Classification of Modular Symmetries in Type IIB Flux Landscape

Takafumi Kai (Kyushu University)

FLASY 2025 @ Roma Tre University, 2025/7/1

In collaboration with

K. Ishiguro (KEK), T. Kobayashi (Hokkaido U.), Y. Koga (Kyushu U.) and H. Otsuka (Kyushu U.) Based on *JHEP* **02** (2024) 099 (2311.12425) and arXiv:2502.20743 [hep-th]

Flavor structure and modular invariance

Feruglio, 1706.08749

Flavor puzzle

What is **the origin of the parameters** in the flavor sector?

One possibility : Modular symmetry

Modular invariance can provide **rich structures** for the flavor sector

Top-down approach

- String theory
- Extra-dimensional space

Modular group $SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}.$ $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad S^2 = \mathbb{1} \quad , \quad (ST)^3 = \mathbb{1} \quad .$

Extra-dimensional space

Cremades, Ibáñez, Marchesano, hep-th/0404229

VEVs of complex-structure modulus

→ **The input parameters** can be determined through the Yukawa coupling which is described as modular form

Flux landscape

Ishiguro, Kobayashi, Otsuka, 2011.09154 Ishiguro, TK, Otsuka, Kobayashi, 2311.12425

<u>Type IIB flux compactification on $T^6/(\mathbb{Z}_2 \times \mathbb{Z}'_2)$ orientifold</u>

Background 3-form flux: $G_3 \rightarrow \{a^0, a^i, b_i, b_0\}$

 \Rightarrow Various VEVs of complex-structure moduli

The distribution of VEVs regarding **complex structure moduli** is known to have a peak **at the fixed points of** $SL(2, \mathbb{Z})$.

VEVs with enhanced symmetry are favored in the Flux Landscape.

Previous research

Considering Type IIB flux compactification on T^6/\mathbb{Z}_{6-II} and $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_4)$ orientifolds, we analyze the structure of vacua in the Flux Landscape of complex structure moduli.

Z₃: 40.3%

The distribution of VEVs (CS moduli) on the fundamental region

Research purpose

Classification of Modular Symmetries in Type IIB Flux Landscape

$\mathbb{Z}_N, \mathbb{Z}_N \times \mathbb{Z}_M$	Lattice	Duality symmetries of U
\mathbb{Z}_4	$SU(4)^{2}$	$PSL(2,\mathbb{Z})$
\mathbb{Z}_4	$SU(2) \times SU(4) \times SO(5)$	$ar{\Gamma}_0(2)$
\mathbb{Z}_4	$SU(2)^2 \times SO(5)^2$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_{6-\mathrm{I\!I}}$	$SU(2) \times SU(6)$	$ar{\Gamma}_0(3)$
$\mathbb{Z}_{6-\mathrm{I\!I}}$	$SU(3) \times SO(8)$	$ar{\Gamma}^0(3)$
$\mathbb{Z}_{6-\mathrm{I\!I}}$	$SU(2)^2 \times SU(3)^2$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_{6-\mathrm{I\!I}}$	$SU(2)^2 \times SU(3) \times G_2$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_{8-\mathrm{I\!I}}$	$SU(2) \times SO(10)$	$ar{\Gamma}_0(2)$
$\mathbb{Z}_{8-\mathrm{I\!I}}$	$SO(4) \times SO(9)$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_{12-\mathrm{I\!I}}$	$SO(4) \times F_4$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_2 imes \mathbb{Z}_4$	$SU(2)^2 \times SO(5)^2$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_2 imes \mathbb{Z}_6$	$SU(2)^2 \times SU(3) \times G_2$	$PSL(2,\mathbb{Z})$

Table 1: The duality symmetries regarding the complex-structure modulus on T^6/\mathbb{Z}_N and $T^6/(\mathbb{Z}_N \times \mathbb{Z}_M)$ orbifold. In the case of $SU(3) \times SO(8)$ loot lattice, the complex-structure modulus is defined as $U' \equiv U + 2$.

Motivation

Modular symmetry plays **an important role** in revealing the structure of landscape

Generalization and assumptions

- Being consistent with the structure of type IIB string theory
- Normalization by intersection number
- Scaling duality

Outline

1. Introduction

2. Previous research

- Period vector
- Distribution of VEVs

3. Conditions for period vectors

- Mass spectra of Type IIB closed string
- Normalization by intersection numbers
- Scaling duality

4. Summary

Moduli stabilization

Scalar potential

$$V = e^{K} \left(K^{i\bar{j}}(D_{i}W) \left(D_{\bar{j}}\overline{W} \right) - 3|W|^{2} \right)$$

 $i, \bar{j} = axio-dilaton S$, complex structure moduli τ^{α} , $K_{i\bar{j}} \equiv \partial_i \partial_{\bar{j}} K$, $D_i \equiv \partial_i W + W \partial_i K$, $M_{Pl} = 1$

Kähler potential

$$K = -2\log \mathcal{V}_W - \log(-i(S - \bar{S})) - \log\left(i\int \Omega \wedge \bar{\Omega}\right), \quad \mathcal{V}_W : \text{volume modulus}$$

Superpotential

 $W=\int G_3\wedge\Omega\,,$

Holomorphic 3-form : $\Omega = X^{I} \alpha_{I} - F_{I} \beta^{I}$, $\begin{pmatrix} X^{\alpha}/X^{0} = \tau^{\alpha}, & \alpha = 1, ..., h^{2,1} \\ F_{I} \equiv \partial_{I} F, & \text{prepotential} : F \end{pmatrix}$

3-form flux : $G_3 = F_3 - SH_3$, $(F_3 = a^I \alpha_I + b_I \beta^I$, $H_3 = c^I \alpha_I + d_I \beta^I$,) Cohomology basis : $\int \alpha_I \wedge \beta^J = \delta_I^J$, $(I, J = 0, ..., h^{2,1})$

SUSY Minkowski solutions					
$\partial_{\tau^{\alpha}}W=0,$	$\partial_S W = 0,$	W = 0			

By taking arbitrary integer values for the 3-form flux, the moduli fields are given a wide variety of VEVs.

2025/7/1

Sp(4, \mathbb{Z}) transformation on T^6/\mathbb{Z}_{6-II} orbifold

Ishiguro, TK, Kobayashi, Otsuka, 2311.12425

Period vector

$$\Pi = \begin{pmatrix} \int_{A^{0}} \Omega \\ \int_{A^{1}} \Omega \\ \int_{B^{0}} \Omega \\ \int_{B^{1}} \Omega \end{pmatrix} = \begin{pmatrix} \int_{T^{6}/\mathbb{Z}_{6-\Pi}} \Omega \wedge \mathbf{1}_{4} \\ \int_{T^{6}/\mathbb{Z}_{6-\Pi}} \Omega \wedge (-\mathbf{1}_{3}) \\ \int_{T^{6}/\mathbb{Z}_{6-\Pi}} \Omega \wedge \mathbf{1}_{1} \\ \int_{T^{6}/\mathbb{Z}_{6-\Pi}} \Omega \wedge \mathbf{1}_{2} \end{pmatrix} = -\frac{1}{6} \begin{pmatrix} i \\ \sqrt{3} \\ 3i\tau \\ \sqrt{3}\tau \end{pmatrix}$$

holomorphic 3-form : Ω

By Kähler transformation and $Sp(4,\mathbb{Z})$ transformation, $\Pi \rightarrow \Pi' = (1, -\sqrt{3}i\tau, 3\tau, \sqrt{3}i)^T$

SL(2, Z) transformation for period vector

$$\Pi' \to (c\tau + d)^{-1} \begin{pmatrix} d & 0 & \frac{c}{3} & 0 \\ 0 & a & 0 & -b \\ 3b & 0 & a & 0 \\ 0 & -c & 0 & d \end{pmatrix} \Pi' \equiv (c\tau + d)^{-1} M \Pi' \qquad \left(\tau \to \frac{a\tau + b}{c\tau + d}\right)$$

 $r c = 0 \mod 3$

Since we consider a basis transformation of $H_3(T^6/\mathbb{Z}_{6-\Pi},\mathbb{Z})$, the modular transformation must be $\Gamma_0(3)$ (Hecke congruence subgroup).

"Scaling duality" on T^6/\mathbb{Z}_{6-II} orbifold

Ishiguro, TK, Kobayashi, Otsuka, 2311.12425

Another symmetry for period vector

"Scaling duality transformation": $S_{(3)} \equiv \tau \rightarrow -\frac{1}{3\tau}$

Taking account of $\Pi' = (1, -\sqrt{3}i\tau, 3\tau, \sqrt{3}i)^T$, the scaling transformation is

$$\Pi' \to \tau^{-1} \frac{i}{\sqrt{3}} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \Pi' \equiv \tau^{-1} \frac{i}{\sqrt{3}} M \Pi'.$$

$$\notin \Gamma_0(3)$$

$$\frac{\text{Congruence subgroup}: \Gamma_0(3)}{\Pi' \to (c\tau + d)^{-1} \begin{pmatrix} d & 0 & \frac{c}{3} & 0 \\ 0 & a & 0 & -b \\ 3b & 0 & a & 0 \\ 0 & -c & 0 & d \end{pmatrix}} \Pi', \quad \left(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \right)$$

The outer semidirect product group

$$\Gamma_0(3) \rtimes_{\varphi(S_{(3)})} \mathbb{Z}_2$$

The distribution of VEVs

The distribution of VEVs on T^6/\mathbb{Z}_{6-II}

- The largest number of VEVs are clustered at the fixed point (elliptic point) associated with Scaling duality
- The fixed point related to $\Gamma_0(3)$ has the second highest concentration of VEVs

In the fundamental region, the fixed points $(\mathbb{Z}_2, \mathbb{Z}_3)$ are very strong candidates for Landscape.

Ratio	38.0%	14.4%	9.17%	3.49%	1.75%
	$\frac{1}{\sqrt{3}}i$	$-\frac{1}{2} + \frac{1}{2\sqrt{3}}i$	$\frac{2}{\sqrt{3}}i$	$\frac{1}{3} + \frac{1}{\sqrt{3}}i$	$-\frac{1}{2} + \frac{1}{\sqrt{3}}i$
				$\sqrt{3}i$	$-\frac{1}{4} + \frac{5}{4\sqrt{3}}i$
τ				$-\frac{1}{3} + \frac{1}{\sqrt{3}}i$	$\frac{5}{\sqrt{3}}i$
L				$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$	$\frac{4}{\sqrt{3}}i$
					$\frac{1}{4} + \frac{5}{4\sqrt{3}}i$
					$-\frac{1}{2} + \frac{5}{2\sqrt{3}}i$

Outline

1. Introduction

2. Previous research

- Period vector
- Distribution of VEVs

3. Conditions for period vectors

- Mass spectra of Type IIB closed string
- Normalization by intersection numbers
- Scaling duality

4. Summary

Problem and motivation

Period vector

$$\Pi = \begin{pmatrix} \int_{A^0} \Omega \\ \int_{A^1} \Omega \\ \int_{B^0} \Omega \\ \int_{B^1} \Omega \end{pmatrix} = \begin{pmatrix} \int_{T^6/\mathbb{Z}_{6-\mathrm{II}}} \Omega \wedge \mathbf{1}_4 \\ \int_{T^6/\mathbb{Z}_{6-\mathrm{II}}} \Omega \wedge (-\mathbf{1}_3) \\ \int_{T^6/\mathbb{Z}_{6-\mathrm{II}}} \Omega \wedge \mathbf{1}_1 \\ \int_{T^6/\mathbb{Z}_{6-\mathrm{II}}} \Omega \wedge \mathbf{1}_2 \end{pmatrix}$$

There is a variety of the choice concerning the cycles on the toroidal orbifolds

$$\Pi' \to (c\tau + d)^{-1} \begin{pmatrix} d & 0 & \frac{c}{3} & 0\\ 0 & a & 0 & -b\\ 3b & 0 & a & 0\\ 0 & -c & 0 & d \end{pmatrix} \Pi' \equiv (c\tau + d)^{-1} M \Pi'$$

The different choice of the cycles → **The different transformation matrix**

To identify the modular symmetries for the classification, we discuss a generalization and assumptions

FLASY 2025 @ Roma Tre University

Consistency concerning string theory

Ishiguro, TK, Koga, Kobayashi, Otsuka, 2502.20743

The moduli-dependent part in the untwisted sectors

(the one-loop partition function for the orbifolds)

$$Z_{(1,\theta^2)}(\tau,\bar{\tau},T,U) = \sum_{m_1,m_2,n_1,n_2 \in \mathbb{Z}} e^{2\pi i \tau_1 (2m_1n_1 + m_2n_2)} e^{-\frac{\pi \tau_2}{T_2 U_2} |TUn_2 + Tn_1 - 2Um_1 + m_2|^2},$$

We can read off **the mass spectrum of strings** for the two-dimensional **sub-torus**

$$m_{\perp}^2 = \sum_{m_1, m_2, n_1, n_2 \in \mathbb{Z}} \frac{1}{T_2 U_2} |TUn_2 + Tn_1 - 2Um_1 + m_2|^2,$$

This is invariant under the following transformations

$$\begin{split} T &\to T+2, \quad T \to \frac{T}{T+1}, \\ U &\to U+1, \quad U \to -\frac{U}{2U-1}. \end{split}$$

The duality group for T^6/\mathbb{Z}_4 orbifold with $SU(2) \times SU(4) \times SO(5)$ root lattice

 $\Gamma^0(2)_T \times \Gamma_0(2)_U.$

Normalization by intersection number

Ishiguro, TK, Koga, Kobayashi, Otsuka, 2502.20743

Intersection number

$$\int_{A^J} \mathbf{1}_{A^I} = \int_{T^6/\mathbb{Z}_4} \mathbf{1}_{A^I} \wedge \mathbf{1}_{B_J} = c_I \delta^I_J, \qquad \int_{B_J} \mathbf{1}_{B_I} = \int_{T^6/\mathbb{Z}_4} \mathbf{1}_{B_I} \wedge \mathbf{1}_{A^J} = -c_J \delta^J_I.$$

Coordinates and functions of prepotential

$$X^{I} = \frac{1}{\sqrt{c_{I}}} \int_{A^{I}} \Omega, \qquad F_{I} = \frac{1}{\sqrt{c_{I}}} \int_{B_{I}} \Omega, \qquad (I = 0, ..., h_{\text{untw.}}^{2,1}).$$

Considering **the above modification**, we can choose the bases including **the modular symmetry** which is consistent with **the structure of the 10d bosonic string sector** of the type IIB closed string

 T^6/\mathbb{Z}_4 orbifold with $SU(2) \times SU(4) \times SO(5)$ root lattice

$$\Pi \equiv \begin{pmatrix} X^0 \\ X^1 \\ F_0 \\ F_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \int_{T^6/\mathbb{Z}_4} \Omega \wedge \mathbf{1}_{B_0} \\ \frac{1}{2\sqrt{2}} \int_{T^6/\mathbb{Z}_4} \Omega \wedge \mathbf{1}_{B_1} \\ \frac{1}{2} \int_{T^6/\mathbb{Z}_4} \Omega \wedge \mathbf{1}_{A^0} \\ \frac{1}{2\sqrt{2}} \int_{T^6/\mathbb{Z}_4} \Omega \wedge \mathbf{1}_{A^1} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -iU \\ \frac{U}{\sqrt{2}} \\ \frac{i}{2} \end{pmatrix},$$

Scaling duality

Ishiguro, TK, Koga, Kobayashi, Otsuka, 2502.20743

Two matrices regarding the symplectic basis transformation

$$X_{1} = \begin{pmatrix} d' & 0 & 2c' & 0 \\ 0 & a' & 0 & -2b' \\ b' & 0 & a' & 0 \\ 0 & -c' & 0 & d' \end{pmatrix} . \quad X_{2} = \begin{pmatrix} 0 & c'' & 0 & 2d'' \\ -b'' & 0 & -2a'' & 0 \\ 0 & a'' & 0 & -b'' \\ d'' & 0 & c'' & 0 \end{pmatrix} . \qquad (a', b', c', d' \in \mathbb{Z})$$

Scaling duality bridging between two matrices

$$S_{\mathrm{SD}} = egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix}.$$

$$S_{\text{SD}}x_1 = x_2, \qquad (x_1 \in X_1, \ x_2 \in X_2),$$

Scaling duality including Kähler transformation is denoted as a generalized *S*-transformation

$$S_{(2)} \equiv \frac{i}{\sqrt{2}U} S_{\text{SD}} \qquad U \to -\frac{1}{2U} \qquad S_{(2)} = \begin{pmatrix} 0 & -\frac{1}{\sqrt{2}} \\ \sqrt{2} & 0 \end{pmatrix}$$

The outer semidirect product group

$$\overline{\Gamma}_0(2) \rtimes \mathbb{Z}_2.$$

2025/7/1

Classification of Modular Symmetries

Ishiguro, TK, Koga, Kobayashi, Otsuka, 2502.20743

$\mathbb{Z}_N, \mathbb{Z}_N imes \mathbb{Z}_M$	Lattice	Duality symmetries of U
\mathbb{Z}_4	$SU(4)^{2}$	$PSL(2,\mathbb{Z})$
\mathbb{Z}_4	$SU(2) \times SU(4) \times SO(5)$	$ar{\Gamma}_0(2)$
\mathbb{Z}_4	$SU(2)^2 \times SO(5)^2$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_{6-\mathrm{I\!I}}$	$SU(2) \times SU(6)$	$ar{\Gamma}_0(3)$
$\mathbb{Z}_{6-\mathrm{I\!I}}$	$SU(3) \times SO(8)$	$ar{\Gamma}^0(3)$
$\mathbb{Z}_{6-\mathrm{I\!I}}$	$SU(2)^2 \times SU(3)^2$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_{6-\mathrm{I\!I}}$	$SU(2)^2 \times SU(3) \times G_2$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_{8-\mathrm{I\!I}}$	$SU(2) \times SO(10)$	$\bar{\Gamma}_0(2)$
$\mathbb{Z}_{8-\mathrm{I\!I}}$	$SO(4) \times SO(9)$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_{12-\mathrm{I\!I}}$	$SO(4) \times F_4$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_2 imes \mathbb{Z}_4$	$SU(2)^2 \times SO(5)^2$	$PSL(2,\mathbb{Z})$
$\mathbb{Z}_2 imes \mathbb{Z}_6$	$SU(2)^2 \times SU(3) \times G_2$	$PSL(2,\mathbb{Z})$

Table 1: The duality symmetries regarding the complex-structure modulus on T^6/\mathbb{Z}_N and $T^6/(\mathbb{Z}_N \times \mathbb{Z}_M)$ orbifold. In the case of $SU(3) \times SO(8)$ loot lattice, the complex-structure modulus is defined as $U' \equiv U + 2$.

Generalization and assumptions

- Being consistent with the structure of type IIB string theory
- Normalization by intersection number
- Scaling duality

Outline

1. Introduction

2. Previous research

- Period vector
- Distribution of VEVs

3. Conditions for period vectors

- Mass spectra of Type IIB closed string
- Normalization by intersection numbers
- Scaling duality

4. Summary

Summary

Motivation and previous research

The modular symmetry of the modulus on T^6/\mathbb{Z}_{6-II} orbifold is **different from** $PSL(2,\mathbb{Z})$ **The different structure of distribution** for the VEVs based on T^6/\mathbb{Z}_{6-II} orbifold <u>The modular symmetry</u> plays an important role in **revealing the structure of landscape**

<u>Conclusion</u> (necessary conditions for the classification)

- Being consistent with the structure of type IIB string theory
- Normalization by intersection number
- Scaling duality

<u>To work on ...</u>

- Constraints for moduli by considering threshold corrections
- Modular symmetry of Hecke congruence subgroup and Scaling duality

Back up

Moduli

<u>10d metric</u>

 $G_{MN} = \begin{pmatrix} g_{\mu\nu} & g_{\mu n} \\ g_{m\nu} & g_{mn} \end{pmatrix}$ $(M, N = 0, \dots, 9, \mu, \nu = 0, \dots, 3, m, n = 4, \dots, 9)$

Kähler moduli (real (1,1)-form)

Complex structure moduli (complex (2,1)-form)

 $\delta g_{i\bar{i}}dz^i \wedge dz^j$

 $\Omega_{ijk}g^{k\bar{l}}\delta g_{\bar{l}\bar{m}}dz^{i}\wedge dz^{j}\wedge \overline{dz^{m}}_{i,j,k,l,m=1,\dots,3}$

Deformation of extra-dimensional space

 $g_{mn} \rightarrow g_{mn} + \delta g_{mn}$

They appear as scalar fields in low-energy effective theories

→ Moduli fields

Moduli fields produce **unknown interactions** with elementary particles that appear in the Standard Model

Moduli stabilization

The effective action of massless moduli fields

$$S = \int dx^4 \left[K_{\bar{j}i} \partial_\mu \Phi^{*\bar{j}} \partial^\mu \Phi^i + V(\Phi^i, \Phi^{*\bar{j}}, N_{F_i}, N_{H_i}) \right]$$

→ Scalar potential

Moduli stabilization

Fixing the moduli fields at the local minimum value (VEV $\langle \Phi_0^i \rangle$) of the scaler potential

Conservation law of charge in extra-dimensional space (tadpole cancelation condition)

 $N_{\text{flux}} + D3$ brane charge + O3 plane charge = 0

Induced **3-form flux** $\{N_{F_i}, N_{H_i}\}$ take various integers

Scalar potential varies and gives a wide variety of VEVs

Construction of complex bases on the orbifold

Lüst, Reffert, Schulgin, Steinberger, hep-th/0506090

Coxeter element on the $SU(6) \times SU(2)$ root lattice on \mathbb{Z}_{6-II} orbifold

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}, \qquad Q^{6} = 1$$

Bases dz^i which satisfy with $Q^t dz^i = e^{2\pi i v^i} dz^i$, $(v^1, v^2, v^3) = \left(-\frac{1}{6}, -\frac{2}{6}, \frac{3}{6}\right)$

$$dz^{1} = dx^{1} + e^{-\frac{2\pi i}{6}} dx^{2} + e^{-\frac{2\pi i}{3}} dx^{3} - dx^{4} + e^{\frac{2\pi i}{3}} dx^{5},$$

$$dz^{2} = dx^{1} + e^{-\frac{2\pi i}{3}} dx^{2} + e^{\frac{2\pi i}{3}} dx^{3} + dx^{4} + e^{-\frac{2\pi i}{3}} dx^{5},$$

$$dz^{3} = \frac{1}{2\sqrt{3}} \left[\frac{1}{3} (dx^{1} - dx^{2} + dx^{3} - dx^{4} + dx^{5}) + \tau dx^{6} \right]$$

Holomorphic 3-form: $\Omega \equiv dz^1 \wedge dz^2 \wedge dz^3$,

Construction of orbits on the orbifold

Four independent orbits on T^6/\mathbb{Z}_{6-II} orbifold $(h_{untw.}^{2,1} = 1)$

$$\mathbf{1}_{1} \equiv \sum \Gamma(\alpha_{0}), \qquad \mathbf{1}_{2} \equiv \sum \Gamma(\alpha_{1}), \qquad \mathbf{1}_{3} \equiv -\left(\sum \Gamma(\beta^{1}) + \sum \Gamma(\beta^{0})\right), \qquad \mathbf{1}_{1} \equiv \sum \Gamma(\beta^{0}),$$

e.g. $\alpha_{0} = dx^{1} \wedge dx^{3} \wedge dx^{5}$

 Γ : orbifold twist on the cohomology basis induced by Coxeter element (Q)

$$\sum \Gamma(\alpha_0) = \alpha_0 + Q\alpha_0 + Q^2\alpha_0 + Q^3\alpha_0 + Q^4\alpha_0 + Q^5\alpha_0, \qquad (dx^j = Q^j{}_i dx^i, \qquad Q^6 = 1)$$

Intersection number of dual cycles

e.g.
$$Q\alpha_0 = 3\alpha_0 - \alpha_1 - \alpha_2 + \beta_3$$

 $-\delta_5 + \delta_6 + \gamma_1 - \gamma_2 - \gamma_3 + \gamma_4$

All of these are real three-forms

$$\int_{T^6} \mathbf{1}_1 \wedge \mathbf{1}_4 = 6, \qquad \int_{T^6} \mathbf{1}_2 \wedge \mathbf{1}_3 = -6$$

The distribution on VEVs on $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_4)$

- The largest number of VEVs are clustered at the fixed point
 (Z₂) associated with SL(2, Z)
- No vacua are realized at the \mathbb{Z}_3 fixed point ($\tau = \omega$)

In the case of $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_4)$, the fixed points (\mathbb{Z}_2) is also very strong candidate for Landscape

Ishiguro, TK, Kobayashi, Otsuka, 2311.12425 {{0, 3}, 6.5 %} 3.0 Max. = 87 25. 2.5 15. {{0, 2}, 17.1 %} Imτ 2.0 5. $\left\{\left\{-\frac{1}{2},\frac{3}{2}\right\}, 6.5\%\right\}$ 1.5 {{0, 1}, 39.0 %} 1.0 Min. = 1-0.50 -0.25 0.00 0.25 0.50 Reτ

Moduli stabilization on T^6/\mathbb{Z}_{6-II} and $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_4)$

SUSY Minkowski solutions

$$\begin{cases} D_{\tau}W = \partial_{\tau}W + K_{\tau}W = 0\\ D_{S}W = \partial_{S}W + K_{S}W = 0 \\ W = 0 \end{cases} \Rightarrow \begin{cases} C + DS = 0\\ B + D\tau = 0\\ A + C\tau = 0 \end{cases}$$

Superpotential: $W = A + BS + \tau[C + DS]$

The set of (fluxes, moduli VEVs)

$$\langle S \rangle = -\frac{C}{D}, \qquad \langle \tau \rangle = -\frac{B}{D}, \qquad AD - BC = 0$$

$$T^{6}/\mathbb{Z}_{6-II} \text{ orientifold}$$

$$A = -ib_{0} - \frac{\sqrt{3}}{2}b_{1}, \qquad C = -ia^{0} - \left(\sqrt{3}a^{1} + \frac{1}{\sqrt{3}}a^{0}\right), \\B = -id_{0} - \frac{\sqrt{3}}{2}d_{1}, \qquad D = -ic^{0} - \left(\sqrt{3}c^{1} + \frac{1}{\sqrt{3}}c^{0}\right), \qquad A = -\frac{i}{2}[c^{1} + (-1+i)b_{2}], \qquad C = -\frac{i}{2}[(-1+i)a^{2} + (-2i)b_{1}], \\B = -\frac{i}{2}[c^{1} + (-1+i)d_{2}], \qquad D = -\frac{-1+i}{2}[(-1+i)c^{2} + (-2i)d_{1}], \qquad B = -\frac{i}{2}[(-1+i)c^{2} + (-2i)d_{1}], \qquad B = -\frac{i}{2}[(-1+i)c^{2} + (-2i)d_{1}], \qquad B = -\frac{i}{2}[c^{1} + (-1+i)d_{2}], \qquad D = -\frac{i}{2}[(-1+i)c^{2} + (-2i)d_{1}], \qquad B = -\frac{i}{2}[(-1+i)c^{2} + (-2i)d_{1}],$$