Updated result from $\mu^+ \rightarrow e^+\gamma$ search in MEG II and future projects

FLASY Rome Jun 30th 2025 P.W. Cattaneo INFN Pavia

- Flavor is not an exact symmetry of nature (neutrino oscillation). Several NP model predict sizable CLFV
- O(10⁻⁵⁴) in the SM (small neutrino masses)—If seen it would represent a clear sign of physics BSM

Effective Field Theory approach

S. Davidson, B. Echenard 2022

MEG II uses the π E5 beam line at Paul Scherrer Institut in Switzerland

Surface muon beam: $p \cong 28 \text{ MeV/c}$

Up to $2.32 \times 10^8 \,\mu^+$ /sec (continuous) 2.2 mA can be transported into the magnet (COBRA) of the experiment

Muons are stopped in a slanted BC400 170 μ m thick target with 6 holes and a pattern of dots (photographed by a camera) to continuously monitor the shape and position of the foil

The muon beam profile at the target position is measured before start of data taking for stopping rates 2-5 x $10^7 \mu$ /s

90 per cent contour

20

Stopping rate is $5.28e+07\mu^{+}/s_{MPV} = 0.00 \text{ mm}$, STD(x_{MPV}) = 11.35 mm

-20

0

x, [mm]

 $y_{MPV} = -0.80 \text{ mm}, \text{STD}(y_{MPV}) = 11.36 \text{ mm}$

30 -

20

10

0 -

-10

-20 -

-30

-40

-40

y, [mm]

270 mm x 66 mm

Signal and background

At large muon intensities background is by far dominated by the accidental component

Detectors resolutions are crucial to keep it under control

The COBRA magnet: 0

LXe γ -detector (800 liters) read by \approx 4000 UVsensitive 12mm x 12mm SiPMs (MPPC) on the γ entrance face and by \approx 600 2" PMTs on the others

1: LXe

C-W proton accelerator Up to 1 MeV proton on LiBO₄ target Energy calibration line : $p^{7}\text{Li} \rightarrow {}^{8}\text{Be} \gamma(17.6 \text{ MeV})$ XEC-pTC time alignment with line : $p^{11}B \rightarrow {}^{12}C \gamma(11.6 \text{ MeV}) \gamma(4.4 \text{ MeV})$

Three times a week

Charge Exchange reaction CEX Energy & time calibration at signal energy

 $\pi^- p \to \pi^0 n$ $\checkmark \pi^0 \to \gamma \gamma$

Movable array of BGO Crystals

Energy in 55-83 MeV range

Once per year

+ LEDs, Alpha sources on wire, **n-generator** (9 MeV from absorption in Ni)

- u,v anodes **stereo** (7 degrees) configuration for improved position reconstruction along the beam axis (Z)
- Almost squared cells with **6** mm sides: 9 layers
- Roughly 1700 anodes Au/Ti 20 $\mu m\,$ and 1 0,000 Ag/Al 40/50 $\mu m\,$ cathodes
- He-Isobuthane (90-10) low mass gas mixture (+ addition of 1% isopropilic alcohol and ~0.5% oxygen)
- 1.5×10^{-3} rad.length X₀ per track (instead of 2×10^{-3} X₀ of MEG)
- Working properly since late 2020

A backup chamber with different (bare Al5056) cathodes has been wired and will soon be delivered to PSI

The CDCH positron efficiency

The positron spectrum

<mark>3: pixelated Timing</mark> Counter

- Two sectors made of 256 scintillating BC422 tiles read by Advansid SiPMs
- Time obtained by averaging the tiles hit by a positron: 8 tiles on average for signal positrons
- A laser system is used for calibrations and monitoring

4: Radiative Decay Counter

- Tag γin LXe from RMD associated to a low energy positron
- Low e⁺ positrons: plastic scintillator for timing and LYSO for energy measurement

Most coincidences with LXe associated to low energy positrons

Trigger and Data Acquisition

- Trigger and DAQ are integrated and accomplished with full custom boards and crates
- Waveform digitizer (GSPS) with DRS chip with SiPM power supply and amplification included
- Complex FPGA based trigger with latency <450ps based on E_{γ} , Δt (LXe-pTC) and e-Y direction-match
- up to 10 Gb/s DAQ throughput (50 Hz)
- All readout channels available in March 2021 (previously 10% of the cannels)

Detector's performances

MEG II

PDF parameters	Foreseen	Achieved
E_{e^+} (keV)	100	89
ϕ_{e^+}, θ_{e^+} (mrad)	3.7/6.7	4.1/ 7.2
y_{e^+}, z_{e^+} (mm)	0.7/1.6	0.74/2.0
$E_{\gamma}(\%) \ (w < 2 \text{ cm})/(w > 2 \text{ cm})$	1.7/1.7	2.4/1.9 (2.1/1.8)
$u_{\gamma}, v_{\gamma}, w_{\gamma}, (\text{mm})$	2.4/2.4/5.0	2.5/2.5/5.0
$t_{e^+\gamma}$ (ps)	70	78
Efficiency (%)		
ε_{γ}	69	62
\mathcal{E}_{e^+}	65	67
ETRG	≈99	91(88)
	(20	21 in parenthesis)

Analysis Strategy

We blind events in the signal region and use the other events (SideBands), plus Simulation and Calibrations, to evaluate Probability Distribution Functions to be used in a likelihood fit.

1.5

0.5

0

-0.4

-0.2

Radiative muon decays in MEG II data (Energy SideBand): a crucial check for a μ→eγ experiment – Same topology of possible signal events

MEG final $(S_{90} = 5.3 \times 10^{-13})$

 E_{γ} [MeV]

90% Confidence Levels computed according to the Feldman Cousins Prescriptions based on the Likelihood previously described

Two independent analyses: constant and per event PDFs must match on NULL toy MC (red dots) and side bands (blue dots) before opening the blind box

Projection on the per event (x)-axis

Sensitivity (S_{90}) : median on the UL on the null toy experiments = 2.2x10⁻¹³

Opening the Signal Region

49.0 < Eγ < 55.0 MeV and 52.5 < Ee < 53.2 MeV

 $\cos\Theta e\gamma < -0.9995$ and $|te\gamma| < 0.2$ ns

MEG II Present result 2021 + 2022

Best Fit $B_{fit} = -3.8 \times 10^{-13}$ Upper Limit (90% CL) $B_{90} = 1.5 \times 10^{-13}$ arXiv:2504.15711 [hep-ex] **Previous Result** Combined MEG II 2021 & MEG $B_{90} = 3.1 \times 10^{-13}$ Eur.Phys.J.C 84 (2024) 3, 216 arXiv:2310.12614 [hep-ex] **MEG** final Eur.Phys.J.C 76 (2016) 8, 434 arXiv:1605.05081 [hep-ex] $B_{90} = 4.2 \times 10^{-13}$

High Intensity Muon Beam

An upgrade of the PSI muon beamlines is foreseen during the 2027-2028 long shutdown to bring muon intensity up to $10^{10} \mu^+/s$ in the new experimental areas —> can we exploit it?

MEGII runs at R_{μ} =4-5x10⁷ μ^+ /s and the intensity R_{μ} =2x10⁸ μ^+ /s is available.

 $B_{\rm acc} \propto \mathbf{R}^2_{\mu} \cdot \delta E_e \cdot (\delta E_{\gamma})^2 \cdot \delta T_{e\gamma} \cdot (\delta \Theta_{e\gamma})^2 \cdot (\delta \Theta_{\gamma})^2 (2)$

To exploit high R_{μ} high positron tracking efficiency must be retained. High Ey is required as well as high angular resolution (small MS)

Figure 16: Possible layout of $\mu \to e\gamma$ experiment with photon conversion spectrometer.

Figure 15: Possible structure of the active conversion spectrometer.

Calorimetry

High efficiency Good resolutions

MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %) Extreme resolutions + eγ Vertex

- 1: Photon converter proof of principle (CEX with converter + tracker in the MEG COBRA magnet)
- 2: Decision about positron timing technology
- 3: phase-I approval by PSI and funding agencies
- 4: Decision about positron tracker technology for phase-II
- \$5: phase-II approval by PSI and funding agencies

Summary

- MEG II has been taking data since 2021 and aims at improving the sensitivity to $\mu \rightarrow e\gamma$ by an order of magnitude in the B.R. wrt MEG
- Result from 2021+2022 : $B_{90} = 1.5 \times 10^{-13}$
- Possibly improve analysis algorithms & maybe increase beam rate to maximize sensitivity
- Data taking will continue until 2026 to reach the final goal
- Design of a future $\mu \rightarrow e\gamma$ experiment for the HIMB project at PSI ongoing

Backup

A posteriori check

Sensitivity

Resolution

Date

Normalization: Michel events simultaneously measured with the normal MEG trigger

$$N_{e\gamma} = BR(\mu^{\dagger} \rightarrow e^{+}\gamma) \cdot k \qquad K = 1/S.E.S.$$
where:
$$f_{s} = N_{evv} \cdot \underbrace{f_{s}}_{gf_{M}} \cdot \underbrace{g(TRG = MEG \mid e^{+}\gamma)}_{g(TRG = Michel \mid track \cap e_{m}^{+} \cap TC)} \times A(\gamma \mid track) \cdot g(\gamma) \cdot Psc(Mtr)$$

$$f_{s} = A(DC) \cdot g(track, p_{e} > Pcut \mid DC) \cdot g(TC \mid p_{e} > Pcut)|_{s}$$

$$f_{M} = \pi \mid_{M}$$
pre-scaling O(107)

-Independent of instantaneous beam rate

- Nearly insensitive to positron acceptance and efficiency factors associated with DCH and TC

Systematic uncertainty

Source	Uncertainty	Impact on limit
Angle uncertainty	50 μm for CDCH-target alignment 400 μm for CDCH-XEC alignment	1.4 %
EGamma uncertainty	0.2 % for energy scale	1.0 %
Normalisation uncertainty	5 % for k	0.4 %
EPositron uncertainty	6 keV for energy scale	0.1 %
Time uncertainty	4 ps for offset	<0.1 %
RDC uncertainty	Ignorable statistical uncertainty	<0.1 %

Inserting 5 events in a sample of the same size of the experimental one

Stability of E_v reconstruction

E_γ Probability Distribution Function

CEX reaction

Energy resolution

 $55 \text{ MeV} \gamma$

	MEG II 2021	MEG II 2022	MEG
w < 2 cm	2.1 %	2.4 %	2.4 %
w > 2 cm	1.8 %	1.9 %	1.8 %

X 4 amplification in FE electronics

NN DOCA estimates take into account several clusters (differently from conventional estimates)

115 μ

- Survey alignment
- Iterative alignment after 5 steps
- After 12 steps

Alternative alignment (Millepede for wires with sag) using CR: trying using both alignements

Z Vertex Comparison

Figure 13 The double-turn analysis results for the positron kinematic

 $\Phi_2 - \Phi_1$ [rad]

-0.04

-0.02

0.02

0.04

 $\Theta_2 - \Theta_1$ [rad]

- Identification of clusters of tiles
- Matching with CDCH tracks
- Δt (tiles) ~15 ps: Laser system + tracking
- T~10–15 °C for minimizing dark current due to radiation damage
- Worst tiles (80) substituted in 2024 after 3 years of data taking

Trigger efficiency

$$\varepsilon_{\text{TRG}} = \varepsilon_{E_{\gamma}} \times \varepsilon_{T_{e^+\gamma}} \times \varepsilon_{\text{DM}} \approx (80$$

$$91\%$$
2021
2022

