Dark Hypercharge Symmetry

Rahul Srivastava
Indian Institute of Science Education and Research - Bhopal
Bhopal, India
Fmail: rahul@iiserb.ac.in

In collaboration with H. Prajapati, A. Majumdar, D. K. Papoulias arXiv: 2411.02512, 2411.04197

FLASY - 2025

Outline

- Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- $\bigcirc U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- The Dark Z' Gauge Boson
- **6** The Dark Sector
- 7 Constraining Light Z'
- 8 Conclusion

Outline

- Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- (4) $U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- The Dark Z' Gauge Boson
- 6 The Dark Sector
- 7 Constraining Light Z'
- Conclusion

Introduction

- Despite its many successes, Standard Model (SM) is an incomplete theory
- New physics Beyond Standard Model (BSM) is needed to explain Neutrino mass and mixing, Dark Matter, Matter - Antimatter Asymmetry, Vacuum Stability, Hierarchy Problem etc
- $U(1)_X$ gauge theories are one of the simplest extensions of SM
- They naturally occur in many popular BSM extensions e.g. GUTs, Left-Right Symmetry etc
- In recent times there is a growing interest in using $U(1)_X$ symmetries to explain various phenomenon
- In addition to its simplicity $U(1)_X$ theories are highly predictive: Gauge charges of SM and BSM fermions can be fixed by anomaly cancellation conditions

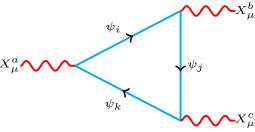
Introduction

- Anomalies: Whenever a symmetry of the classical theory which does not survive to the quantum theory
- Anomalies can potentially occur whenever a classically invariant field theory with a continuous symmetry is quantized
- ullet Historically they were first discovered in context of $\pi^0 o \gamma \gamma$ decay 1
- Especially for gauge symmetries presence of anomalies can have serious consequences and can make the theory nonunitary and nonrenormalizable.
- Thus any gauge theory should always be anomaly free.
- A pure gauge theories with no "matter fields" or a gauge theory with only scalar matter fields is always anomaly free
- However one has to be careful when the gauge theory also has fermionic matter fields like SM

¹S. L. Adler, Phys. Rev. 177 (5), 2426–2438 (1969); J. S. Bell, R. Jackiw, Nuovo Cimento A. 60 (1): 47–61 (1969)

Triangle Diagrams

 The "gauge anomalies" in field theory are induced by the triangle diagrams



- For a gauge theory to be anomaly free, the total contribution of all such diagrams must vanish
- For theories with multiple gauge symmetries such as SM: All triangle diagrams with odd number of non-abelian gauge bosons attached to the vertices vanish
- Thus, one has to worry about anomaly only when the theory also has abelian U(1) gauge symmetries like the case of SM

Outline

- 1 Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- (4) $U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- 6 The Dark Sector
- 7 Constraining Light Z'
- Conclusion

Anomalies in Standard Model

- SM is a theory with:
 - An abelian gauge symmetry $U(1)_Y$
 - Its fermions are also "chiral" i.e. the left and right counterpart fields do not have same charge under both $SU(2)_L$ and $U(1)_Y$
 - SM can be potentially anomalous
- All anomalies must be cancelled for SM to be a unitary and renormalizable field theory
- The complete set of anomaly cancellation conditions for SM are:

$$[SU(3)_C]^2 U(1)_Y = \sum_i Y_{Q^i} - \sum_j Y_{q^j}, \qquad (1a)$$

$$[SU(2)_L]^2 U(1)_Y = \sum_i Y_{L^i} + 3 \sum_j Y_{Q^j}, \tag{1b}$$

$$[U(1)_{Y}]^{3} = \sum_{i,j} (Y_{L^{i}}^{3} + 3Y_{Q^{i}}^{3}) - \sum_{i,j} (Y_{l^{i}}^{3} + 3Y_{q^{i}}^{3}),$$
 (1c)

$$[G]^{2}U(1)_{Y} = \sum_{i,j} (Y_{L^{i}} + 3Y_{Q^{j}}) - \sum_{i,j} (Y_{I^{i}} + 3Y_{q^{j}}).$$
 (1d)

Anomaly Cancellation in SM: Uniqueness of Hypercharge

One Generation Case

- Let's first consider only one generation of SM fermions
- For SM to be anomaly free the $U(1)_Y$ charges of SM fermions should be such that all anomalies cancel
- Canonical SM hypercharge assignment for fermions is

Q	U_{R}	$d_{_{ m R}}$	L	$e_{_{\mathrm{R}}}$	Ф
<u>Y</u> 3	4 <u>Y</u>	$\frac{-2Y}{3}$	-Y	-2Y	Y

- One can check explicitly that it cancels all the anomalies.
- The usual choice for Y is either Y=1 or Y=1/2 depending on how you defined relation between hypercharge (Y) and electric charge (Q)
 - If you define $Q=T_3+Y/2$; T_3 being the third component of $SU(2)_L$, then Y=1
 - If you define $Q = T_3 + Y$, then Y = 1/2
- Is this hypercharge assignment unique?
- NO!

Anomaly Cancellation in SM: Uniqueness of Hypercharge

One Generation Case

- One can find other solutions for SM fermion hypercharge assignments which also cancel anomalies
- One more solution can be found simply by interchanging the hypercharges of $u_{\rm R}$ and $d_{\rm R}$ i.e. $Y_{u_{\rm R}}=\frac{-2Y}{3}$ and $Y_{d_{\rm R}}=\frac{4Y}{3}$
- Another solution is $Y_{u_{\rm R}}+Y_{d_{\rm R}}=0$ and $Y_L=Y_Q=Y_{e_{\rm R}}=0$.
- However, all these other solutions have problems
 - Most serious problem is that none of these solutions give correct electric charges of the SM fermions
 - It is also not possible to define a new relation between Y and Q that gives correct electric charges for all SM fermions
 - Mass generation of all fermions cannot be achieved with only the SM Higgs. One will need more scalars.
- In summary for one generation of SM fermions, the anomaly cancellation conditions alone don't give an unique solution
- The additional requirement that the hypercharge assignment must lead to correct electric charges of SM fermions, makes the assignment unique.

Anomaly Cancellation in SM: Uniqueness of Hypercharge Three Generations of SM fermions

- What happens with full three generations of SM fermions?
- The canonical choice is to give all generations of a given type of fermion the same hypercharge

Q^i	$U_{\rm R}^i$	$d_{\scriptscriptstyle m R}^i$	Li	$e_{_{ m R}}^i$	Ф
$\frac{Y}{3}$	4 <u>Y</u>	$\frac{-2Y}{3}$	-Y	-2 <i>Y</i>	Y

- Thus with the canonical choice the SM hypercharges, the anomalies cancel generation by generation
- Are there other options?
- Yes! All other solutions discussed before can also work in a similar way. They all again will have the same problems so we have to again reject them
- In addition one can have new solutions

• One new solution is obtained when:

$$Y_{Q^{i}} = -Y_{Q^{j}} = Y, \ Y_{Q^{k}} = 0 \qquad Y_{u_{R}^{i}} = -Y_{u_{R}^{m}} = Y', \ Y_{u_{R}^{n}} = 0$$
 $Y_{d_{R}^{r}} = -Y_{d_{R}^{s}} = Y'', \ Y_{d_{R}^{t}} = 0 \qquad Y_{L^{i}} = Y_{e_{R}^{i}} = 0$

Another solution is obtained when

$$Y_{L^{i}} = -Y_{L^{i}} = Y, \ Y_{L^{k}} = 0 \qquad Y_{e_{R}^{i}} = -Y_{e_{R}^{m}} = Y', \ Y_{e_{R}^{n}} = 0$$

 $Y_{Q^{i}} = Y_{U_{R}^{i}} = Y_{d_{R}^{i}} = 0$

- Again both these solutions have same problem as other solutions and hence should be rejected
- In summary, even with full three generations of SM fermions, the canonical hypercharge assignment is unique modulo an overall normalization factor.

Outline

- Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- (4) $U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- The Dark Z' Gauge Boson
- 6 The Dark Sector
- 7 Constraining Light Z'
- Conclusion

$U(1)_X$ Anomaly Cancellation Conditions

- If we want to add a new $U(1)_X$ gauge symmetry to the SM then one has to ensure that it is also not anomalous
- The extra anomaly cancellations needed are:

$$[SU(3)_C]^2[U(1)_X] = \sum_i X_{Q^{i^i}} - \sum_j X_{q^{i^j}}.$$
 (2a)

$$[SU(2)_{L}]^{2}[U(1)_{X}] = \sum_{i} X_{L^{i}} + 3\sum_{j} X_{Q^{i}}.$$
 (2b)

$$[U(1)_{Y}]^{2}[U(1)_{X}] = \sum_{i,j} (Y_{L^{i}}^{2} X_{L^{i}}^{i} + 3Y_{Q^{i}}^{2} X_{Q^{i}}^{j}) - \sum_{i,j} (Y_{l^{i}}^{2} X_{l^{i}}^{i} + 3Y_{q^{i}}^{2} X_{q^{i}}^{j}).$$
(2c)

$$[U(1)_{Y}][U(1)_{X}]^{2} = \sum_{i,j} (Y_{L^{i}} X_{L^{i}}^{2} + 3Y_{Q^{i}} X_{Q^{i}}^{2}) - \sum_{i,j} (Y_{l^{i}} X_{l^{i}}^{2} + 3Y_{q^{i}} X_{q^{i}}^{2}).$$
(2d)

$$[U(1)_X]^3 = \sum_{i,j} (X_{L'^i}^3 + 3X_{Q'^j}^3) - \sum_{i,j} (X_{l'^i}^3 + 3X_{q'^j}^3).$$
 (2e)

$$[G]^{2}[U(1)_{X}] = \sum_{i,j} (X_{L^{i}} + 3X_{Q^{i}}) - \sum_{i,j} (X_{l^{i}} + 3X_{Q^{i}}). \tag{2f}$$

$U(1)_X$ Anomaly Cancellation Conditions: $L_i - L_j$ Solutions

- There are many solutions to these anomaly cancellation conditions
- L_i L_j Solutions: One of the popular solution which is very well studied
- ullet The charges of SM fermions under $U(1)_X$ symmetry are given by 2

$$\begin{split} X_{L^{i}} &= -X_{L^{j}} = X, X_{L^{k}} = 0; & i, j, k = 1, 2, 3 \& i \neq j \neq k \\ X_{e_{R}^{i}} &= -X_{e_{R}^{m}} = X, X_{e_{R}^{n}} = 0; & l, m, n = 1, 2, 3 \& l \neq m \neq n \\ X_{Q^{i}} &= X_{q^{i}} = 0; & i, j = 1, 2, 3 & \forall i, j. \end{split}$$

- This is a vector solution with $U(1)_X$ charges of left and right handed fermions being same.
- One unique feature of this solution is that no new BSM fermion is needed to cancel the anomalies

²X. G. He, G. C. Joshi, H. Lew, and R. R. Volkas; Phys. Rev. D. 43 (1991) 22-24

$U(1)_X$ Anomaly Cancellation Conditions: **B** – **L Solution**

- There are several known solutions which require presence of new BSM fermions (typically right handed neutrinos) to cancel anomalies
- $\mathbf{B} \mathbf{L}$ Solution: The B L solution is one of the oldest and most popular solution
- The charges of SM and right handed BSM fermion (f_i ; i = 1, 2, 3) are given by

$$X_{Q^i} = X_{q^j} = 1/3; \quad i, j, k = 1, 2, 3,$$

 $X_{L^i} = X_{j^i} = X_{f^i} = -1; \quad \forall i, j.$

- Notice that again its a vector solution with $U(1)_X$ charges of the BSM fermion f_i being same as that of SM neutrinos.
- Its also a "flavor blind" symmetry with B-L charges of each generation being same.
- During phenomenology part of the talk, I will use the equivalent results of the B-L case as the reference to compare with our results

$U(1)_X$ Anomaly Cancellation Conditions: Other Solutions

- There are several other solutions: I will just list some of the other popular ones
 - B − 3L_i: Charges are³

$$X_{Q^i} = X_{q^j} = 1/3; \quad i, j = 1, 2, 3,$$

 $X_{L^i} = X_{I^i} = X_f = -3, X_{L^k} = X_{I^k} = 0; \quad i, k = 1, 2, 3 \& i \neq k.$

• $B_i - 3L_j$: Charges are⁴

$$X_{Q^{j}} = X_{q^{i}} = 1, X_{Q^{j}} = X_{q^{j}} = 0; \quad i, j = 1, 2, 3 \& i \neq j,$$

 $X_{L^{j}} = X_{j^{i}} = X_{f} = -3, X_{L^{k}} = X_{j^{k}} = 0; \quad j, k = 1, 2, 3 \& j \neq k.$

- Variants such as $B-2L_i-L_j$, $B-\frac{3}{2}(L_i+L_j)$, $B_1-yB_2+(y-3)B_3+L_i+L_j$ etc. are also possible
- One common feature of all these solutions is that they are all vector solutions i.e. the $U(1)_X$ charges of left and right handed fermions of a given type are same
- Are chiral solutions analogous to hypercharge solution in SM case possible?

³E. Ma, Phys. Lett. B 433 (1998) 74–81,

⁴C. Bonilla, T. Modak, R. Srivastava, and J. W. F. Valle, Phys. Rev. D 98 no. 9, (2018) 095002

Outline

- Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- $\bigcirc U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- The Dark Z' Gauge Boson
- 6 The Dark Sector
- \bigcirc Constraining Light Z'
- Conclusion

$U(1)_X$ Anomaly Cancellation Conditions: Chiral Solutions

- The chiral solutions have not been explored much in literature
- One of the known chiral solutions is for the B-L symmetry⁵ where the BSM fermions f_i ; i=1,2,3 have $U(1)_X$ charges of +4,+4,-5
- We also found that one can also have chiral solutions for gauged Baryon $(U(1)_B)$ and Lepton $(U(1)_L)$ symmetries
- All these solutions although chiral, are very limited in their chirality
- In all of them the SM fermions are still vector under $U(1)_X$ symmetry and only BSM fermions have exotic $U(1)_X$ charges
- This is in contrast of the SM hypercharge case where the left and right counterpart of all types are fermions have different hypercharges
- Are similar solutions for $U(1)_X$ symmetries possible?

 $^{^5}$ J. C. Montero and V. Pleitez; Phys. Lett. B 675 (2009) 64–68; E. Ma and R. Srivastava, Phys. Lett. B 741 (2015) 217–222; E. Ma and R. Srivastava, Mod. Phys. Lett. A 30 no. 26, (2015) 1530020, E. Ma, N. Pollard, R. Srivastava, and M. Zakeri, Phys. Lett. B 750 (2015) 135–138

- Such solutions are indeed possible.
- In fact we have found a whole class of hithero unknown solutions, all completely chiral in their $U(1)_X$ charge assignments ⁶
- We call them Dark Hypercharge Solutions:
- Like Hypercharge, left and right handed couterparts of all fermions have different $U(1)_X$ charges
- ullet They require addition of SM gauge singlet BSM fermions f_i
- These BSM fermions can belong to the dark sector with the lightest of them being a good dark matter symmetry
- The associated gauge boson Z' connects the dark sector to visible sector: Hence Dark Hypercharge

⁶H. Prajapati, R.S., arXiv: 2411.02512 [hep-ph]

- We have obtained class of solutions of under three different scenarios :
 - **S(I)**: Only one generation of SM fermions is charged under $U(1)_X$ $(X_{\psi^i} = X_{\psi^j} = 0, X_{\psi^k} = X, i, j, k = 1, 2, 3 \& i, j \neq k)$.
 - S(II): Two generations share the same charge under U(1)_X, while one generation remains uncharged (X_{ψi} = X_{ψi}, X_{ψi,k} = 0, i, j, k = 1, 2, 3 & i, j ≠ k).
 - **S(III)**: All three generations of SM fermions are charged under the new symmetry, and their charges are identical across generations $(X_{\psi i} = X_{\psi i} = X_{\psi k}, \quad i, j, k = 1, 2, 3).$
- In addition we demand that the masses of SM fermions are generated through the SM Higgs boson itself. No BSM scalar needed for SM fermion mass generation

• For one generation (S(I)) case we get only one solution:

Q	u _r	$d_{\scriptscriptstyle m R}$	L	$e_{_{\mathrm{R}}}$	f_1	f ₂	f ₃	Ф
$\frac{-X_L}{3}$	$\frac{2X_L}{3} - X_{e_R}$	$\frac{-4X_L}{3} + X_{e_R}$	X _L	$X_{e_{_{\!\scriptscriptstyle m R}}}$	k	-k	$2X_L - X_{e_R}$	$X_L - X_{e_R}$

 \bullet For two generation (S(II)) case we get following solutions:

Q	$u_{\scriptscriptstyle m R}$	$d_{\scriptscriptstyle m R}$	L	$e_{_{\mathrm{R}}}$	f_1	f_2	f ₃	Ф
$\frac{-X_L}{3}$	$\frac{-4X_L}{3}$	$\frac{2X_L}{3}$	X _L	2 <i>X</i> _L	0	k	-k	$-X_L$
$\frac{-X_L}{3}$	$\frac{2X_L}{3} - X_{e_R}$	$\frac{-4X_L}{3} + X_{e_R}$	X_L	$X_{e_{_{ m R}}}$	0	$2X_L - X_{e_{\mathbb{R}}}$	$2X_L - X_{e_R}$	$X_L - X_{e_{_{\!\scriptscriptstyle R}}}$

• For three generation (S(III)) case we get following solutions:

Q	$U_{\scriptscriptstyle m R}$	$d_{\scriptscriptstyle m R}$	L	$e_{_{\mathrm{R}}}$	f_1	f ₂	f ₃	Φ
$\frac{-X_{l}}{3}$	$\frac{-4X_L}{3}$	2X ₁ 3	X_L	$2X_L$	0	κ	$-\kappa$	$-X_L$
$-\frac{X_L}{3}$	$-\frac{4X_L}{3} + \kappa$	$\frac{2X_L}{3} - \kappa$	X_L	$2X_L - \kappa$	κ	κ	κ	$\kappa - X_L$
$\frac{1}{s}$	$-(\kappa - \frac{4}{s})$	$\kappa - \frac{2}{s}$	$-\frac{3}{s}$	$\kappa - \frac{6}{s}$	5κ	-4κ	-4κ	$-(\kappa-\frac{3}{s})$
$-\frac{X_l}{3}$	$\frac{-4X_L}{3} - \frac{s^2 - \kappa^2}{8}$	$\frac{2X_L}{3} + \frac{s^2 - \kappa^2}{8}$	X_L	$2X_L + \tfrac{s^2 - \kappa^2}{8}$	$\frac{1}{8}(-4s^2+3s\kappa+\frac{\kappa^3}{s})$	$\frac{1}{8}(5s^2+3\kappa^2)$	$-\tfrac{1}{8}(4s^2+3s\kappa+\tfrac{\kappa^3}{s})$	$-X_L + \frac{\kappa^2 - s^2}{8}$

- As you can see, $U(1)_X$ charges of all fermions are chiral
- We need three dark sector BSM fermions f_i; i = 1,2,3 to cancel anomalies
- Mass of all SM fermions can be generated just with the SM Higgs boson

- In all cases all fermions have completely chiral $U(1)_X$ charges
- We always need three dark sector fermions to cancel anomalies
- Only SM Higgs is enough to generate mass of all SM fermions
- To make the dark sector gauge boson massive, we need to add another SM singlet scalar
- Masses of dark sector fermions can also be generated by addition of SM gauge singlet scalars
- Let's now look at the phenomenological aspects of the Dark Hypercharge Symmetry

Outline

- Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- (4) $U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- The Dark Z' Gauge Boson
- 6 The Dark Sector
- 7 Constraining Light Z'
- Conclusion

Dark Hypercharge Symmetry: Gauge Sector

The covariant derivative is defined as

$$D_{\mu} = \partial_{\mu} + ig_{s}T_{g}^{a}G_{\mu}^{a} + igT_{w}^{a}W_{\mu}^{a} + ig'\frac{Y}{2}B_{\mu} + ig_{x}XC_{\mu}.$$
 (3)

where

$$\langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v \end{bmatrix}, \quad \langle \chi_i \rangle = \frac{v_i}{\sqrt{2}} .$$
 (4)

 The mass spectrum of the gauge bosons are generated by the expansion of the kinetic terms of the scalars, as given below

$$(D_{\mu})^{\dagger}D^{\mu} + (D_{\mu}\chi_i)^{\dagger}D^{\mu}\chi_i , \qquad (5)$$

 We can write the mass matrix of the gauge bosons in the basis $(B^{\mu}, W_{2}^{\mu}, C^{\mu})$ as

$$\mathcal{M}_{v}^{2} = \frac{v^{2}}{4} \begin{pmatrix} g'^{2} & -gg' & 2g'X_{\phi}g_{x} \\ -gg' & g^{2} & -2gX_{\phi}g_{x} \\ 2g'X_{\phi}g_{x} & -2gX_{\phi}g_{x} & 4u^{2}g_{x}^{2} \end{pmatrix},$$
(6)

where $u^2=X_{_\phi}^2+u_\chi^2/v^2$, and u_χ is defined as $u_\chi=\sqrt{\sum_i(X_{\chi_i}^2v_i^2)}$.

Gauge Boson Masses and ρ parameter

The mass eigen states are given by

$$m^2 = \frac{v^2}{8}(A_0 - \sqrt{B_0^2 + C_0^2}), M^2 = \frac{v^2}{8}(A_0 + \sqrt{B_0^2 + C_0^2}),$$
 (7)

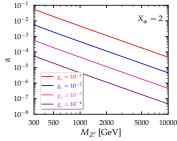
where
$$A_0=g^2+{g'}^2+4u^2g_x^2,~B_0=4X_{_\phi}g_x\sqrt{g^2+{g'}^2},~C_0=4u^2g_x^2-\left(g^2+{g'}^2\right).$$

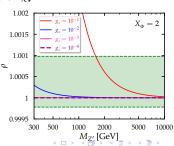
And the W boson mass is given as $M_W^2 = (gv)^2/4$.

The ratio of gauge boson masses is measured through the parameter

$$\rho' = \frac{\rho}{\cos^2 \alpha + \left(\frac{M_{Z'}}{M_Z}\right)^2 \sin^2 \alpha} = 1. \quad \rho - 1 = \left[\left(\frac{M_{Z'}}{M_Z}\right)^2 - 1\right] \sin^2 \alpha.$$

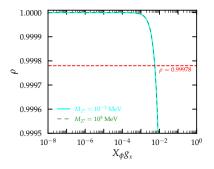
ullet For the case of $M_{Z'}[g_{\scriptscriptstyle X},u_{\scriptscriptstyle \chi}]>M_{Z}[g_{\scriptscriptstyle X},u_{\scriptscriptstyle \chi}]$





Gauge Boson Masses and ρ parameter

- ullet For the case of $M_{Z'}[g_{\scriptscriptstyle X},u_{\scriptscriptstyle \chi}] < M_{Z}[g_{\scriptscriptstyle X},u_{\scriptscriptstyle \chi}]$
 - The ho parameter could be approximated as, $ho pprox \left(1 + rac{4 X_{\phi}^2 g_{_{_{\! X}}}^2}{g^2 + g'^2}
 ight)^{-1}$
 - ullet This implies that the ho parameter is independent of $M_{Z'}$



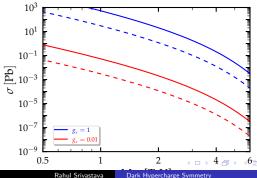
• In the low mass limit of $M_{Z'}$, $X_\phi g_{_x} \lesssim 5.5 \times 10^{-3}$ is adequate to satisfy the ρ parameter, $M_{Z'} \approx u_\chi g_{_x}$.

Production and decays of Z'

 To be concrete henceforth we take one of the models of the S(III) type to do the phenomenological studies. The charges of particles are

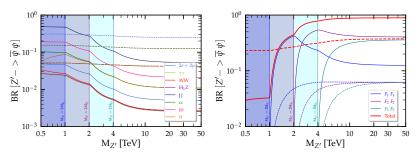
<i>U</i> (1)	Q	$u_{_{\mathrm{R}}}$	$d_{\scriptscriptstyle m R}$	L	$e_{_{\mathrm{R}}}$	f_1	f_2	f ₃	Φ	χο
$U(1)_Y$	<u>1</u>	4/3	$\frac{-2}{3}$	-1	-2	0	0	0	1	0
$U(1)_X$	$-\frac{1}{3}$	<u>5</u> 3	$-\frac{7}{3}$	1	-1	10	-18	17	2	-6

• In hadronic colliders the most efficient process involving Z' production is Drell-Yan $q \, \bar{q} \longrightarrow Z'$,



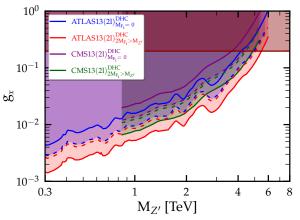
Production and decays of Z'

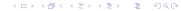
- In the DHC symmetry, the total branching fraction of invisible decay is approximately 90% when the branching fraction saturates. In contrast, in the B-L symmetry, it is about 38%.
- In the fermionic decay modes, the dileptonic branching fraction, is much smaller in DHC (0.5%) compared to say B-L (25%).



Collider Constraints

 \bullet We used the ATLAS 7 and CMS 8 search for Z' in Dilepton resonance at pp collisions with ($\sqrt{s}=13$) TeV and an integrated luminosity of $139~{\rm fb}^{-1}$.





⁷ATLAS Collaboration, Phys. Lett. B 796 (2019) 68–87,

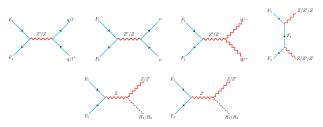
⁸CMS Collaboration, JHEP 07 (2021) 208

Outline

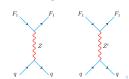
- Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- (4) $U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- The Dark Z' Gauge Boson
- **6** The Dark Sector
- 7 Constraining Light Z'
- Conclusion

Dark Matter Constraints

- As mentioned before, the BSM fermions f_i ; i = 1, 2, 3 belong to the dark sector and the lightest of them can be dark matter
- The charges and interaction strength of the dark matter to all SM particles is completely fixed by the anomaly cancellation conditions.
 This makes the model highly predictive
- Feynman diagram contributing to DM annihilation

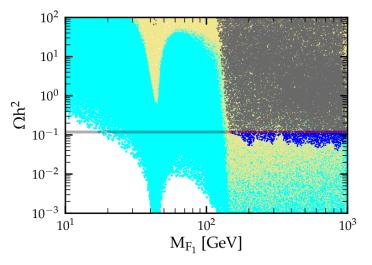


• Feynman Diagrams Contributing to DM-nucleon Scattering

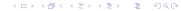


Relic Abundance Constraints

• Measured Relic Abundance $0.1126 \le \Omega h^2 \le 0.1246$.

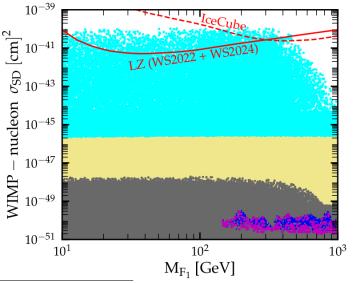


⁹Planck Collaboration, 641 (2020) A6



Direct Detection Constraints

• Direct Detection Constraints¹⁰



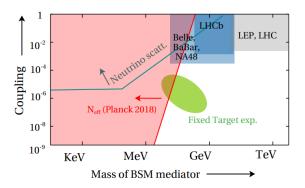
 $^{^{10}}$ lceCube Collaboration, Eur. Phys. J. C 77 no. 3, (2017) 146 LUX-ZEPLIN Collaboration, Phys. Rev. Lett. 131 no. 4, (2023) 041002

Outline

- Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- (4) $U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- The Dark Z' Gauge Boson
- 6 The Dark Sector
- Constraining Light Z'
- 8 Conclusion

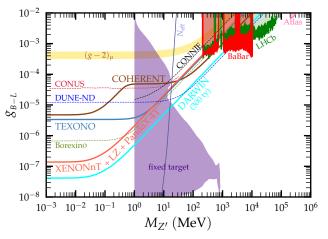
Constraining Light Z'

• Light Z' can be constrained from different experiments like Direct Detection Experiments, Fixed target experiments, Supernovae Cooling, $N_{\it eff}$ etc.

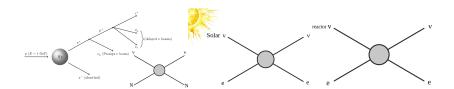


Constrains on Light Z' from B - L Symmetry

• As an example the parameter space for coupling and mass of the Z' from gauged B-L has been constrained through various experiments¹¹



CE ν NS and E ν ES constraints on Light Z' from Dark HyperCharge Symmetry



- Experiment: COHERENT
- ν Source: π -DAR, μ -DAR
- Target: LAr (2020 data), Csl (2021 data)
- Relevant Interaction: $CE\nu NS$, $E\nu ES$

- Experiment: XENONnT, LZ, PandaX-4T, and DARWIN (future sensitivity)
- ν Source: Solar ν_e
- Target: LXe TPC
- Relevant Interaction: $\mathbf{E}\nu\mathbf{ES}$

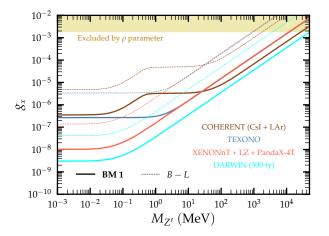
- Experiment: TEXONO
- ν Source: Reactor $\bar{\nu}_{\rm e}$
- Target: Csl
- Relevant

Interaction: $\mathbf{E}\nu\mathbf{E}\mathbf{S}$

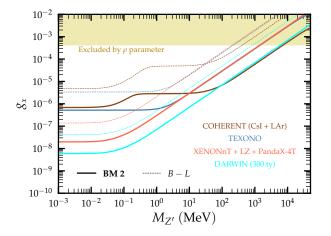
Benchmark Dark Hypercharge Models

Fields	Hypercharge	Weak Isospin	U(1) _X Charge			
	(Y)	(T^3)	BM 1	BM 2	вм 3	B - L
<i>u</i> _L	1/3	1/2	-13/3	-3	-1/3	1/3
u _r	4/3	0	-4/3	10	5/3	1/3
$d_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1/3	-1/2	-13/3	-3	-1/3	1/3
d _R	-2/3	0	-22/3	-16	-7/3	1/3
$e_{_{\rm L}}$	-1	-1/2	13	9	1	-1
$e_{_{\mathrm{R}}}$	-2	0	10	-4	-1	-1
$ u_{_{\rm L}}$	-1	1/2	13	9	1	-1
f^1	0	0	16	-110	10	-1
f ²	0	0	16	88	-18	-1
f ³	0	0	16	88	17	-1
φ	1	-	3	13	2	0

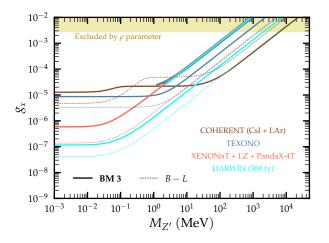
$CE\nu NS$ and $E\nu ES$ constraints on Z' from BM 1



CE ν NS and E ν ES constraints on Z' from BM 2



CE ν NS and E ν ES constraints on Z' from BM 3



Outline

- Introduction
- 2 Anomalies in SM: Uniqueness of Hypercharge
- 3 $U(1)_X$ anomaly cancellation: Known Solutions
- (4) $U(1)_X$ anomaly cancellation: Dark Hypercharge Symmetry
- The Dark Z' Gauge Boson
- 6 The Dark Sector
- \bigcirc Constraining Light Z'
- 8 Conclusion

Conclusions

- Extensions of the Standard Model with $U(1)_X$ gauge symmetries are strongly motivated.
- The charges of SM fermions are constrained by anomaly cancellation conditions, making $U(1)_X$ models highly predictive.
- I discussed a new class of models where all SM fermions have chiral charges under the $U(1)_X$ symmetry.
- The anomaly cancellation necessitates need to add three BSM fermions which can be identified as dark fermions with the lightest of them being a good dark matter candidate.
- I also discussed the phenomenological signatures of certain Benchmark Models for both heavy and light Z' cases.
- These dark hypercharge models can be tested in various experiments.

Thank You