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the strong CP problem

𝛿𝐶𝐾𝑀 ≈ 𝒪(1)&

ℒ𝑄𝐶𝐷 = ത𝑞 𝑖𝐷 − 𝑚 𝑞 −
1

4𝑔3
2 𝒢𝜇𝜈

𝑎 𝒢𝑎𝜇𝜈 +
𝜃𝑄𝐶𝐷

32𝜋2
𝒢𝜇𝜈

𝑎 ሚ𝒢𝑎𝜇𝜈

ҧ𝜃 = 𝜃𝑄𝐶𝐷 + arg det 𝑚 𝑑𝑛 ≈ 1.2 × 10−16 ഥ 𝜃 𝑒 ∙ 𝑐𝑚

ҧ𝜃 ≲ 10−10

Axion solution

ҧ𝜃 promoted to a field, the axion, pseudoGB of a global,

anomalous 𝑈(1)𝑃𝑄 symmetry

VEV dynamically relaxed to zero by QCD dynamics



here: a superstring-inspired model

CP spontaneously broken

1.

2.

3.

supersymmetry in the UV

modular invariance

inequivalent vacua parametrized by (𝜏, 𝑆)

CP violation depends on the 
specific vacuum chosen by
the theory

𝜏 → 𝛾𝜏 ≡
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑
𝑆 → 𝑆

𝑅𝑒(𝜏)

𝐼𝑚
(𝜏

)

slice at 𝑆  real



supersymmetry

ℒ = න 𝑑2𝜃𝑑2 ഥ𝜃 𝐾 + න 𝑑2𝜃 𝑤 +
1

16
න 𝑑2𝜃 𝑓 𝑊𝑊 + ℎ. 𝑐

𝑓3 =
1

𝑔3
2 − 𝑖

𝜃𝑄𝐶𝐷

8𝜋2

kinetic terms Yukawa couplings 𝒴

gauge kinetic
function

real VEVs for 𝐻𝑢,𝑑

no dependence on K

ҧ𝜃 = arg 𝑒−8𝜋2𝑓3 det 𝑌𝑞

rigid SUSY

not zero, field-dependent



modular invariance 

tori 
parametrized by  ℳ = 𝜏=

𝜔2

𝜔1
 𝐼𝑚 𝜏 > 0 

𝑎, 𝑏, 𝑐, 𝑑  integers
𝑎𝑑 − 𝑏𝑐 = 1

lattice left 
invariant by 
modular 
transformations:

∈

∈ 𝑆𝐿(2, 𝑍)𝜏 →
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

a discrete gauge symmetry removing redundancy in parametrization of a torus



𝜏 → −𝜏∗ [up to modular 
transformations]

CP

unbroken CP

𝑅𝑒(𝜏)

𝐼𝑚
(𝜏

)

[Novichkov, Penedo, Petcov and Titov 1905.11970
Baur, Nilles, Trautner and Vaudrevange, 1901.03251]

fundamental
domain

𝜏 promoted to a field. Through a gauge choice 
we can restrict 𝜏 to the fundamental domain

cusp 𝜏 = 𝑖∞

CP spontaneously broken



𝐴 𝑆, 𝜏 ≡ 𝑒−8𝜋2𝑓3(𝑆,𝜏) det 𝑌𝑞(𝜏)

φ → 𝑐 𝜏 + 𝑑 −𝑘𝜑  𝜑
matter 
multiplets 𝜏 → 𝛾𝜏 ≡

𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

𝑆 → 𝑆

Field content

ҧ𝜃 becomes field-dependent

ҧ𝜃 = arg 𝐴(𝑆, 𝜏)

holomorphic

holomorphic functions with too much symmetry are constants

toy-example

𝐴 𝜆𝑧 = 𝐴 𝑧          𝜆 > 0 𝐴 𝑧  = constant

if constant > 0, then   ҧ𝜃 = 0  (at least in the UV where SUSY is unbroken)

main idea:

𝑉 → 𝑉



𝐴 𝑆, 𝜏  in modular invariant theories

det 𝑌𝑞 𝛾𝜏 = 𝑐𝜏 + 𝑑 𝑘det  det 𝑌𝑞(𝜏)

𝑘det =  σ𝑖=1
3 2𝑘𝑄𝑖

+ 𝑘𝑈𝑖
𝑐 + 𝑘𝐷𝑖

𝑐 + 3𝑘𝐻𝑢
+ 3𝑘𝐻𝑑

 

modular function of weight 𝑘𝑑𝑒𝑡

1. Yukawa couplings are 𝜏-dependent modular functions 

anomaly-free theory if2

𝑒−8𝜋2𝑓𝑎(𝑆,𝛾𝜏) = (𝑐𝜏 + 𝑑)𝑘𝑓𝑎 𝑒−8𝜋2𝑓𝑎(𝑆,𝜏) 𝑘𝑓𝑎
= − 

𝑀

2𝑇𝑎 𝑀 𝑘𝑀

modular function of weight 𝑘𝑓𝑎

𝑘𝑓3
= − σ𝑖=1

3 2𝑘𝑄𝑖
+ 𝑘𝑈𝑖

𝑐 + 𝑘𝐷𝑖
𝑐  



𝐴 𝑆, 𝜏 ≡ 𝑒−8𝜋2𝑓3(𝑆,𝜏) det 𝑌𝑞(𝜏)

𝐴 𝑆, 𝛾𝜏 = (𝑐𝜏 + 𝑑)𝑘𝐴  𝐴 𝑆, 𝜏 𝑘𝐴 = 3(𝑘𝐻𝑢
+ 𝑘𝐻𝑑

)

general result



conditions for ҧ𝜃 = 0 

independently from the particular vacuum selected by the modulus 𝜏 

the sum of the weights in the Higgs sector vanishes, 

𝑘𝐻𝑢
+ 𝑘𝐻𝑑

= 0

𝐴 𝑆, 𝜏  has no singularities in the 
closure ഥ𝐷 of the fundamental 

domain of 𝑆𝐿(2, 𝑍), which includes 

the cusp 𝜏 = 𝑖∞. 

𝜏 is the only source of CP-breaking. 

ҧ𝜃 = arg 𝐴 𝑆, 𝜏 = 0

1.

2.

3. 𝐴 𝑆, 𝜏  is a real constant

𝐴 𝑆, 𝜏  is 𝜏-independent 

𝐴 𝑆, 𝛾𝜏 = 𝐴 𝑆, 𝜏

we further assume it is positive𝐼𝑚 𝑆 = 0



singularities

𝑒−8𝜋2𝑓3(𝑆,𝜏) expected to be singular at  𝜏 = 𝑖∞

Distance Conjecture: 
𝜏 = 𝑖∞ is infinitely far away from any point in D

𝑓3 𝑆, 𝜏 = 𝑘3𝑆 −
𝑘𝑓3

8𝜋2
log 𝜂 𝜏 + ⋯

𝐴 𝑆, 𝜏 ≡ 𝑒−8𝜋2𝑓3(𝑆,𝜏) det 𝑌𝑞(𝜏)

cannot be both holomorphic everywhere [have opposite weight]

explicit computation in 
string theory compactifications

det 𝑌𝑞(𝜏) exhibits a zero at 𝜏 = 𝑖∞ if

𝑘det = 12 𝑚 > 0 det 𝑌𝑞(𝜏) ∝ Δ(𝜏)𝑚

discriminant form

∆ 𝜏 = 𝑞 ෑ

𝑛=1

∞

(1 − 𝑞𝑛)24𝑞 ≡ 𝑒𝑖 2𝜋𝜏

[Gonzalo, Ibanez, Uranga, 1812.06520] 

[Ooguri, Vafa 0605264]



Example of 𝑌𝑞(𝜏) 

𝑌𝑢,𝑑 𝜏 =

𝐸4 𝐸6 𝐸8

𝐸6 𝐸8 𝐸10

𝐸8 𝐸10 𝐸12

𝑘𝑄𝑖
= 𝑘𝑈𝑖

𝑐 = 𝑘𝐷𝑖
𝑐 = (2,4,6)

𝐸2𝑘 ≡ 

𝑚≠0,𝑛≠0

1

(𝑚 + 𝜏𝑛)2𝑘 (𝑘 > 1)

det 𝑌𝑢,𝑑(𝜏) ∝ Δ(𝜏)2

in the basis where kinetic terms are canonical

𝐾 = 

𝑖=1

3

𝑐𝑄𝑖

−2𝑦−𝑘𝑄𝑖 𝑄𝑖
2 + 𝑐𝑈𝑖

𝑐
−2𝑦

−𝑘
𝑈𝑖

𝑐
𝑈𝑖

𝑐2
+ 𝑐𝐷𝑖

𝑐
−2𝑦

−𝑘
𝐷𝑖

𝑐
𝐷𝑖

𝑐2
𝑦 ≡ 2 𝐼𝑚 𝜏



𝑞𝑖3 ≡ 𝐶𝑄𝑖
/𝐶𝑄3

𝑢𝑖3 ≡ 𝐶𝑈𝑖
𝑐/𝐶𝑈3

𝑐 𝑑𝑖3 ≡ 𝐶𝐷𝑖
𝑐/𝐶𝐷3

𝑐 𝑖 = 1,2

best fit values

8 parameters + 𝜏



leptons require 6+2=8 more parameters

normal ordering



deviations from ҧ𝜃 = 0 

no corrections from K
no corrections from nonrenormalizable operators: 𝑆𝐿 2, ℤ

SUSY breaking corrections

SUSY unbroken

potentially big if soft terms violate flavour in a generic way

SM corrections

minimized if Λ𝐶𝑃 ≫ Λ𝑆𝑈𝑆𝑌 (as e.g. in gauge mediation)

and soft breaking terms respect the flavour structure of the SM

negligible: ҧ𝜃 ≤ 10−18 at four loops



to recap

in a SUSY & CP & modular−invariant theory: 

𝜏 can generate a large CKM phase without contributing to ҧ𝜃



to recap

in a complete theory, the VEVs of 𝑆 and 𝜏 should be determined dynamically

here 𝑆  is real by assumption and 𝜏  is the result of a fit

in a SUSY & CP & modular−invariant theory: 

𝜏 can generate a large CKM phase without contributing to ҧ𝜃



to recap

in a complete theory, the VEVs of 𝑆 and 𝜏 should be determined dynamically

here 𝑆  is real by assumption and 𝜏  is the result of a fit

evidence for modular-invariant 
potentials where 𝜏 spontaneously breaks CP
[Novichkov, Penedo, Petcov 2201.02020 
Leedom, Righi, Westphal 2212.03876]

in a SUSY & CP & modular−invariant theory: 

𝜏 can generate a large CKM phase without contributing to ҧ𝜃



to recap

in a complete theory, the VEVs of 𝑆 and 𝜏 should be determined dynamically

here 𝑆  is real by assumption and 𝜏  is the result of a fit

evidence for modular-invariant 
potentials where 𝜏 spontaneously breaks CP
[Novichkov, Penedo, Petcov 2201.02020 
Leedom, Righi, Westphal 2212.03876]

options for 𝐼𝑚 𝑆 = 0

- dynamics dominated by QCD              axion

- 𝑆 stabilized at a CP-conserving minimum by Planck-scale dynamics
   if so, ҧ𝜃 = 0 not altered by flavour physics.

in a SUSY & CP & modular−invariant theory: 

𝜏 can generate a large CKM phase without contributing to ҧ𝜃

[Higaki, Kobayashi, Nasu and Otsuka 2405.18813]





back-up slides



𝑓𝑎 𝑆, 𝜏 → 𝑓𝑎 𝑆, 𝛾𝜏 −
1

8𝜋2


𝑀

2𝑇𝑎 𝑀 𝑘𝑀 log(𝑐𝜏 + 𝑑)

intrinsic 
𝜏-dependence

anomaly

[Konishi, Shizuya 1985;
Ferrara, Kounnas, Lust, Zwirner, 1991;
Dixon, Kaplunovsky, Louis, 1991; 
N. Arkani-Hamed, H. Murayama 9707133] 

transformation of 𝑓𝑎 𝑆, 𝜏  



stellar energy loss 
in Red Giants

limits from
Inverse 
Square
Law 
of gravity

X-rays diffuse
emissions
from DM decay
in galaxy clusters

allowed 
parameter space

a light spin-0 component in 𝜏 ?

FF, Robert Ziegler, 2411.0810]1



𝜃𝑄𝐶𝐷is not a Lagrangian parameter as a mass, a coupling, …
it is a variable that labels a vacuum

the vacuum can violate CP, even in a CP-invariant theory

strong CP problem = a problem of vacuum selection: why do 
experience ҧ𝜃 = 0, if the universe started with a generic 𝜃𝑄𝐶𝐷? 

the only viable solution to the strong CP problem is the axion
where ҧ𝜃 = 0 from dynamics

cannot be solved  by ҧ𝜃 = 𝜃𝑄𝐶𝐷 + arg det 𝑚

setting this to zero by CP



in our framework CP is conserved but ҧ𝜃 is a dynamical variable
i.e. we do not set 𝜃𝑄𝐶𝐷 = 0 by CP invariance

ҧ𝜃 = arg[𝑒−8𝜋2𝑓3(𝑆,𝜏)det 𝑌𝑞(𝜏)]

𝑓3 𝑆, 𝜏 = 𝑆 + ⋯𝜃𝑄𝐶𝐷 is inside 𝑆

𝑓3 𝑆∗, 𝜏∗ = 𝑓3
∗ 𝑆, 𝜏CP invariance



axion solution

provides a candidate for DM

many axion candidates in e.g. superstring theories 

axion quality problem

axion undetected, so far

minimum of 𝑉(𝑎) should be at 𝑎 = 0

𝑉 𝑎 = 𝑉𝑄𝐶𝐷 𝑎 − 𝑀4𝑒−𝑆cos(
𝑎

𝑓𝑎
+ δ) 𝑀 = 𝑀𝑃

𝛿 = 𝒪(1)
𝑆 ≥ 200

ҧ𝜃 dynamically relaxed to zero by the axion, would-be GB of a global,
anomalous 𝑈(1)𝑃𝑄 symmetry



Nelson-Barr solution              our solution              

CP 𝜃𝑄𝐶𝐷 = 0

𝑚 =
𝜇 𝜆𝑎𝜂𝑎

0 𝑦 𝑣

CP spontaneously broken 
by 𝜂𝑎  complex

heavy vector-like quark sector

𝜇 ≈ 𝜆𝑎𝜂𝑎

[one is not enough]

[tuning]

𝑄 𝑞

CP ia a symmetry of the UV, 

SB to get ҧ𝜃 = 0 & 𝛿𝐶𝐾𝑀 = 𝒪(1)

no extra matter

CP spontaneously broken
by 𝜏 alone

no tuning



𝒩 = 1 supergravity

𝐾 and 𝑤 no more independent

𝑤(𝜏) → 𝑐𝜏 + 𝑑 −𝑘𝑊  𝑤(𝜏)

𝐾 = −𝑘𝑊𝑀𝑃𝑙
2 log −𝑖𝜏 + 𝑖𝜏+ + ⋯

𝒢 =
𝐾

𝑀𝑃𝑙
2 + log

𝑤

𝑀𝑃𝑙
3

2

[arg 𝑀3 = − arg 𝑊]

𝐴 𝑆, 𝛾𝜏 = (𝑐𝜏 + 𝑑)𝑘𝐴  𝐴 𝑆, 𝜏 𝑘𝐴 = 3(𝑘𝐻𝑢
+ 𝑘𝐻𝑑

)



gauge coupling unification

𝑓𝑎 =
1

𝑔𝑎
2 − 𝑖

𝜃𝑄𝐶𝐷

8𝜋2

holomorphic coupling ≠ physical

unification
condition

1-loop
running

threshold
corrections

dependence on: SUSY-breaking scale, sparticle spectrum, 𝑘𝑎 levels, …



𝑘 < 0: no modular forms

𝑘 = 0: modular forms are constants

𝑘 > 0: modular forms polynomials in 𝐸4 𝜏 , 𝐸6 𝜏

𝑓 𝛾𝜏 = (𝑐𝜏 + 𝑑)𝑘  𝑓(𝜏) & 𝑓(𝜏) holomorphic everywhere 

             included at  𝜏 = 𝑖 ∞ 

modular forms



variants

With heavy vector-like quarks

higher levels, smaller weight

can be extended to supergravity

𝑓𝐼𝑅 = 𝑓𝑈𝑉 −
1

8𝜋2
log det 𝑌𝐻𝑒𝑎𝑣𝑦 𝜏

modular forms associated with
subgroups of 𝑆𝐿(2, 𝑍)

𝑘𝑄𝑖
= 𝑘𝑈𝑖

𝑐 = 𝑘𝐷𝑖
𝑐 = −1,0 + 1  𝑜𝑟 −2,0 + 2

perhaps easier to occur in string theory

anomaly of IR theory canceled by 
a nontrivial gauge kinetic function

many more viable patterns of quark mass matrices





CP in the UV1.

2.

4.

5.

singularities in the 
EFT  

Yukawa couplings are 
field-dependent quantities

3.
the vacuum has a redundant
description: vacua related by
𝑆𝐿(2, ℤ) are equivalent  

CP and 𝑆𝐿(2, ℤ) are unified
in a gauge flavour symmetry 

absence of anomalies

6.

Ingredients



CP in the UV1.

2.

4.

5.

singularities in the 
EFT  

Yukawa couplings are 
field-dependent quantities

3.
the vacuum has a redundant
description: vacua related by
𝑆𝐿(2, ℤ) are equivalent  

CP and 𝑆𝐿(2, ℤ) are unified
in a gauge flavour symmetry 

absence of anomalies

6.

the four-dimensional CP symmetry is a 
gauge symmetry in most string theory 
compactifications.

string theory has no free parameters and 
couplings are set by moduli VEVs

modular invariance is a key ingredient of 
string theory compactifications

emergence of singularities at
infinite distances in moduli space.

Ingredients                      String Theory

mandatory in string theory



to recap

in a SUSY & CP & modular−invariant theory: 

𝜏 can generate a large CKM phase without contributing to ҧ𝜃

𝑘3

16
 𝑑2𝜃 𝑆 𝑊3𝑊3 −

𝑘𝑓3

16
 𝑑2𝜃

log 𝜂 𝜏

8𝜋2 𝑊3𝑊3+  𝑑2𝜃 𝑤(𝜏) + ℎ. 𝑐

𝑓3 𝑆, 𝜏 = 𝑘3𝑆 −
𝑘𝑓3

8𝜋2 log 𝜂 𝜏 + ⋯e.g.

𝛿 ҧ𝜃 = 0
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