepton and a candidate K_s^0 from $\pi^+\pi^-$
- Main background: $e^+e^- \rightarrow q\bar{q}$, rejected with a boosted decision tree (BDT) based selection
- More than 10% efficiency in both channels for both dataset
- Define elliptical signal region (SR) for signal extraction; and a sideband region (RSB) for data validation
 - Estimate expected events in SR from a fit in the RSB

Search for $\tau \to K_s^0 \ell$

arXiv.2504.15745, accepted from JHEP

- Cut and count approach $\mathcal{B}(\tau \to \ell K_s^0) = \frac{N_{obs} N_{exp}}{2\varepsilon \mathcal{L} \sigma_{\tau\tau}}$
- No significant signal observed, derived 90% CL upper limits
- Most stringent up to date for the two considered channels,
 - 3 times and 2 times more stringent than previous best limits from Belle results [Phys. Lett. B 692 (2020) 4]

Search for $\tau^- \rightarrow e^{\mp} \ell^{\pm} \ell^-$

preliminary, shown at Moriond

- Several models (new Z $^{\prime}$, charged Higgs boson..) could enhance rates up to ${f 10^{-10}-10^{-8}}$
- Analysis with Belle II (428 fb^{-1}) dataset
- $e^-e^+e^-$, $e^+e^-\mu^+$, $e^-\mu^-\mu^+$ single violation
- $e^+\mu^-\mu^-$, $e^-e^-\mu^+$ double violation

check also $\tau \to \mu\mu\mu$ results JHEP 09 (2024) 062 most stringent limits!

- Signal side: combine an identified e and two ℓ with net charge ± 1 and belonging to the same hemisphere
- Tag side: untagged (no topology request), to increase statistics
- Heavyly relies on PID
- Main background from $ee \rightarrow \ell \ell(\gamma)$, $ee \rightarrow 4\ell$
 - Tighten PID requests
 - Remaining bkg rejected with a BDT trained on data (not from fit region)

Search for
$$\tau^- \rightarrow e^{\mp} \ell^{\pm} \ell^-$$

preliminary, shown at Moriond

Overall signal efficiency from 15% to 23% for all channels \rightarrow up to 3 times higher than previous analysis [*]

[*] Belle Phys. Lett. B 687 (2010) 139

Fit to the $M_{e\ell\ell}$ and extract the branching fraction $\mathcal{B}(\tau \to e\ell\ell)$

For all channels no excess found, 90%CL upper limits are derived

$$\mathcal{B}(au^- o e^\mp\ell^\pm\ell^-)$$
 in the range of 1.3 – 2.5 $imes 10^{-8}$

For all channels these represent the lowest limit

• except the $e^-e^-\mu^+$ final state

Search for $\tau^- \rightarrow \ell^- \alpha$

Phys. Lett. Rev 130 (2023) 181803

- With α as neutral spin-0 boson, the process is not allowed in SM, but present in many Beyond SM models (such as ALPs [*])
- Belle II analysis with 62.8 fb $^{-1}$ and mass hypothesis m_{lpha} from 0 to 1.6GeV/ c^2

- Event is reconstructed asking for exactly four tracks and net charge 0 in a 3x1 topology
- Irreducible background: $\tau \to \ell \nu \bar{\nu}$
- Examine the relative ratio $\mathcal{R} = \frac{\mathcal{B}(\tau \to \ell \alpha)}{\mathcal{B}(\tau \to \ell \nu^-)}$
- Exploit 2-body decay of signal: perform a boost in the *pseudo-rest frame* of τ via the Thrust vector, and study the energy

spectrum of the lepton: $x_{\ell} = \frac{2E_{\ell}^*}{m_{\tau}}$

[*] M. Bauer, et al. Phys. Rev. Lett. 124, 211803 (2020)

Search for $\tau^- \rightarrow \ell^- \alpha$

Phys. Lett. Rev 130 (2023) 181803

• With no excess found, the 95%C.L. limits on the ratio are derived:

$$\frac{\mathcal{B}(\tau \to \ell \alpha)}{\mathcal{B}(\tau \to \ell \nu \overline{\nu})} \le 10^{-3} - 10^{-2}$$

[*] ARGUS Collaboration, Z. Phys. C 68, 25 (1995)

- Non-monotonical variation with m_{α} due to both signal resolution and shape of the irreducible $\tau \to \ell \nu \bar{\nu}$ background
- Between 2 to 14 times more stringent than the previous limits from ARGUS [*]

New analysis from Belle on <u>arXiv</u> <u>2503.22195v2</u>

Performed with 800 fb⁻¹

$$\mathcal{B}(\tau \to e\alpha) < (0.3 - 6.0) \times 10^{-3}$$

$$\mathcal{B}(\tau \to \mu \alpha) < (0.1 - 3.3) \times 10^{-3}$$

Lower than absolute limits from Belle II

Summary & outlook

Belle II provides an ideal environment to explore τ physics

- High statistics
- Clean collisions
- Dedicated low multiplicity triggers
- → Unique dataset

We present leading results in rare τ decay channels:

- $\tau \rightarrow \ell K$
- $\tau \rightarrow 3\ell$
- $\tau \to \ell \alpha$

Many More LFV searches ongoing, expected to be even more competitive

→ Check out Belle II Snowmass arXiv:2207.06307

In parallel, Belle II reached world-leading precision measurements:

- Tau mass
- Lepton flavor universality test

Backup slides

Search for $\tau \to \mu\mu\mu$

IHEP 09 (2024) 062

Belle II analysis with 424 fb^{-1} :

- *Signal*: three μ
- *Tag*: inclusive-tag

- Expected events $0.5^{+1.4}_{-0.5}$ estimate from sidebands
- BTD to reject bkg
- $Br(\tau \rightarrow \mu\mu\mu) =$ $3.1^{+8.7}_{-3.6}(stat) \pm 0.1(syst)$

Previous limits:

LHCb: $4.6 \times 10^{-8} (2.0 fb^{-1})$

BaBar: $3.3 \times 10^{-8} (468 \, fb^{-1})$

CMS: $2.9 \times 10^{-8} (131 \ fb^{-1})$

Belle: $2.1 \times 10^{-8} \ (782 \ fb^{-1})$

Belle II: $1.9 \times 10^{-8} (424 fb^{-1})$

Belle search for $\tau^- \rightarrow \ell^- \alpha$

arXiv 2503.22195v2

tag-side

• Room for improvement at Belle with more statistics (800 fb⁻¹) and improved estimate of au_{sig} direction

• Requiring the au_{sig} aligned with the hadronic system ($| heta_{\tau-h}| < 4$) improves the resolution on the signal lepton momentum $p_\ell \to$ better sensitivity in the signal extraction

 $(h: \pi^{\pm}, \pi^{\pm}\pi^{0}, \pi^{\pm}\pi^{\mp}\pi^{\pm}, \text{etc.})$

- Selections are independent from the α mass: ϵ_{sig} ranges in [0.3 -1.5]%
- Signal and background yields extracted from binned max likelihood fits to the signal lepton momenta $p_\ell \to {\sf shape}$ modeling from MC distributions

Lepton Flavor Universality

JHEP 08 (2024) 205

Test the coupling strength of the electron and muon to the W using decays

$$R_{\mu} = \frac{Br(\tau^{-} \to \mu^{-} \overline{\nu}_{\mu} \nu_{\tau})}{Br(\tau^{-} \to e^{-} \overline{\nu}_{e} \nu_{\tau})}$$
 $R_{\mu}^{SM} = 0.9726$

- Measured using 1x1-prong topology with on the tag side
- 94% purity and 9.6% efficiency obtained using rectangular selections and a neural network
- Dominant **systematics** from PID (0.32%) and trigger (0.10%)
- Most precise determination of and in decays from a single measurement
- In agreement with SM prediction at the level of 1.4

Pseudo rest frame

Cannot determine the τ momentum from the observed particles directly

Approximate its energy: $E_{\tau}^* \sim \sqrt{s}/2$ in the center of mass frame (neglecting ISR)

Approximate τ direction as opposite to the three hadrons on the tag side:

$$\widehat{p_{\tau}} \simeq -\vec{p}_{3h}/|\vec{p}_{3h}|$$