Optical technologies for generating microwaves, time and frequency distribution and synchronization

Ronald Holzwarth

Menlo Systems GmbH Martinsried, Germany

And

Max-Planck-Institute for Quantum Optics Garching, Germany

LLRF Topical Workshop on Timing, Synchronization, Measurements and Calibration

LLRF Workshop Series

Menlo Systems

- Spin off from Max-Planck-Institut of Quantum Optics (Garching (near Munich), Germany)
- Founded in 2001 by T.W. Hänsch, M. Mei, and R. Holzwarth
- Known for its Nobel Prize winning optical frequency comb technology (T.W. Hänsch 2005)
- For 20 years leading developer and global supplier for precision metrology instrumentation
- International customers from science and industry
- 230 employees (headcount, world wide)
- Headquarter in Martinsried, Germany, subsidiaries in US, Japan and China

Precision in photonics. Together we shape light.

Optical frequencies

NNNNNN

532 nm or 560 THz $f = c/\lambda$

560 000 000 000 000 oscillations per second

Period: 1.8 fs

RF vs. Optical

Radio Frequencies

Local oscillator: Quartz: 10E-13 at 1 sec Cryogenic sapphire: 10E-15 at 1 sec

Clock transitions: Hyperfine in Rb, Cs, H

Frequency: 9.2 GHz (Cs)

10E-15 at 1 sec is equivalent to: 10 µH or 1/100 000 of one cycle

Optical Frequencies

Local oscillator: Optical cavity: 10E-15 at 1 sec

Clock transitions: forbidden optical in neutral atoms: Yb, Sr, Hg, Ca… or ions: Hg, Yb, In, …

Frequency 430 THz (Sr neutral)

10E-15 at 1 sec is equivalent to: 0.5 Hz ½ cycle

Clocks

A clock consists of an oscillator, and a counter that counts these uniform oscillations. The finer the partition of time, the more accurate the clock can be

Tools of the trade: the Frequency Comb

What does 10^{-xx} mean?

1 x 10 $^{-12}$: 380 µm 1 x 10-15: 380 nm 1 x 10-18: 380 pm

(human hair: 50 µm)

In 1 fs light travels 300nm

Jun Ye: 10-19 clocks

ARTICLES nature photonics https://doi.org/10.1038/s41566-019-0493-4

Demonstration of 4.8×10^{-17} stability at 1s for two independent optical clocks

6 x 10-19 in 1h

E. Oelker D^{1*}, R. B. Hutson¹, C. J. Kennedy¹, L. Sonderhouse¹, T. Bothwell¹, A. Goban¹, D. Kedar¹, C. Sanner¹, J. M. Robinson¹, G. E. Marti^{1,5}, D. G. Matei^{2,6}, T. Legero[®]?, M. Giunta^{®3,4}, R. Holzwarth^{3,4}, F. Riehle², U. Sterr¹² and J. Ye^{1*}

Hero Experiment in Japan

Hidetoshi Katori @ RIKEN (Japan)

MenioSystems

Fiber laser technology "Figure 9"

Appl. Phys. B 123, 41 (2017); Space-borne frequency comb metrology. *Optica* 3, 1381 (2016)

MenioSystems

Frequency Comb: Actuators

Hansel, W., Giunta, M., Fischer, M., Lezius, M., & Holzwarth, R. (2017). Rapid electro-optic control of the carrier-envelope-offset frequency for ultra-low noise frequency combs. In *2017 (EFTF/IFCS).*

Comb acts as gear box

How good are the combs?

Optical phase drift at 428 THz (698 nm)

Tools of the trade: optical resonator

MenioSystems

Stability: Hz level laser

3572 OPTICS LETTERS / Vol. 36, No. 18 / September 15, 2011

Force-insensitive optical cavity

Stephen Webster* and Patrick Gill National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK

Allan Deviation: < 2 x 10-15 at 1 s

Linewidth: < 1 Hz @ 200 THz

Photonic µ-wave generation (PMWG)

Phase noise reduction factor (194 THz vs 12 GHz) -20 log10(194 THz/12 GHz) = -84 dB

µ-wave measurement setup

Xie, X., Bouchand, R., Nicolodi, D., Giunta, M., Hänsel, W., Lezius, M., … , Holzwarth, R., Le Coq, Y. **(2016). Photonic microwave signals with zeptosecond-level absolute timing noise.** *Nature Photonics***,** *11***(1), 44–47.**

PMWG: world record result

Completely independent systems (including cavity)

Xie, X., Bouchand, R., Nicolodi, D., Giunta, M., Hänsel, W., Lezius, M., … , Holzwarth, R., Le Coq, Y. **(2016). Photonic microwave signals with zeptosecond-level absolute timing noise.** *Nature Photonics***,** *11***(1), 44–47.**

PWMG published results

nature photonics

PUBLISHED ONLINE: 21 NOVEMBER 2016 | DOI: 10.1038/NPHOTON.2016.215

Photonic microwave signals with zeptosecond-level absolute timing noise

Xiaopeng Xie^{1‡}, Romain Bouchand^{1‡}, Daniele Nicolodi^{1†}, Michele Giunta^{2,3}, Wolfgang Hänsel², Matthias Lezius², Abhay Joshi⁴, Shubhashish Datta⁴, Christophe Alexandre⁵, Michel Lours¹, Pierre-Alain Tremblin⁶, Giorgio Santarelli⁶, Ronald Holzwarth^{2,3} and Yann Le Coq^{1*}

Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world¹⁻¹¹. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 \times 10⁻¹⁶ at 1s and a timing noise floor below 41 zs $Hz^{-1/2}$ (phase noise below -173 dBc Hz^{-1} for a 12 GHz

from the optics to the microwaves: $\delta v_{\text{CW}}/v_{\text{CW}} = \delta f_r/f_r = \delta f_u/f_u$. Thanks to the carrier frequency division, the phase-noise power spectral density (PSD) is intrinsically reduced by M^2 , where $\overline{M} = v_{\rm CW}/f_u = N/n \sim 10^4$ is the frequency division factor.

The microwave generation system is sketched in Fig. 1: a low-noise erbium-doped fibre-based optical frequency comb (FOFC) that features a 250 MHz repetition rate acts as a frequency divider; an ultrastable CW laser at 1,542 nm, with a fractional frequency stability as low as 5.5×10^{-16} at 1 s (ref. 18), is used as a reference for stabilizing the comb; a specially designed high-linearity photodiode with

World's lowest phase noise on any microwave signal

PMWG: Commercial Product

UMS-Compact

Ultrastable Microwave System

based on Menlo Systems ORS-Compact and SmartComb in a robust rack-mount

Output frequencies:

Configurable with multiple signal outputs from 100 MHz to 20 GHz. Phase-coherent optical signals at 1.5 µm from the comb (pulsed) and from the optical reference (cw) are available. Optical comb outputs from 500 nm to 2 um can also be added.

Phase noise for a 10 GHz carrier:

 \leq -95 dBc Hz⁻¹ at 1 Hz -145 dBc Hz $^{-1}$ at 1 kHz -160 dBc Hz $^{-1}$ at 10 kHz -165 dBc Hz⁻¹ at >100 kHz

Frequency stability for a 10 GHz carrier:

<3E-15 at 1 s <1E-13 at 100 s <50 ppt in one day - GPS/Optical/RF-reference steerable

PMWG: measurement results

Phase Noise Fractional frequency

 $10²$

 $10¹$

PMWG: Benchmarking

MenioSystems

Unmeasurable with top notch instruments

Rohde & Schwarz FSWP

11:32:06 AM 05/05/2023

Time and Frequency Dissemination

Pulsed timing system: Fermi @ Elettra, Trieste, Italy

Trieste ELETTRA – System Layout

Trieste ELETTRA - Drift between RMO and OMO

Long-term out-of-loop drift between the OMO and the RMO, measured with the BOM-PD. Over eight hours, the residual drift is 2 fs (rms). **MenioSystems**

Trieste ELETTRA - Drift Between Link and OMO

Long-term out-of-loop drift of dummy link output compared to an unused splitter box port. The rms drift over 10 days is 5.3 fs. **MenioSystems**

Pulsed timing system: Geodetical Observatory Wettzell

10 fs timing accuracy

Optical Pulses as time stamps

Possible stabilized output signals:

▪ **Optical pulses (1560nm)**

Low frequency RF: 5, 10, 100 MHz

Microwaves: 1GHz – 6GHz

Timing signals: 1PPS (Pulse per second)

MenioSystems

Implemented at Geodetical Observatory Wettzell

Residual timing drift between two 250 meter non pm stabilized fiber links, measured out of loop using an external cross correlator.

Implemented at Geodetical Observatory Wettzell

Residual phase noise between two stabilized 250 meter non pm fibre links, detected out of loop using an external balanced cross correlator.

MenioSystems

All the way up to the dishes

"Original" Link 2010-2016

- 2 *dark* fibers (ITU-T G.652)
- n ~ 1.4681 at 1550 nm
- A^{\sim} 0.23 dB/km
- $CD^{\sim}18$ ps/(nm·km)
- 920 km total length
- C-Band channel 44: 1542.14nm

Harald Schnatz Gesine Grosche Osama Terra Fritz Riehle

Katharina Predehl Stefan Droste Thomas Udem Theodor Hänsch Ronald Holzwarth

Problem to be solved: fibers are terrific sensors

Solution: cw light with interferometric stabilization

200 THz signal carries frequency information

Long Distance Clock Comparison: 920 km

Predehl et al., Science vol. 336, p. 441 (2012)

Long Distance Clock Comparison: Results

A 920-Kilometer Optical Fiber Link for **Frequency Metrology at the 19th Decimal Place**

K. Predehl,¹* G. Grosche,^{2,3}† S. M. F. Raupach,²† S. Droste,¹ O. Terra,²‡ J. Alnis,¹ Th. Legero,²
T. W. Hänsch,^{1,4} Th. Udem,¹ R. Holzwarth,^{1,5} H. Schnatz^{2,3}

Optical clocks show unprecedented accuracy, surpassing that of previously available clock systems by more than one order of magnitude. Precise intercomparisons will enable a variety of experiments, including tests of fundamental quantum physics and cosmology and applications in geodesy and navigation. Well-established, satellite-based techniques for microwave dissemination are not adequate to compare optical clocks. Here, we present phase-stabilized distribution of an optical frequency over 920 kilometers of telecommunication fiber. We used two antiparallel fiber links to determine their fractional frequency instability (modified Allan deviation) to 5×10^{-15} in a 1-second integration time, reaching 10^{-18} in less than 1000 seconds. For long integration times τ , the deviation from the expected frequency value has been constrained to within 4×10^{-19} . The link may serve as part of a Europe-wide optical frequency dissemination network.

Predehl et al., Science vol. 336, p. 441 (2012)

1840 km Link

PHYSICAL REVIEW LETTERS PRL 111, 110801 (2013)

week ending
13 SEPTEMBER 2013

Optical-Frequency Transfer over a Single-Span 1840 km Fiber Link

S. Droste, ^{1,*} F. Ozimek,^{2,†} Th. Udem,¹ K. Predehl,^{1,||} T. W. Hänsch,^{1,‡} H. Schnatz,² G. Grosche,² and R. Holzwarth^{1,§} 1 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany ^{2}P hvsikalisch-Technische Bundesanstalt. Bundesallee 100, 38116 Braunschweig, Germany (Received 17 May 2013; published 12 September 2013)

To compare the increasing number of optical frequency standards, highly stable optical signals have to be transferred over continental distances. We demonstrate optical-frequency transfer over a 1840-km underground optical fiber link using a single-span stabilization. The low inherent noise introduced by the fiber allows us to reach short term instabilities expressed as the modified Allan deviation of 2×10^{-15} for a gate time τ of 1 s reaching 4×10^{-19} in just 100 s. We find no systematic offset between the sent and transferred frequencies within the statistical uncertainty of about 3×10^{-19} . The spectral noise distribution of our fiber link at low Fourier frequencies leads to a τ^{-2} slope in the modified Allan deviation, which is also derived theoretically.

DOI: 10.1103/PhysRevLett.111.110801

PACS numbers: 06.20.fb, 06.30.Ft, 42.62.Eh

Droste st al., PRL 111, 110801 (2013)

Transportable Clock in Munich

Height difference: 400m

Determined to 30cm by clock comparison

PTB's lattice clock in at MPQ in Munich

Fiber connection Munich - Braunschweig

PTB's Lattice Clock in Munich

- ► New chronometric levelling campaign Braunschweig – This summer
- ► **2018 campaign: Accuracy in height 23 cm**

Geoid height (EGM2008, nmax=500)

PTB Team: C. Lisdat , J. Grotti , S. Koller, S. Herbers, E. Benkler, A. Al-Masoudi, R. Schwarz, S. Dörscher, N. Huntemann, R. Lange, M. Abdel-Hafiz, C. Tamm, E. Peik, T. Waterholter S. Koke, A. Kuhl, G. Grosche, H. Schnatz IFE Team: L. Timmen, H. Denker MPQ/Menlo Team: G. Vishnyakova, L. Maisenbacher, M. Giunta, A. Mateev, T. Udem, T. W. Hänsch, R. Holzwarth

2 combs connected via a cw laser

Cross correlation between 2 cw laser connected comb lasers

In collaboration with Russell Wilcox (data presented at CLEO 2014)

0.9 fs integrated timeing jitter!

- EO loop bandwidth \sim 200 kHz, piezo loop bandwidth \sim 10 kHz
- Noise floor integrates to 0.1fs

Direct beat between 2 cw laser connected comb lasers

MenioSystems

CLONETS DS

https://clonets-ds.eu/

Design study for a Time and Frequency reference system based on optical fibers across Europe **MenioSystems**

Combs et al. are the Swiss knife of precision measurements

Special THANKS to the Comb teams at Menlo and MPQ and all collaborators!

Financial support by:

Bundesministerium für Bildung und Forschung

The End

Thanks for your attention

