

Exploring Flavour Symmetries and Long-Lived Particles with the FASER Experiment Cristiano Sebastiani (CERN)

11TH WORKSHOP

Flavor Symmetries and Consequences in Accelerators and Cosmology

- Optimised to detect light and long-lived particles (LLPs)
- LLPs arise naturally in many models with flavour dynamics, connecting flavour physics to dark sectors and cosmology
- FASER searches for dark photons, axion-like particles and collider neutrinos, enable a broad exploration of new physics scenarios related to flavour

Most recent FASER results will be presented Today

FASER is a small experiment uniquely positioned in the forward region at the LHC:

FASER location

FASER is located 480m downstream of ATLAS, shielded with 100m of rock and concrete

UJ12 FASER

The detector is aligned with the beam collision axis line of sight

- neutrinos in LHC Run 3 (2022-2025)
- Energy ~ TeV, direction $\theta_{\text{beam-axis}}$ ~ mrad

FASER exploits high LHC collision rate with highly collimated forward production of light particles: High flux of light particles at LHC produced in π , K, D meson decay - N~ 10¹⁶ pions/10¹²

Front Scintillator veto system PARTICLES 2 x 20 mm thick Scintillator Tracking spectrometer stations 35 x 30 cm area **ENTER HERE!** veto system TO ATLAS IP 3 x 3 layers of ATLAS SCT strip modules 3 x 20 mm thick 30 x 30 cm area Decay volume **FASERv** emulsion Interface detector Tracker (IFT) 730 layers of 1.1 mm tungsten + emulsion

Electromagnetic Calorimeter

4 LHCb Outer ECAL modules

> **Trigger / pre-shower** scintillator system

JINST 19 (2024) P05066

0.57 T Dipoles 1.5 m decay volume

5

Detector

~7m length with 20 cm aperture (η >9.1) and a ~1.5 m magnetised decay volume

Magnets

Trigger / timing scintillator station

(8 interaction lengths)

10mm thick + dual PMT readout ($\sigma = 400 \text{ ps}$)

Neutrino flux at FASER

First Measurement of the Muon Neutrino Interaction Cross Section and Flux as a Function of Energy at the LHC with FASER

$ u_e: \ {\it K} \longrightarrow \pi e u_e$, $D \longrightarrow {\it Ke} u_e$
$ u_\mu : \pi^\pm \longrightarrow \mu u_\mu $, $K^\pm \longrightarrow \mu u_\mu$
$\nu_{\tau} \colon D_{s} \longrightarrow \tau \nu_{\tau}$

Generators		$\mathrm{FASER}\nu$ at Run 3		
light hadrons	charm hadrons	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + ar{ u}_{\mu} $	$ u_{ au} + ar{ u}_{ au} $
EPOS-LHC	_	1149	7996	_
SIBYLL 2.3d	_	1126	7261	_
QGSJET 2.04	_	1181	8126	_
PYTHIAforward	—	1008	7418	_
_	POWHEG Max	1405	1373	76
—	POWHEG	527	511	28
_	POWHEG Min	294	284	16
Combination		1675^{+911}_{-372}	8507^{+992}_{-962}	28^{+48}_{-12}

First collider neutrino observation

First direct observation of collider neutrinos! **153 events** observed with an expected background of 0.2 + - 1.8

PhysRevLett.131.031801

Neutrino flux at FASERV arxiv:2403.12520

- mm), with a total target mass of 1.1 tonnes
- delivered)

Event display of a neutrino interaction candidate in which secondary particles produced in the CC interaction produce activity in the IFT

Event display

Dark-photon search

First FASER search for light dark photons decaying to electrons (2022 dataset 27/fb)

Signature:

- No signal in vetoes
- 2 tracks with momentum p > 20 GeV
- 2 MIPs in pre-shower scintillators with associated EM Calo deposit >500 GeV

Background free analysis:

- Neutrinos (1.5 ± 1.9) x10-4 expected events

Dark-photon exclusion PLB.2023.138378

First FASER search for light ALPs decaying to photons (2022-2023 dataset 57.7/fb)

Signature:

- No signal in vetoes, timing scintillator and tracking stations
- Signal in the pre-shower and large energy deposit in calorimeter (>1.5 TeV)

Small background:

neutrino interactions in the pre-shower • exp events (0.42 ± 0.38)

JHEP 01 (2025) 199

ALP exclusion

CERN-EP-2024-262

What next in Run3?

FASER upgraded in early 2025:

- New high-resolution W-Si pixel preshower detector installed
 - Enables multi- γ tagging and increase ALP searches' reach
- •New muon ID detector installed after calorimeter using old preshower
 - Allows for muon / pion discrimination (\rightarrow LLP models with pions)

FASER successfully took data in the first 3 years of Run3:

- Set world-leading constraints on dark photons and ALPs
- First-ever detection of collider-produced neutrinos, opening a new window on high-energy neutrino physics
- Synergies with ATLAS, LHCb, and flavour factories will further strengthen our understanding of the connections between flavour, dark sectors, and cosmology
- Run-4 operations approved! The future is FORWARD \bullet

Summary

BACKUP

Dark Photon Dominant Background

- Neutral hadrons (e.g. Ks) from upstream muons interacting in rock
 - Data driven estimate from lower energy Ο 3-track/2-track and different veto conditions
 - (8.4 ± 11.9)x10⁻⁴ expected events 0
- Neutrinos interacting in the Timing scintillator station or the first tracking station ...
 - GENIE simulation (300 ab⁻¹) following input flux Ο estimate method in PRD 110 (2024) 1, 012009
 - (1.5 ± 2.4)x10⁻⁴ expected events Ο
- **Non-collision events**
 - Negligible

Veto scintillators inefficiencies, Large-angle muons entering in the active detector,

Background

