UAr Cryogenics Status

Forti Committee Meeting – Breakout Session 24 June 2024 Guillaume Plante, for the UAr Cryogenics WG

UAr Cryogenics: Overall Progress

- Advances since the last review meeting
 - Continued progress in reviewing and finalizing the UAr cryogenics P&ID
 - Work on detailed analyses of the main operating modes (recovery)
 - A few modifications to the P&ID from the analysis of the recovery operation mode
 - Greater confidence in system achieving intended functionality, reduction of potential technical risks
 - Work on interplay between AAr and UAr systems during cool down, filling, and recovery
 - Developed a combined description of the main procedural steps, which system sets pace when, alarms, interlocks
 - Defined interfaces (exchanged process variables) and required functional logic based on this combined description
 - Theoretical calculations to validate existing components or guide the sizing / detailed design
 - Heat transfer in two-phase vertical tube banks heat exchangers
 - Mockup
 - Successful completion of cryogenics test runs (talk by Kevin Thieme)
 - Radon trap
 - Two test benches built: one to measure radon dynamic adsorption coefficient as a function of temperature and flow; one to measure the flow resistance properties of the candidate charcoal adsorbents
 - Slow control
 - Started describing the interfaces between the DS-20k Detector Control System, Detector Safety System and the UAr cryogenics basic control system
 - Procurement

2

Ready to place order for some long lead-time items: getter gas purifier, UHP valves

UAr Cryogenics: P&ID Updates

- P&ID revision in the final stages of release
- Modifications in this revision
 - Update of tags according to ANSI/ISA S5.1 and ISO 14617-6 standards
 - Addition of a pressure control value in parallel to VMFN2 with a flow coefficient sized for lower cooling power operation (e.g. photoelectronics off). Also, addition of a manual PCV for a last resort manual control.
 - Addition of an electrical heater on condenser to eliminate technical risk of cooling at zero N2 flow (and as an emergency defrost)
 - Added an on/off valve between the LUAr source flow control valve VHDA1 and the GUAr flow out of the UAr vessel
 - Added an on/off valve and line bypassing CD1 to provide heat to the UAr volume during recovery
 - Added level transmitters to the UAr vessel and to the HEUAr1 heat exchanger
 - Other minor piping modifications/simplifications
 - Addition of an on/off valve on the GUAr outlet of HEUAr1
 - Moved S2 gas pocket flow control valve VGP1 inlet to the GUAr volume of the line from CD1
 - Reverted PFVA1 to an on/off valve
 - Removal of gas pump QDC1 on the chimney GUAr outlets
 - Substitution of flow meter MFMCE with three mass flow controllers
 - Change LN2 supply valves VPLNS1/2 to proportional valves
 - Modifications to the calibration sources injection piping

UAr Cryogenics: P&ID Updates

- Recovery mode, GUAr to storage
 - Previous revision had not been analyzed thoroughly yet
 - Bring heat to the LUAr volume of the UAr vessel by injecting warm GUAr through the "filling" tube at the bottom
- Changes
 - Added valve and line bypassing CD1

Ö.

UAr Cryogenics: P&ID Updates

- Recovery mode, LUAr to storage, start
 - New mode where the cooling power of CD1 is used to condense the GUAr extracted from the UAr vessel and route the LUAr to storage.
 - Bring heat to the LUAr volume of the UAr vessel by injecting warm GUAr through the "filling" tube at the bottom

• At a high level, the overall filling operation can be thought of being composed of the phases:

Phase	AAr	UAr	Notes
Preparation	GAAr Purge	 Evacuate Fill GUAr Recirculate GUAr 	Delay purge operation
Cool Down	Cool Down	Slow GUAr cool down	UAr limits AAr cool down rate
Filling 1	Fill LAAr until height H0 of SS vessel	Fill minimal LUAr quantity	LAAr availability sets pace
Filling 2	Semi-synchronous LAAr/LUAr filling until height H1 of SS vessel	Semi-synchronous LAAr/LUAr filling until height H1 of SS vessel	Maintain differential height below limit
Filling 3	Complete LAAr filling	Normal operation	

• Started defining list of alarms and interlocks that are always active and relevant to cryogenic operations

1	TABLE 2: ALARMS AND INTERLOCKS ALWAYS ACTIVE			
Ι	NAME	P&ID Tags	Description	Notes
τ	JAR_PRESSURE_H	PTAA, PTAB	High alarm on the UAr SS ves-	Warns the operator of a potential
			sel pressure, interlock that acti-	UAr vessel overpressure scenario
			vates the UAr system no-power	
			mechanical pressure control sys-	
			tem	
Į	JAR_PRESSURE_HH	PTAA, PTAB	High high alarm on the UAr	Warns the operator of a poten-
			SS vessel pressure, interlock that	tial UAr vessel overpressure sce-
			stop heat flows into UAr SS ves-	nario, attempts to limit further
			sel, e.g., stops gas circulation	pressure increases
L		DECIA	pumps	
1	JAR_PRESSURE_L	PICIA	Low alarm on the UAr cryogenic	Warns the operator of a potential
			system condenser pressure, inter-	OAr cryogenic system condenser
			hostor system	overcooling scenario
-		DT1A	High alarm on the UAr SS vessel	Warns operator that prossure re-
		1 1 1 1	processing relief estaty vent proc-	lief sefety device BD1A is either
			sure	malfunctioning or has burst
F	N2 MASS L	TBD	Low alarm on the LN ₂ mass	Warns operator, e.g., that the
			available in storage	LN_2 consumption has been in ex-
			0	cess of re-liquefaction capacity
I	LN2_PRESSURE_L	TBD	Low alarm on the LN_2 storage	Warns operator of, e.g., poten-
			supply pressure	tial malfunction in the LN ₂ sup-
				ply system
τ	JAR_VESSEL_LOAD_H	TBD	High alarm on the downward	Warns operator of, e.g., a filled
			force on the UAr SS vessel sup-	mass in the UAr SS vessel ap-
			port system	proaching its limit
l	JAR_VESSEL_LOAD_L	TBD	Low alarm on the downward	Warns operator of, e.g., a buoy-
			force on the UAr SS vessel sup-	ancy force on the UAr SS vessel
			port system	approaching its limit

Cool down

- GUAr slow cool down
- As fast as the most fragile component allows
- Monitor T gradients
- Alarms

TABLE 3: ALARMS AND INTERLOCKS ACTIVE DURING THE COOL DOWN PHASE			
NAME	P&ID Tags	Description	Notes
UAR_COOLING_RATE_H	TBD	High alarm on the cooling rate	Warns operator if the cooling
		of the gaseous UAr inside the SS	rate achieved is larger than de-
		vessel	sired
VESSEL_COOLING_RATE_H	TBD	High alarm on the UAr SS vessel	Warns operator that the UAr SS
		cooling rate	vessel cooling rate is faster than
			desired, operator should reduce
			the AAr cryostat cool down
TPC_DTDX1_H	TBD	Generic high alarm on a spatial	Warns operator if a temperature
		temperature gradient	gradient across a critical compo-
			nent or components is approach-
			ing the limit
TPC_DTDX1_HH	TBD	Generic high high alarm on a	Ensures that a temperature gra-
		spatial temperature gradient, in-	dient across a critical component
		terlock that stops or reduces the	or components stops increasing
		cooling	

- Filling 1
 - Fill LAAr until height H0 of SS vessel
 - H0 such that we can fill a minimal amount of LUAr in the SS vessel
 - Pace set by the availability of LAAr trucks
- Alarms

TABLE 4: ALARMS AND INTERLOCKS ACTIVE DURING THE FILLING 1 PHASE			
NAME	P&ID Tags	Description	Notes
AAR_UAR_DELTAP_H	PTAA, PT4910	High alarm on differential pres-	Warns operator, e.g., of excess
		sure between the AAr cryostat	cooling power on the UAr vol-
		and the UAr SS vessel	ume or insufficient cooling power
			on the AAr volume
AAR_UAR_DELTAP_L	PTAA, PT4910	Low alarm on differential pres-	Warns operator of the reverse sit-
		sure between the AAr cryostat	uation as above
		and the UAr SS vessel	
AAR_UAR_DELTAL_H	PDT4915, TBD	High alarm on liquid level differ-	Warns operator, e.g., that the
		ence between the AAr cryostat	AAr filling speed is faster than
		and the UAr SS vessel	desired
AAR_LEVEL_HO_H	PDT4915	High alarm on AAr cryostat liq-	Warns operator that the desired
		uid level	AAr liquid level $(H_{\text{vessel}} + H_0)$
			has been reached and that the
			Filling 1 phase has been com-
			pleted

- Filling 2
 - Semi-synchronous LAAr/LUAr filling until height H1 of SS vessel
 - Filling rate limited by UAr cryogenics
- Alarms

TABLE 5: ALARMS AND INTERLOCKS ACTIVE DURING THE FILLING 2 PHASE			
NAME	P&ID Tags	DESCRIPTION	NOTES
AAR_UAR_DELTAP_H	PTAA, PT4910	High alarm on differential pres-	Warns operator, e.g., of excess
		sure between the AAr cryostat	cooling power on the UAr vol-
		and the UAr SS vessel	ume or insufficient cooling power
			on the AAr volume
AAR_UAR_DELTAP_L	PTAA, PT4910	Low alarm on differential pres-	Warns operator of the reverse sit-
		sure between the AAr cryostat	uation as above
		and the UAr SS vessel	
AAR_UAR_DELTAL_H	PDT4915, TBD	High alarm on liquid level differ-	Warns operator, e.g., that the
		ence between the AAr cryostat	AAr (UAr) filling speed is faster
		and the UAr SS vessel	(slower) than desired
AAR_UAR_DELTAL_L	PDT4915, TBD	Low alarm on liquid level differ-	Warns operator, e.g., that the
		ence between the AAr cryostat	AAr (UAr) filling speed is slower
		and the UAr SS vessel	(faster) than desired
LN2_DMDT_H	TBD	High alarm on the LN_2 consump-	Warns operator, e.g., that the
		tion rate	current LN_2 consumption rate
			might not be sustainable for a
			long period, that the AAr and/or
			the UAr filling speeds should be
			reduced, etc
UAR_LEVEL_H1_H	TBD	High alarm on UAr SS vessel liq-	Warns operator, e.g., that the
		uid level	desired UAr liquid level (H_1) has
			been reached and that the Filling
			2 phase has been completed

• Filling 3

- Complete LAAr filling
- UAr cryogenic system can be put in normal operation mode
- Alarms

TABLE 6: ALARMS AND INTERLOCKS ACTIVE DURING THE FILLING 3 PHASE			
NAME	P&ID Tags	Description	Notes
AAR_UAR_DELTAP_H	PTAA, PT4910	High alarm on differential pres-	Warns operator, e.g., of excess
		sure between the AAr cryostat	cooling power on the UAr vol-
		and the UAr SS vessel	ume or insufficient cooling power
			on the AAr volume
AAR_UAR_DELTAP_L	PTAA, PT4910	Low alarm on differential pres-	Warns operator of the reverse sit-
		sure between the AAr cryostat	uation as above
		and the UAr SS vessel	
AAR_LEVEL_H2_H	PT4910	High alarm on AAr cryostat liq-	Warns operator, e.g., that the
		uid level	desired AAr liquid level (H_2) has
			been reached and that the Filling
			3 phase has been completed

UAr Cryogenics: Radon Trap

- Planned to be in the UAr purification loop return path the TPC
 - Installed between GUAr/GUAr heat exchangers H2D and H1D
 - Temperature of operation ≈100 K
 - Particulate filter installed downstream
- We want a predictable performance both in terms of radon removal and flow resistance.
- Activated charcoal suitability/QA tests
 - Specific activity of an adsorbent mBq/kg (relying on other collaboration facilities).
 - Radon dynamic adsorption coefficient and its temperature dependence.
 - Flow resistance tests to construct an adequate model of the pressure drop versus flow for a given radon trap geometry.
- Built two test benches:
 - Radon trap test bench to measure the radon dynamic adsorption coefficient as a function of temperature and flow
 - Flow resistance test bench to measure the pressure drop across various cylindrical trap geometries with different adsorbents

UAr Cryo Updates: Radon Trap

• Strategy:

13

- Measure charcoal radon dynamic adsorption coefficient with Ar carrier gas at different T
- Design a trap with a (statistically) known radon removal performance and as low as reasonably achievable pressure drop

DARKSIDE

UAr Cryogenics: Radon Trap

- Procurement
 - Charcoal adsorbents sample from CarboAct for QA testing in hand
 - Charcoal adsorbents from Talamon GmbH for QA testing in hand
 - More than enough for tests and for the production trap
- Flow resistance test bench
 - Completed tests for the Talamon (ϕ = 0.4 mm) adsorbent.
 - Parameters extracted allow us to reliably predict the maximum pressure drop of a given radon trap geometry.
- DS-20k trap design
 - Algorithm elaborated for sizing and detailed design.
 - Takes as input key DS-20k specifications, results of QA tests; prescribes a trap geometry that fulfills the radon reduction while satisfying pressure drop requirement.
- Status
 - Talamon (\$\overline\$ = 0.4 mm) adsorbent sample shipped for radon emanation measurement
 - Start measuring dynamic radon adsorption coefficients this summer
 - Finalize trap design and start fabrication Q4-24

UAr Cryogenics: Cool Down Estimates

- Work on estimating temperature gradients in different cooling scenarios
 - Work in a simplified geometry, assumptions on boundary conditions (insulated, HTC, etc)
 - Use HTC correlations appropriate for the problem
 - Calculate temperature gradients as a function of the GUAr cooling rate
- Goal: have the means to determine a cooling rate that satisfies ΔT constraints (with safety margin)
- Examples:
 - Mockup: ΔT between grid wire and frame
 - Natural convection HTC for cylinder in gas at fixed temperature
 - Linearly decreasing GUAr volume temperature
 - Mockup: ΔT within PMMA panels
 - Natural convection HTC for vertical slab in gas at fixed temperature

$$h(T,t) = \left(rac{k_{
m Ar}(t)}{d}
ight) imes \left(0.6 + rac{0.387 imes ({
m Ra}(T,t))^{rac{1}{d}}}{\left(1 + \left(rac{0.559}{({
m Pr}(t))^{rac{1}{9}}}
ight)^{rac{8}{27}}
ight)^2}
ight)$$

UAr Cryogenics: Two-Phase HE Modeling/Design

- Progress on modelling the heat transfer inside the two-phase HE of the proposed design
- Very good agreement with data if we assume:
 - HTC correlation for film condensation on a vertical wall
 - HTC correlation for turbulent free convection in the liquid

Compare Model to Data from 19 pipe measurements at CERN

SIGNAL and POWER

UAr Cryogenics: Two-Phase HE Modeling/Design

- Conditions that have to be fulfilled for the purification loop to function established
- In a good position to dimension and position HE ۲ appropriately, choose reliable safety margins

UAr Cryogenics: Upcoming Activities

- Basic design
 - Complete a final cycle of analyses of system operational modes
 - Expect only minor P&ID modifications at this stage (e.g. additional sensors, etc).
- Detailed design
 - UAr continuous purification loop, two-phase heat exchangers, cryostat top valve box, etc
 - UAr condenser box modifications (radon trap, and anything else, as informed by mockup cryo tests)
 - Review of functional logic description for the basic control system
- Procurement
 - Place orders on long lead items (gas purifier, high-flow valves, etc)
 - Followed up by fabrication materials for UAr continuous purification loop
 - RFQs for gas circulation pumps
 - RFQs for fabrication of other main system components (two-phase HEs, LN2 supply, etc)
- Schedule
 - On track for delivery of UAr cryogenics major components to LNGS without affecting the critical path

UAr Cryogenics: Upcoming Activities

- Basic design
 - Complete a final cycle of analyses of system operational modes
 - Expect only minor P&ID modifications at this stage (e.g. additional sensors, etc).
- Detailed design
 - UAr continuous purification loop, two-phase heat exchangers, cryostat top valve box, etc
 - UAr condenser box modifications (radon trap, and anything else, as informed by mockup cryo tests)
 - Review of functional logic description for the basic control system
- Procurement
 - Place orders on long lead items (gas purifier, high-flow valves, etc)
 - Followed up by fabrication materials for UAr continuous purification loop
 - RFQs for gas circulation pumps
 - RFQs for fabrication of other main system components (two-phase HEs, LN2 supply, etc)
- Schedule
 - On track for delivery of UAr cryogenics major components to LNGS without affecting the critical path

