Neutrino Mass Sum Rules from Modular A₄ Symmetry

Phys. Rev. D 109 (2024) 3, 035016

Ranjeet Kumar

IISER Bhopal, India

In Collaboration with: Salvador Centelles Chuliá Oleg Popov Rahul Srivastava

FLASY 2025 July 01, 2025

11TH WORKSHOP

Flavor Symmetries and Consequences in Accelerators and Cosmology

Neutrino Oscillations

• Neutrino oscillations suggest that neutrinos must be massive !

2

Fig. 1: Neutrino Oscillations

Source: S. Jang, et al. . vOscillation: a software package for computation and simulation of neutrino oscillation and detection

Neutrino Mass Ordering

Neutrino Oscillation: Mass Ordering ? Patterns of mixing angles: $\theta_{23} \sim 45^{\circ}$, $\theta_{12} \sim 33^{\circ}$, $\theta_{13} \sim 8^{\circ}$

Fig. 2: Neutrinos mass ordering

Absolute Neutrino Mass Observables ($m_e^{}, m_{ee}^{}, \Sigma$)

Beta Decay : Sensitive to the effective electron neutrino mass

$$\mathbf{m}_{\mathbf{e}} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$$

Ovee decay (Only for Majorana Neutrino) : Effective Majorana mass $|m_{ee}| = \left| \sum_{i} U_{ei}^2 m_i \right| = |c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 e^{2i\phi_{12}} m_2 + s_{13}^2 e^{2i\phi_{13}} m_3|$

Lisi's talk

Cosmology : Sum of Neutrino Mass

$$\Sigma = m_1 + m_2 + m_3$$

Flavor Structure + Absolute Mass Scale

The Symmetry Approach to Flavor Structure

- Symmetries play an important role in particle physics, for example, the SM is built on gauge symmetries (strong, weak, and electromagnetic).
- Discrete symmetries are often utilized to control the allowed couplings (e.g., Abelian symmetries like Z_N) and to explain the origin of flavor structures (typically using non-Abelian symmetries).
- Non-Abelian discrete symmetries are commonly referred to as flavor symmetries, such as S_3 , A_4 , S_4 , etc.
- Usually a flavon field φ is introduced for the breaking pattern.

$$\begin{pmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{pmatrix}$$

E. Ma and G. Rajasekaran, hep-ph/0106291, K. S. Babu, et al., hep-ph/0206292, G. Altarelli and F. Feruglio, hep-ph/0512103

Modular Symmetry

- Modular symmetry provides an elegant framework for understanding fermion masses and mixing without introducing flavon fields.
- It replaces traditional discrete flavor symmetries by promoting Yukawa couplings to modular forms, where $y \equiv y(\tau)$.
- Finite modular groups like Γ_N (e.g., $\Gamma_3 \simeq A_4$, $\Gamma_4 \simeq S_4$) play the role of effective flavor symmetries.
- Fermion fields are assigned modular weights (k) and representations, leading to flavor structures without flavons.

Neutrino Mass Sum Rules

• Mass sum rules among the neutrino masses.

These sum rules constraint neutrino masses and predict the absolute neutrino mass observables.

G. Altarelli et al., JHEP 03 (2008), 052, M. Hirsch et al., Phys. Rev. D 78 (2008), 093007, F. Bazzocchi et al. Phys. Rev. D 80 (2009), 053003

Our Model

- We employ a modular A_4 group.
- 'k' denotes the modular weight.
- Neutrino Masses and Mixing will be generated from the type-II Seesaw Mechanism.

Tab 1: Model particle contents

Fig. 3: Type-II seesaw mass diagram

Charged Lepton and Neutrino Mass Matrix

The superpotential of the model is given by:

$$\mathcal{W} = \alpha_1 \left(\mathbf{Y}_{\boldsymbol{e}} L \right)_1 E_1^c H_d + \alpha_2 \left(\mathbf{Y}_{\boldsymbol{e}} L \right)_{1''} E_2^c H_d$$

+ $\alpha_3 \left(\mathbf{Y}_{\boldsymbol{e}} L \right)_{1'} E_3^c H_d + \alpha \left(\mathbf{Y}_{\boldsymbol{\nu}, \mathbf{1}} \left(LL \right)_{3_S} \right)_1 \Delta$
+ $\beta \left(\mathbf{Y}_{\boldsymbol{\nu}, \mathbf{2}} \left(LL \right)_{3_S} \right)_1 \Delta + \mu H_u H_d + \mu_\Delta H_d H_d \Delta$

Yukawas

$$\Gamma_3 \simeq \mathcal{A}_4 \ k$$
 $Y_e = Y_3^{(4)}$
 3
 4

 $Y_{\nu,1} = Y_{3a}^{(6)}$
 3
 6

 $Y_{\nu,2} = Y_{3b}^{(6)}$
 3
 6

Tab 2: Yukawa transformation

$$M_{\ell} = v_{H} \begin{pmatrix} Y_{3,1}^{(4)} & Y_{3,2}^{(4)} & Y_{3,3}^{(4)} \\ Y_{3,3}^{(4)} & Y_{3,1}^{(4)} & Y_{3,2}^{(4)} \\ Y_{3,2}^{(4)} & Y_{3,3}^{(4)} & Y_{3,1}^{(4)} \end{pmatrix} \begin{pmatrix} \alpha_{1} & 0 & 0 \\ 0 & \alpha_{2} & 0 \\ 0 & 0 & \alpha_{3} \end{pmatrix} \qquad M_{\nu} = v_{\Delta} \begin{pmatrix} 2Y_{1} & -Y_{3} & -Y_{2} \\ * & 2Y_{2} & -Y_{1} \\ * & * & 2Y_{3} \end{pmatrix}$$

where $Y_i \equiv \alpha Y_{3a,i}^{(6)} + \beta Y_{3b,i}^{(6)}$ with $i \in \{1, 2, 3\}$

Proof of Sum Rule

 $r^2 \equiv |Y_1|^2 + |Y_2|^2 + |Y_3|^2$

$${
m Tr}(M^{\dagger}_{
u}M^{}_{
u})=6r^2$$

 ${
m Tr}(M^{\dagger}_{
u}M^{}_{
u}M^{\dagger}_{
u}M^{}_{
u})=18r^4$

$$\implies \frac{1}{2} \operatorname{Tr}(M_{\nu}^{\dagger}M_{\nu})^{2} = \operatorname{Tr}(M_{\nu}^{\dagger}M_{\nu}M_{\nu}^{\dagger}M_{\nu})$$

$$\frac{1}{2}(m_1^2 + m_2^2 + m_3^2)^2 = m_1^4 + m_2^4 + m_3^4 \qquad \implies \qquad m_3^2 = (m_1 \pm m_2)^2$$

$$\begin{split} m_3^{\rm NO} &= m_1^{\rm NO} + m_2^{\rm NO}, \qquad m_3^{\rm NO} > m_2^{\rm NO} > m_1^{\rm NO} \\ m_2^{\rm IO} &= m_1^{\rm IO} + m_3^{\rm IO}, \qquad m_2^{\rm IO} > m_1^{\rm IO} > m_3^{\rm IO} \end{split}$$

$$m_{\rm heaviest} = \frac{1}{2} \sum_{i} m_i$$

Sum Rule Predictions

A fascinating aspect of this neutrino mass matrix is the sum rule, which is invariant irrespective of the ordering of neutrino masses.

The sum rule, together with the two mass-squared differences, allows definite neutrino masses. NO:

$$m_3 = m_1 + m_2$$

$$\Delta m_{21}^2 = 7.5 \times 10^{-5} \text{ eV}^2, \quad \Delta m_{31}^2 = 2.55 \times 10^{-3} \text{ eV}^2$$

$$m_1 = 0.0282 \text{ eV}, \quad m_2 = 0.0295 \text{ eV}, \quad m_3 = 0.0578 \text{ eV}$$

IO:

$$m_2 = m_1 + m_3$$

$$\Delta m_{21}^2 = 7.5 \times 10^{-5} \text{ eV}^2, \quad \Delta m_{31}^2 = -2.45 \times 10^{-3} \text{ eV}^2$$

$$m_3 = 7.5 \times 10^{-4} \text{ eV}, \quad m_1 = 0.049 \text{ eV}, \quad m_2 = 0.050 \text{ eV}$$

Sum Rule Implications

• This sum rule leads to precise prediction for neutrinoless double beta decay.

$$|m_{ee}| = \left|\sum_{i} U_{ei}^2 m_i\right| = |c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 e^{2i\phi_{12}} m_2 + s_{13}^2 e^{2i\phi_{13}} m_3|$$

Effective mass for neutrinoless double beta decay

Fig. 5: Correlation of Majorana phases

Fig. 4: Neutrinoless double beta decay

Dashed green line is for nEXO future sensitivity.

- Majorana phases are strongly correlated with each other.
- Effective mass of beta decay and sum of neutrino masses are precisely determined.

Neutrino Oscillations Predictions

• Correlation between atmospheric angle and imaginary part of complex parameter τ .

Fig. 6: Model predictions for atmospheric mixing angle vs $Im(\tau)$.

Neutrino Oscillations Predictions: NO

- Correlation of mixing angles and CP phase for NO.
- Lower bound on mixing angle $\theta_{13} > 8.36^{\circ}$.

Fig. 7: Model predictions for mixing angles and CP phase in NO

Neutrino Oscillations Predictions: IO

- Correlation of mixing angles and CP phase for IO.
- Upper bound on mixing angle $\theta_{23} < 46.8^{\circ}$.

Fig. 8: Model predictions for mixing angle and CP phase in IO

Conclusions

- Modular A_{4} symmetry has been employed in type-II seesaw mechanism.
- Neutrino mass structure leads to a sum rule for physical neutrino masses valid for both NO and IO.
- Sum rule fixes neutrino mass and provides a testable prediction for the sum of neutrino mass, neutrinoless double beta decay and beta decay
- Mixing angles have strong correlations with the complex modulus parameter τ .
- The mixing angle θ_{13} has lower bound in NO while upper bound on mixing angle θ_{23} for IO.
- CP phase in both NO and IO has correlation that can be tested in future experiments like DUNE.

Back Up

A₄ Representation for Modular Weight k

mibble ini. via representations for anterent weight w		
Weight (k)	d_k	\mathcal{A}_4 representations
2	3	3
4	5	3 + 1 + 1'
6	7	3 + 3 + 1
8	9	3 + 3 + 1 + 1' + 1''
10	11	3 + 3 + 3 + 1 + 1'

TABLE III. A_4 representations for different weight k.