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The strong CP problem

Source of CP breaking in the SM: 0 G- G

Experimentally 6 < 107'° from neutron EDM

Theoretically 0 has two contributions: quark Yukawa + QCD
Both could be oder one, e.g., ckm ~ 66°, Oqcp € [0, 27).
Strong CP problem: Why @ is so small?

Technical naturalness does not apply: CP is violated in Nature.

However, if small, radiatively stable (7 loop 5 within the SM).



The strong CP problem

How to solve it?

1. Massless u quark (disfavored by lattice)
2. Promote 4 to a field a(x)/f — QCD potential — () ~ 0 + axion
3. CP or P is a symmetry which is only spontaneously broken



The strong CP problem

3. CP or P is a symmetry which is only spontaneously broken

® Since P or CP is only spontaneously broken, fqcp = 0

® P is a symmetry — Left-right models

e CPis a symmetry
® Nelson-Barr mechanism
® Others
® susy non-renormalization theorems
® modular symmetries
® texture-zeros
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Nelson-Barr theories

Nelson-Barr UV

Nelson '84. Barr '84.

Ne ® CP spontaneously broken at A,
® VLQs transmit CP violation to the SM
VLQ-EFT _
® Arranges 6 = 0 at tree level
e Otree = Oocp + argdet Yy + argdet Y,
SMEFT ® Large éckm should be generated
N

e Radiative corrections are calculable
SMEFT broken phase and should be tiny



Effective theories and matching

1. Matching

uv

model a(h)

2. Running
de(1) < 1
dlogpu ;16;:1 Yy

l 0(0.1%) - O(1%)
Precision
&ilmy) observables

3. Mapping

® Matching between theories (EFTs)

® Running within the EFTs

¢ Functional methods at 1-loop

Chan,86. Gaillard, 86. Cheyettte, 88.
Henning,Lu,Murayama, 14,16. Drozd,Ellis,Quevillon,You, 16.
Fuentes-Martins,Portoles,Ruiz-Femenia, 16. Cohen,Zhang,21. - - -



Effective theories and matching

Nelson-Barr UV
N
Our task
VLQ-EFT ® Integrating out CP breaking scalars at A,

M ° Integrating out VLQs at Myiq

SVEFT ® Running between A, and MyLq

SMEFT broken phase



Nelson-Barr theories

CP basis

Arbitrary number of scalars s; and VLQs Bg, By M Ba _ Fil
Vo = LMBsisi + L\ sis; ANsiS
S = 2 I]SIs] + 3 I]kslsjsk + 21 qklslsjsksl

Vs = Ht H(%’yijSiSj + 'y,{s,-) .

VLQ mass basis — generic case

DA

7 =] = = E =



VLQs of Nelson-Barr type (NB-VLQs)

Tree-level matching up to dimension 4
Cherchiglia,Nishi,JHEP’20. Cherchiglia,Conto,Nishi,JHEP'21. Alves,Cherchiglia,Nishi,JHEP’23.

One parameter less

| #of param. # of CP-odd
SM 3+3+3+1=10 1
generic VLQ 16 3
NB-VLQ 15 1

For down type NB-VLQs

VP IYZ ]2 1YE] ~ | V| < [ Vel - [ Vool
~ 0.0036:0.04 : 1

Largely flavor safe
See Martinelli’s talk

Mg = 1.4TeV 106 , ; , , , , 4 Q
00 01 02 03 04 05 06 07 OO




VLQs of Nelson-Barr type (NB-VLQs)

In leading seesaw

t .
YOV = Veku dlag(ygv }’52, yg) VCTKM

CP phase in the CKM should come from the complex part in

[ Y"Y‘”:gz/"(llg—wwf)gz/dT ]

Then » »
W= %~ wt =M P~ O(1)

NB-VLQs cannot decouple
Correlations
Y® = Y%
VLQ Yukawa inherit the hierarchy of SM Yukawa/CKM
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Tree-level matching at A, up to dimension 6

Alves,Nishi,2506.03257

Operator Wilson coeflicient Op. dim.

Ofigy | BidpBydy MR R [F)e ™ 6
Oy | dpBiBfdy M2F]]re R 6
O3 5.5 | BiBRBY B IMG2(GH] Gy 6
Oy 5 5| BHBYLBY By MG2GH™[GR™Y 6
Oy | dpBiBi By MR Gy 6
Oygby | BhdnBi By MR (G 6
OFunn Bidy(H H) Zz[F]‘"”//L 5
OYpun B¢ BY(HTH) M2(Gi)%;, 5
Onn (H*H)D(HfH) 2~/le ’Yk 6
Oy (HTH)3 —%’yﬂ% 'YJlMlk T + )\Uklwd M mwml\fku'yn 6
Osan (HYH)? Ly M2, 4




One-loop matching at A, up to dimension 5

Lvr|,y = +BLCES 0 FBR + BLCE{"o-Fd + h.c.

16m°[Cg5"1™ = ;M,;z{(gék, + Ly)[GM®' G
- UGG+ RFHM® + MPG 6™} |

167°[CE5' 1" = My *{ (30 + L)[GM® FI" — §IM°G] Fig™ }



Matching at Myiq

® Tree-level matching
¢ One-loop matching only tracking contributions to 4

® Relevant one-loop RGE between A, and Myq



Final formula for 8: Nelson-Barr case

aL . i f dn Estimate 2
\\\/i\’,/ 50 ~ 16:28
W)
Exact formula with log enhancement
0(Myrg) = —#U}W/j,\/lﬁ_zllk Im tr [ﬂ,f;] log N/’\:I;Q

Running from A, — Myig



Final formula for : Nelson-Barr case

100

10 0<107"°
Fl ~ Gi ~ MVLQ/Acp
& F Gollder Acp=10°GeV This  suppression s
enough for A¢y ~ 108 Gev
010 and MVLQ ~ 2TeV
) Small Myq is techinically
natural
. . . N .
0045 5 10 50 100
My1q[TeV]

7 1 Mo \*, Mg
Abhoc) = graren (1112 ) tog 20
MY A
ot = Aep(M 24", Im t G2
rer = A (M) “”[MVLQ ’MVLQ] 2
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Final formula for 8: effective case

Dimension 5 operators

O = BLdr|H?,  Oggr = B.Ba|H|?

87°60(MyLg) = — (Imtr [Yd_1 YBMBTCBd/-//-/}

— mg Imtr [MF1 (Cagrt — Caarr YO YB)] ) log MXLQ

Barring cancellations, this leads generically to very strong bounds.




Matching contribution to 6ocp

Inthe SMEFT Oy = GLHdg|H|® contributes additionally to quark masses

[Md]rs _ % ([Yd]rs _ %VZ[CdH]rS)

For SM+VLQ
1 yd 1 B
M = 1\/§YV2 B\/§1YV 2
—5Cpanv"  M” — 5CpprnVv

In Nelson-Barr, arg det.#°*% = 0 at tree-level.

But we if we integrate out the VLQ only at tree-level, Cggriy would not enter
and we would get 6 # 0 at tree-level from Cggry — Can-

This contradicts the NB construction.



Final formula for 8: effective case

The resolution is that at one-loop,

H SH

ImTr[MB_1CBBHH]|H|zg—§G' é //
6472 —

N

leads to the tree-level equivalent

0= V;ImTr [MB_1 CBBHH]

This contribution cancels the tree-level contribution from Cgguy in
Oun = GLHOR|HI?

Needs updating in 2506.03257



CP4 model

Cherchiglia, Nishi, JHEP 1903 (2019) 040

® We can improve on the Bento-Parada-Branco (BBP) model by using a
nonconventional CP

e Two VQLs By, B, (more fields)

e 56 = 0 at one-loop

® Dead-duck 2-loop graph also vanishes

® No ad hoc Z; is needed (embedded) compared to BBP

® 2-loop estimate:

_ 2
A (1672)2




CP4 model

In the effective calculation, the dominant contribution goes as
u/'y/j/\ﬂjfzuk Imtr [9,%3]
But there is an approximate residual Z, in the potential
M? = diag(MF, M5),  [u] = (us,0)"

[vi] = vslz,  [v] = vsus(1,0)".



Irreducible contriutions to 6

There are irreducible contributions to 4 arising from the NB-VLQs.

The non-decoupling contribution arises first at 3-loops.

They are relevant for ng > 2 and nr > 2.

= 1 \% et B
For ng = 1 60N<16W2) Y X XY

X, = vUyet x,=vyeyd!
Incidentally, this flavor invariant is  ([Xu, Xs] YY') ~ degree 6
instead of 12 (Jarlskog)
For SM+(1 singlet VLQ),

[ invariant = polynomial(20 CP even, 9 CP odd)

|

Necessity of these 9 CP odd invariants was not known before

20

tr {[A, B]C}?



Conclusions

Exact one-loop contribution to 8 in Nelson-Barr theories with log
enhancement

In the VLQ-EFT, one-loop running of @ is induced by dimension 5
Osarr = Budg|H?,  Opsrn = BLBr|H[?

In the SMEFT, one-loop running of 4 is induced by g, Hdr|H|?, |H?GG

Subtlety in the matching of 6 ...
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More details

G. H. S. Alves and C. C. Nishi, “Effective description of Nelson-Barr
models and the theta parameter,” [2506.03257 [hep-ph]].

E. L. F. de Lima and C. C. Nishi, “Flavor invariants for the SM with one
singlet vector-like quark,” JHEP 11 (2024), 157 [2408.10325 [hep-ph]].
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A. L. Cherchiglia and C. C. Nishi, “Consequences of vector-like quarks of
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Thank you! Q
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Flavor invariants

e CP violation in the SM can be quantified with a single flavor invariant

los = det([Xy, Xs]) ~ix 3x 107"

=2i(y2 — y5) - (vs — ¥&)J
J = Im[ Vs Ve Vi V2]

e As spurions under Gr = U(3)q ® U(3)y ® U(3)q:
YY ~ (3,3,1), Y~ (3,1,3)
e All invariants can be written in terms of
XU = yuyut X9 = vy
which are 3 ® 3 of SU(3)q

24



Flavor invariants

® The set of all of polynomial invariants forms a ring which is finitely
generated

1. Basic invariants = generating set = {primary} + {secondary}
2. Primary invariants = algebraically independent

e Example: ks in the SM is basic but not primary because

[ (CP odd)? = (CP even) ]

[ invariant = (CP even) + lgs x (CP even) ]

25



Flavor invariants
The number and degree of polynomial invariants can be given by the
Hilbert series calculable with the Molien-Weyl formula

Very useful for listing invariant operators in SMEFT

For the SM (Plethystic logarithm=PL)
PLIH(Xu = Xa = ¢°)] = 29° +3q" + 44" +¢° + ¢ — ¢*
counts the number of basic invariants (may fail)
For SM+(1 singlet VLQ)
PLIHXu = Xa = ¢*,Y = q)] = 39" +5¢" +8¢° +--- +29"° — 49"
Total of 29=20 CP even + 9 CP odd

(IXu, Xa] YY) ~ degree 6
The necessity of these 9 CP odd invariants was not known before
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Flavor invariants: syzygy identity

For hermitean 3 x 3 matrices

(IA, B]C)? = CP even

+ 6 tensors

See complete identity in deLima,Nishi,JHEP24, 2408.10325
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