Flavor-deconstructed neutrinos

Avelino Vicente

IFIC – CSIC / U. Valencia

Based on work in collaboration with Mario Fernández Navarro and Stephen F. King

2506.21687

FLASY 2025

Rome

FLASY 2025

EXCELENCIA

SEVERO OCHOA

The flavor puzzle

FLASY 2025

Deconstructing flavor

General idea:

SM embedded in a larger gauge symmetry with a separate factor for each family

$$G = G_{ ext{universal}} imes G_1 imes G_2 imes G_3$$

The SM Higgs is a 3rd family particle: singlet of G_1 and G_2 , but not of G_3

Only the 3rd family masses at renormalizable level

$$\mathcal{L} = y_t q_3 H u_3^c + y_b q_3 \widetilde{H} d_3^c + y_\tau \ell_3 \widetilde{H} e_3^c$$

Explain the SM flavor structure with $\mathcal{O}(1)$ Yukawa couplings via non-renormalizable operators (which can be UV- completed)

Deconstructing flavor

Examples:

• Tri-hypercharge: $SU(3)_c imes SU(2)_L imes U(1)_Y^3$ [Fernández Navarro, King, AV]

• $SU(3)_c imes SU(2)_L^3 imes U(1)_Y$ [Li, Ma, Muller, Nandi, Chiang, Deshpande, He, Jiang, Davighi...]

- $SU(3)_c^3 imes SU(2)_L imes U(1)_Y$ [Carone, Murayama]
- (Pati-Salam)³ [Bordone, Cornella, Fuentes-Martin, Isidori, Pagès, Stefanek...]
- Grand unified models [Rajpoot, Barbieri, Dvali, Strumia, Babu, Barr, Gogoladze...]

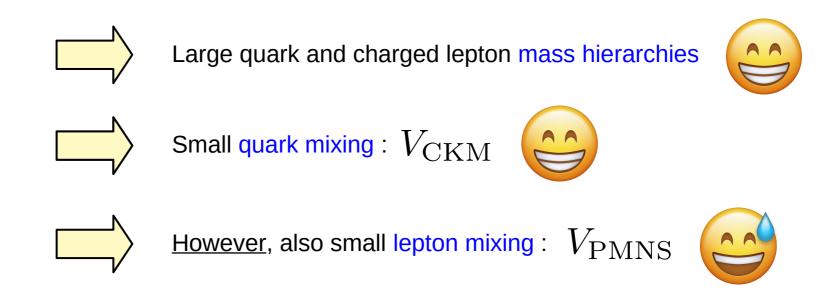
+ other groups

+ other authors

(apologies if I missed your contribution!)

Flavor-deconstructed models naturally explain hierarchies

They typically generate...



[Fernández Navarro, King, AV, 2024]

Field	$U(1)_{Y_{1}}$	$U(1)_{Y_2}$	$U(1)_{Y_{3}}$	$SU(3)_c \times SU(2)_L$
ℓ_1	$-\frac{1}{2}$	0	0	$({f 1},{f 2})$
ℓ_2	0	$-\frac{1}{2}$	0	(1 , 2)
ℓ_3	0	0	$-\frac{1}{2}$	(1 , 2)
$ u_1^c $	0	0	0	(1 , 1)
$ u_2^c $	0	0	0	(1 , 1)
H_u	0	0	$\frac{1}{2}$	(1 , 2)
H_d	0	0	$-\frac{1}{2}$	(1 , 2)
ϕ_{12}	$\frac{1}{2}$	$-\frac{1}{2}$	0	(1 , 1)
ϕ_{23}	Ō	$\frac{1}{2}$	$-\frac{1}{2}$	(1 , 1)

Minimal lepton sector (quark sector in backup)

 $SU(3)_c \times SU(2)_L \times U(1)_{Y_1} \times U(1)_{Y_2} \times U(1)_{Y_3}$

FLASY 2025

[Fernández Navarro, King, AV, 2024]

Field	$U(1)_{Y_1}$	$U(1)_{Y_2}$	$U(1)_{Y_3}$	$SU(3)_c \times SU(2)_L$	
ℓ_1	$-\frac{1}{2}$	0	0	(1 , 2)	-
ℓ_2	0	$-\frac{1}{2}$	0	(1 , 2) -	Lepton doublets
ℓ_3	0	0	$-\frac{1}{2}$	(1 , 2)	_
$ u_1^c$	0	0	0	(1 , 1)	
$ u_2^c $	0	0	0	(1 , 1)	
H_u	0	0	$\frac{1}{2}$	(1 , 2)	
H_d	0	0	$-\frac{1}{2}$	(1 , 2)	
ϕ_{12}	$\frac{1}{2}$	$-\frac{1}{2}$	0	(1, 1)	_
ϕ_{23}	$\overline{0}$	$\frac{1}{2}^2$	$-\frac{1}{2}$	(1 , 1)	

Minimal lepton sector (quark sector in backup)

 $SU(3)_c \times SU(2)_L \times U(1)_{Y_1} \times U(1)_{Y_2} \times U(1)_{Y_3}$

FLASY 2025

[Fernández Navarro, King, AV, 2024]

Field	$U(1)_{Y_1}$	$U(1)_{Y_2}$	$U(1)_{Y_3}$	$SU(3)_c \times SU(2)_L$	
ℓ_1	$-\frac{1}{2}$	0	0	(1 , 2)	→ Lepton doublets
ℓ_2	0	$-\frac{1}{2}$	0_{1}	(1, 2)	
ℓ_3	0	0	$-\frac{1}{2}$	(1 , 2)	
ν_1^c	0	0	0	(1 , 1)	Two right-handed neutrinos
$ \nu_2^c $	0	0	0	(1, 1)	(complete gauge singlets)
H_u	0	0	$\frac{1}{2}_{1}$	(1, 2)	
H_d	0	0	$-\frac{1}{2}$	(1, 2)	
ϕ_{12}	$\frac{1}{2}$	$-\frac{1}{2}$	0_{1}	(1, 1)	
ϕ_{23}	0	$\frac{1}{2}$	$-\frac{1}{2}$	(1 , 1)	

Minimal lepton sector (quark sector in backup)

 $SU(3)_c \times SU(2)_L \times U(1)_{Y_1} \times U(1)_{Y_2} \times U(1)_{Y_3}$

[Fernández Navarro, King, AV, 2024]

Field	$U(1)_{Y_1}$	$U(1)_{Y_2}$	$U(1)_{Y_3}$	$SU(3)_c \times SU(2)_L$	
ℓ_1	$-\frac{1}{2}$	0	0	(1 , 2)	Lonton doublate
ℓ_2	0	$-\frac{1}{2}$	0	(1 , 2)	Lepton doublets
ℓ_3	0	0	$-\frac{1}{2}$	(1 , 2)	_
$ u_1^c$	0	0	0	$(1,1)$ _	→ Two right-handed neutrinos
ν_2^c	0	0	0	(1 , 1)	(complete gauge singlets)
H_u	0	0	$\frac{1}{2}$	(1 , 2)	• Liggo doublate : 2 rd family particles
H_d	0	0	$-\frac{1}{2}$	$({f 1},{f 2})$ -	→ Higgs doublets : 3 rd family particles
ϕ_{12}	$\frac{1}{2}$	$-\frac{1}{2}$	0	$({f 1},{f 1})$	 (Type-II 2HDM to get up/down hierarchies)
ϕ_{23}	$\overline{0}$	$\frac{1}{2}^2$	$-\frac{1}{2}$	(1 , 1)	

Minimal lepton sector (quark sector in backup)

 $SU(3)_c \times SU(2)_L \times U(1)_{Y_1} \times U(1)_{Y_2} \times U(1)_{Y_3}$

[Fernández Navarro, King, AV, 2024]

Field	$U(1)_{Y_1}$	$U(1)_{Y_2}$	$U(1)_{Y_3}$	$SU(3)_c \times SU(2)_L$	
$\frac{\ell_1}{\ell_2}$	$-\frac{1}{2}$ 0	$\begin{array}{c} 0\\ -\frac{1}{2} \end{array}$	0	$({f 1},{f 2}) \ ({f 1},{f 2})$ -	Lepton doublets
$\frac{\ell_3}{\nu_1^c}$	0 0	0 0	$\frac{-\frac{1}{2}}{0}$	$\begin{array}{c c} (1,2) \\ \hline & (1,1) \end{array}$	→ Two right-handed neutrinos
ν_2^c	0	0	0	(1 , 1)	(complete gauge singlets)
H_u H_d	0 0	0 0	$-\frac{\frac{1}{2}}{-\frac{1}{2}}$	$({f 1},{f 2})\ ({f 1},{f 2})$ —	→ Higgs doublets : 3 rd family particles (Type-II 2HDM to get up/down hierarchies)
$\phi_{12} \ \phi_{23}$	$\frac{1}{2}$ 0	$-\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 0\\ -\frac{1}{2} \end{array}$	$egin{array}{c} ({f 1},{f 1}) \ ({f 1},{f 1}) \end{array}$	Hyperons
	Min	imal lept	ton secto	Non-zezo individual hypercharges but vanishing total hypercharge	
(quark sector in backup)					$U(1)_{Y_1} \times U(1)_{Y_2} \times U(1)_{Y_3} \to U(1)_Y$
SU(3)	$)_c \times SU($	$(2)_L \times U$	$(1)_{Y_1} \times$	$Y_1 + Y_2 + Y_3 = Y$	

FLASY 2025

$$\mathcal{L} = a_{3i}^{\nu} \ell_{3} H_{u} \nu_{i}^{c} + a_{2i}^{\nu} \frac{\phi_{23}}{\Lambda_{23}^{\nu}} \ell_{2} H_{u} \nu_{i}^{c} + a_{1i}^{\nu} \frac{\phi_{12}}{\Lambda_{12}^{\nu}} \frac{\phi_{23}}{\Lambda_{23}^{\nu}} \ell_{1} H_{u} \nu_{i}^{c} + M_{ij} \nu_{i}^{c} \nu_{j}^{c} + \text{h.c.}$$

$$\begin{array}{c} m_{D} & M_{M} \\ \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \end{pmatrix} \begin{pmatrix} a_{11}^{\nu} \epsilon_{12}^{\nu} \epsilon_{23}^{\nu} & a_{12}^{\nu} \epsilon_{12}^{\nu} \epsilon_{23}^{\nu} \\ a_{21}^{\nu} \epsilon_{23}^{\nu} & a_{22}^{\nu} \epsilon_{23}^{\nu} \end{pmatrix} \begin{pmatrix} \nu_{1}^{c} \\ \nu_{2}^{c} \end{pmatrix} H_{u} + \begin{pmatrix} \nu_{1}^{c} & \nu_{2}^{c} \end{pmatrix} \begin{pmatrix} M_{22} & M_{23} \\ M_{32} & M_{33} \end{pmatrix} \begin{pmatrix} \nu_{1}^{c} \\ \nu_{2}^{c} \end{pmatrix} \\ a_{31}^{\nu} & a_{32}^{\nu} \end{pmatrix}$$

$$\begin{array}{c} \text{hierarchical} & m_{e} \\ \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \end{pmatrix} \begin{pmatrix} a_{11}^{e} \epsilon_{12}^{e} \epsilon_{23}^{e} & a_{12}^{e} \epsilon_{12}^{e} \epsilon_{23}^{e} & a_{13}^{e} \epsilon_{12}^{e} \epsilon_{23}^{e} \\ a_{21}^{e} (\epsilon_{12}^{e})^{2} \epsilon_{23}^{e} & a_{22}^{e} \epsilon_{23}^{e} & a_{23}^{e} \epsilon_{23}^{e} \end{pmatrix} \begin{pmatrix} e_{1}^{c} \\ e_{2}^{c} \\ e_{3}^{e} \end{pmatrix} H_{d} \\ a_{31}^{e} (\epsilon_{12}^{e})^{2} (\epsilon_{23}^{e})^{2} & a_{32}^{e} (\epsilon_{23}^{e})^{2} & a_{33}^{e} \end{pmatrix}$$

~ diagonal and hierarchical

Hierarchical lepton sector with small mixing angles (unless the dimensionless order 1 coefficients are tuned)

FLASY 2025

Avelino Vicente - Deconstructed neutrinos

 $\epsilon^a_{ij} = \frac{\langle \phi_{ij} \rangle}{\Lambda^a_{ij}} \ll 1$

Introduce extra linking scalars (e.g. hyperons) which only participate in the neutrino sector and change the Yukawa texture

[Fernández Navarro, King]

Introduce extra linking scalars (e.g. hyperons) which only participate in the neutrino sector and change the Yukawa texture

[Fernández Navarro, King]

Go beyond the validity of the EFT approach to generate $\,\epsilon\sim 1$ in the full UV theory

[Fernández Navarro, King, AV]

Introduce extra linking scalars (e.g. hyperons) which only participate in the neutrino sector and change the Yukawa texture

[Fernández Navarro, King]

Go beyond the validity of the EFT approach to generate $\,\epsilon\sim 1\,{\rm in}$ the full UV theory

[Fernández Navarro, King, AV]

Consider particular gauge symmetries where both hierarchical m_D and hierarchical M_M cancel the overall hierarchies in the neutrino mass matrix

[Greljo, Isidori]

Introduce extra linking scalars (e.g. hyperons) which only participate in the neutrino sector and change the Yukawa texture

[Fernández Navarro, King]

Go beyond the validity of the EFT approach to generate $\,\epsilon\sim 1\,{\rm in}$ the full UV theory

[Fernández Navarro, King, AV]

Consider particular gauge symmetries where both hierarchical m_D and hierarchical M_M cancel the overall hierarchies in the neutrino mass matrix

[Greljo, Isidori]

Charge all lepton doublets under the same site (e.g. hypercharge) and assume that the resulting gauge anomalies are cancelled with extra fermions in the UV

[Fuentes-Martín, Lizana]

Introduce extra linking scalars (e.g. hyperons) which only participate in the neutrino sector and change the Yukawa texture

However...

All these approaches lead to an *anarchic* effective neutrino mass matrix

All entries are governed by O(1)coefficients which are fitted to neutrino

OSCILLATION data under the same site (e.g. hypercharge) and assume that the resulting gauge anomalies are cancelled with extra fermions in the UV

Ø

[Fuentes-Martín, Lizana]

Our new proposal

Mario Fernández Navarro, Stephen F. King, AV 2506.21687

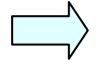
"From anarchy to order"

Key observation:

The two right-handed neutrinos are both singlets under the tri-hypercharge gauge group, and hence are <u>indistinguishable</u>, which results in the two columns of the Dirac matrix being approximately equal and the Majorana matrix being anarchical

Key observation:

The two right-handed neutrinos are both singlets under the tri-hypercharge gauge group, and hence are <u>indistinguishable</u>, which results in the two columns of the Dirac matrix being approximately equal and the Majorana matrix being anarchical



Extend tri-hypercharge to a larger gauge group under which the right-handed neutrinos are not singlets

$$G_{\rm TH} = U(1)_{Y_1} \times U(1)_{Y_2} \times U(1)_{Y_3}$$

$$\downarrow$$

$$G_{\rm UV} = U(1)_{Y_1} \times U(1)_{R_2} \times U(1)_{(B-L)_2/2} \times U(1)_{R_3} \times U(1)_{(B-L)_3/2}$$

$$Y_i = R_i + \frac{1}{2}(B - L)_i$$

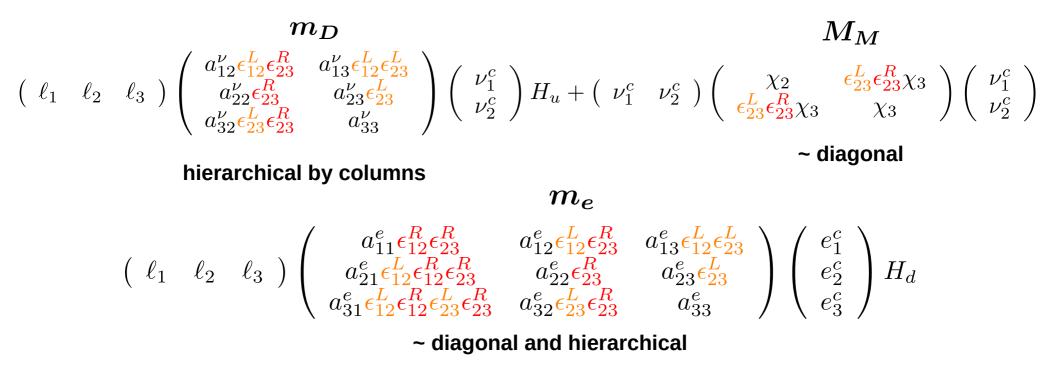
 $i = 2, 3$

FLASY 2025

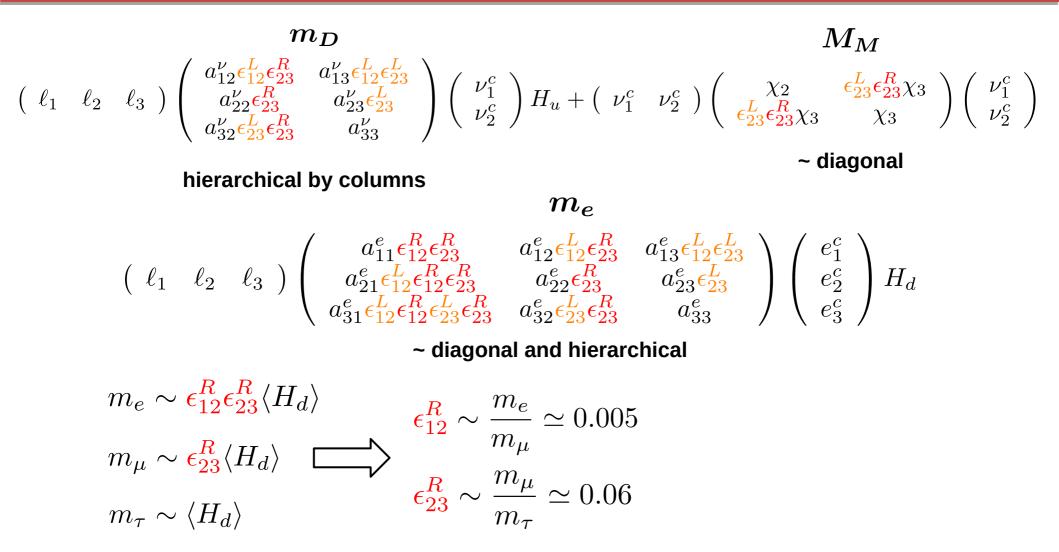
Field	$U(1)_{Y_1}$	$U(1)_{R_2} \times U(1)_{(B-L)_2/2}$	$U(1)_{R_3} \times U(1)_{(B-L)_3/2}$	$SU(3)_c \times SU(2)_L$
ℓ_1	$-\frac{1}{2}$	(0,0)	(0,0)	(1 , 2)
ℓ_2	0	$(0,-rac{1}{2})$	(0,0)	(1 , 2)
ℓ_3	0	(0, 0)	$(0,-rac{1}{2})$	(1 , 2)
e_1^c	1	(0,0)	(0,0)	(1 , 1)
e_2^c	0	$\left(rac{1}{2},rac{1}{2} ight)$	(0,0)	(1 , 1)
$\begin{array}{c} e_1^c\\ e_2^c\\ e_3^c\end{array}$	0	(ar 0,ar 0)	$(rac{1}{2},rac{1}{2})$	(1 , 1)
$rac{ u_2^c}{ u_3^c}$	0	$(-rac{1}{2},rac{1}{2})$	(0,0)	(1 , 1)
ν_3^c	0	$(\overline{0,0})$	$(-rac{1}{2},rac{1}{2})$	(1 , 1)
$H_{u,d}$	0	(0,0)	$(\pm \frac{1}{2}, 0)$	(1 , 2)
χ_2	0	(1,-1)	(0,0)	(1 , 1)
χ_3	0	(0,0)	(1,-1)	(1 , 1)
ϕ^R_{12}	$\frac{1}{2}$	$(-\frac{1}{2},0)$	$(-\frac{1}{2},0)$	(1 , 1)
$\phi^R_{12} \ \phi^L_{12} \ \phi^R_{23} \ \phi^L_{23}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$(0, -\frac{1}{2})$	(0,0)	(1 , 1)
ϕ^R_{23}	$\overline{0}$	$(\frac{1}{2}, 0)$	$(-\frac{1}{2},0)$	(1 , 1)
ϕ^L_{23}	0	$(ar{0}, rac{1}{2})$	$(0, -\frac{1}{2})$	(1 , 1)

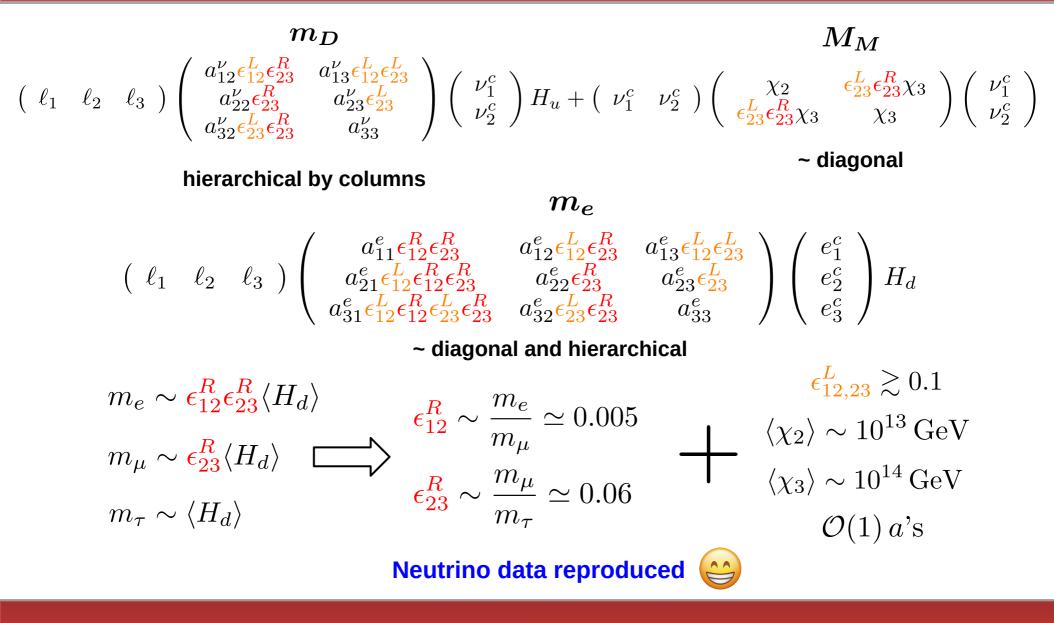
$$G_{\mathrm{UV}} \stackrel{\langle \chi_i \rangle}{\to} G_{\mathrm{TH}} \stackrel{\langle \phi_{ij} \rangle}{\to} \mathrm{SM}$$

FLASY 2025

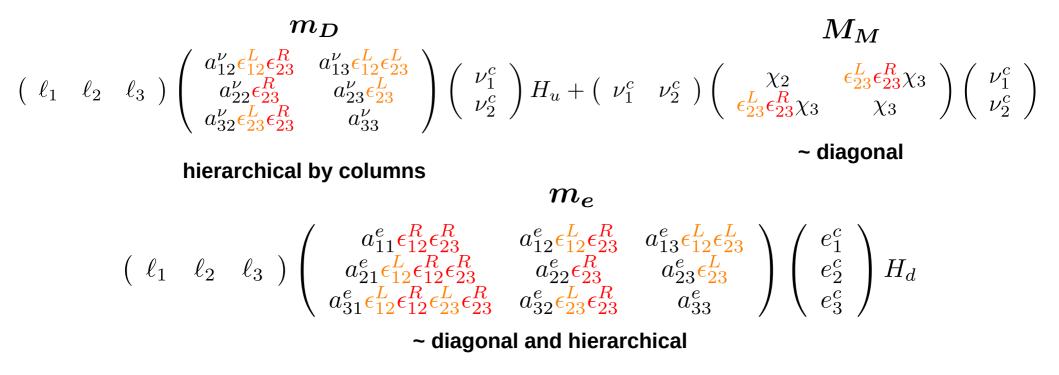


FLASY 2025





FLASY 2025



<u>Enforced</u> by the hierarchical column structure of the Yukawa textures in the charged lepton and neutrino sectors

Sequential dominance

From anarchy... to order!

FLASY 2025

Sequential dominance

A sub-mechanism within the type-I seesaw

[King, Antusch]

SD condition

In the neutrino sector:

$$m_D = \begin{pmatrix} a' & a & d \\ b' & b & e \\ c' & c & f \end{pmatrix} \qquad M_M = \begin{pmatrix} X' & 0 & 0 \\ 0 & X & 0 \\ 0 & 0 & Y \end{pmatrix} \qquad \frac{|e|^2, |f|^2, |ef|}{Y} \gg \frac{|xy|}{X} \gg \frac{|x'y'|}{X'}$$

 ν_3^c contributes dominantly and determines the atmospheric neutrino mass and mixing ν_2^c contributes subdominantly and determines the solar neutrino mass and mixing ν_1^c is effectively decoupled

In the charged lepton sector:

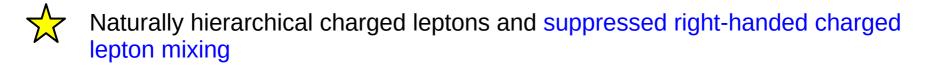
$$m_{e} = \begin{pmatrix} a' & a & d \\ b' & b & e \\ c' & c & f \end{pmatrix} \qquad |d|, |e|, |f| \gg |a|, |b|, |c| \gg |a'|, |b'|, |c'|$$

Simple formulas can be obtained in the form of a series expansion

FLASY 2025

Consequences

$$\bigstar \quad m_1 = 0$$



Both sectors contribute to $U_{\rm PMNS} = U_e U_{\nu}^{\dagger}$

 θ_{23} from both sectors, with a mild tuning $\theta_{13} \sim \sin \theta_{12}^e \sim \epsilon_{12}^L \sim 0.1$ $\theta_{12} \approx \theta_{12}^{\nu}$

Simple analytical formulas at leading order in the SD expansion

FLASY 2025

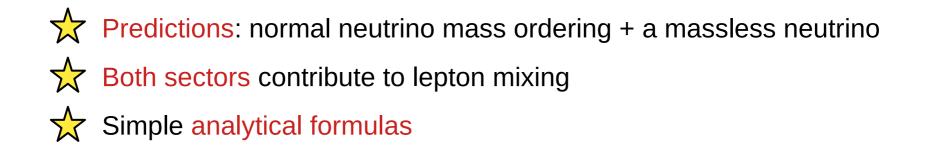
Final remarks

Take-home messages

Flavor deconstruction is a successful way to generate the flavor structure of the SM and tri-hypercharge is a simple way to implement it

The lepton sector is a challenge in flavor-deconstructed models, which have traditionally resorted to anarchy

Decomposing tri-hypercharge as $U(1)_{Y_i} \rightarrow U(1)_{R_i} \times U(1)_{(B-L)_i/2}$ naturally leads to sequential dominance: order in the lepton sector!

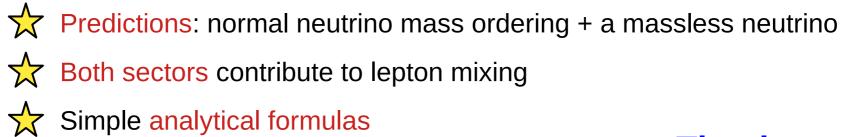


Take-home messages

Flavor deconstruction is a successful way to generate the flavor structure of the SM and tri-hypercharge is a simple way to implement it

The lepton sector is a challenge in flavor-deconstructed models, which have traditionally resorted to anarchy

Decomposing tri-hypercharge as $U(1)_{Y_i} \rightarrow U(1)_{R_i} \times U(1)_{(B-L)_i/2}$ naturally leads to sequential dominance: order in the lepton sector!



Thank you!

Backup slides

The quark sector

Field	$U(1)_{Y_1}$	$U(1)_{R_2} \times U(1)_{(B-L)_2/2}$	$U(1)_{R_3} \times U(1)_{(B-L)_3/2}$	$SU(3)_c \times SU(2)_L$
q_1	$\frac{1}{6}$	(0,0)	(0,0)	$({f 3},{f 2})$
q_2	Ŏ	$(0, \frac{1}{6})$	(0,0)	$({f 3},{f 2})$
q_3	0	(0, 0)	$(0, rac{1}{6})$	(3 , 2)
u_1^c	$-\frac{2}{3}$	(0,0)	(0,0)	$(\overline{f 3},{f 1})$
u_2^c	0 Č	$\left(-rac{1}{2},-rac{1}{6} ight)$	(0,0)	$(\overline{f 3},{f 1})$
$egin{array}{c} u_1^c \ u_2^c \ u_3^c \end{array}$	0	$(\overline{0},0)$	$(-rac{1}{2},-rac{1}{6})$	$(\overline{f 3},{f 1})$
$egin{array}{c} d_1^c \ d_2^c \ d_3^c \end{array}$	$\frac{1}{3}$	(0,0)	(0,0)	$(\overline{f 3}, {f 1})$
d_2^c	Ō	$(rac{1}{2},-rac{1}{6})$	(0,0)	$(\overline{f 3},{f 1})$
	0	$\overline{(0,0)}$	$(rac{1}{2},-rac{1}{6})$	$(\overline{f 3},{f 1})$
$\begin{matrix}\phi_{12}^{q}\\\phi_{23}^{q}\end{matrix}$	$-\frac{1}{6}$	$(0, \frac{1}{6})$	(0,0)	(1 , 1)
ϕ^q_{23}	0	$(0, -\frac{1}{6})$	$(0, rac{1}{6})$	(1 , 1)

The quark sector

$$\begin{pmatrix} q_{1} & q_{2} & q_{3} \end{pmatrix} \begin{pmatrix} a_{11}^{u} \epsilon_{12}^{R} \epsilon_{23}^{R} & a_{12}^{u} \epsilon_{12}^{q} \epsilon_{23}^{R} & a_{13}^{u} \epsilon_{12}^{q} \epsilon_{23}^{q} \\ a_{21}^{u} \epsilon_{12}^{q} \epsilon_{12}^{R} \epsilon_{23}^{R} & a_{22}^{u} \epsilon_{23}^{R} & a_{23}^{u} \epsilon_{23}^{q} \\ a_{31}^{u} \epsilon_{12}^{q} \epsilon_{12}^{R} \epsilon_{23}^{R} & a_{32}^{u} \epsilon_{23}^{q} \epsilon_{23}^{R} & a_{33}^{u} \end{pmatrix} \begin{pmatrix} u_{1}^{c} \\ u_{2}^{c} \\ u_{3}^{c} \end{pmatrix} H_{u}$$

$$\begin{pmatrix} q_{1} & q_{2} & q_{3} \end{pmatrix} \begin{pmatrix} a_{11}^{d} \epsilon_{12}^{R} \epsilon_{23}^{R} & a_{12}^{d} \epsilon_{12}^{R} \epsilon_{23}^{R} & a_{33}^{u} \\ a_{21}^{d} \epsilon_{12}^{q} \epsilon_{12}^{R} \epsilon_{23}^{R} & a_{32}^{d} \epsilon_{23}^{R} & a_{33}^{d} \end{pmatrix} \begin{pmatrix} d_{1}^{c} \\ d_{2}^{c} \\ d_{2}^{c} \\ d_{3}^{d} + e_{12}^{q} \epsilon_{12}^{R} \epsilon_{23}^{R} \epsilon_{23}^{R} & a_{32}^{d} \epsilon_{23}^{R} & a_{33}^{d} \end{pmatrix} \begin{pmatrix} d_{1}^{c} \\ d_{2}^{c} \\ d_{3}^{c} \end{pmatrix} H_{d}$$

$$m_{u} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{u} \rangle \qquad m_{d} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{d} \rangle$$

$$m_{u} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{u} \rangle \qquad m_{d} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{d} \rangle$$

$$m_{u} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{u} \rangle \qquad m_{d} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{d} \rangle$$

$$m_{u} \sim \epsilon_{12}^{d} \epsilon_{23}^{R} \langle H_{u} \rangle \qquad m_{d} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{d} \rangle$$

$$m_{u} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{u} \rangle \qquad m_{d} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{d} \rangle$$

$$m_{u} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{u} \rangle \qquad m_{d} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{d} \rangle$$

$$m_{u} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{u} \rangle \qquad m_{d} \sim \epsilon_{12}^{R} \epsilon_{23}^{R} \langle H_{d} \rangle$$

Naturally hierarchical quarks and small quark mixing

FLASY 2025

Analytical formulas (I)

Neutrinos

Mixing angles:

$$\tan \theta_{23}^{\nu} \simeq \frac{|e|}{|f|} \qquad \qquad \theta_{13}^{\nu} \simeq \frac{|d|}{\sqrt{|e|^2 + |f|^2}}$$
$$\tan \theta_{12}^{\nu} \simeq \frac{|a|}{c_{23}^{\nu}|b|\cos \tilde{\phi}_b^{\nu} - s_{23}^{\nu}|c|\cos \tilde{\phi}_c^{\nu}}$$

Masses:

$$m_3 \simeq \frac{|e|^2 + |f|^2}{Y}$$
$$m_2 \simeq \frac{|a|^2}{X(s_{12}^{\nu})^2}$$
$$m_1 \simeq 0$$

Analytical formulas (II)

Charged leptons

Mixing angles:

$$\tan \theta_{23}^{e} \simeq \frac{|e|}{|f|} \qquad \qquad \theta_{13}^{e} \simeq \frac{|d|}{\sqrt{|e|^{2} + |f|^{2}}}$$
$$\tan \theta_{12}^{e} \simeq \frac{|a|}{c_{23}^{e}|b|\cos(\tilde{\phi}_{b}^{e}) - s_{23}^{e}|c|\cos(\tilde{\phi}_{c}^{e})}$$

Masses:

$$\begin{split} m_{\tau} &\simeq \sqrt{|e|^2 + |f|^2} \\ m_{\mu} &\simeq \frac{|a|}{s_{12}^e} \\ m_e &\simeq |a'| c_{12}^e \cos(\tilde{\phi}_{a'}^e) - |b'| s_{12}^e c_{23}^e \cos(\tilde{\phi}_{b'}^e) + |c'| s_{12}^e s_{23}^e \cos(\tilde{\phi}_{c'}^e) \end{split}$$