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Synchronization

Synchronization is the coordination of events to 
operate a system in unison [wiki]

The synchronization is performed with use of signals 
readable by components of the system
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Accelerator Synchronization

• Accelerating modules

• LLRF systems

• Diagnostics

• Lasers

• Experiments

• …
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Accelerator subsystems must “play” together in order to achieve desirable particle 
acceleration and e.g FEL lasing:

• Preparing accelerating fiels before particle arrival

• Releasing particles at a proper time to to travel via accelerator at a proper phase



Accelerator Synchronization – LLRF Example

• RF Phase Reference 
(analog)

• ADC/DAC clocks (digital)

• Timing (digital)
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Simplified (old) scheme of a FLASH Accelerating module LLRF system
Courtesy of Matthias Hoffmann



Timing System

• Provides triggers initiating specified events

• There is a specified trigger sequence for given event

• Eg. Initiating filling cavities with RF field, starting RF Gun to produce bunch, running 
beam diagnostics, … – entire process of passing beam through accelerator

• Provides coded event name and time information

• Allows to correlate data gathered from various subsystems during selected event

• Generates and distributes clock signals
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Timing System Example
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Figure source: S. Simrock and Z. Geng, Low-Level Radio Frequency Systems, 2022 

• Fiducial trigger synchronized 
with AC mains and a common 
subharmonic

• Synchronized event triggers 
with user programmable delays

• Master timing clock, triggers 
and event codes combined and 
sent usually by optical fibers

• There are well established 
solutions available like the 
White Rabbit



Synchronization System

• Frequently mistaken with timing system and even with a clock signal

• Some people claim that timing is above ps regardless of signal type

• Built to distribute phase reference signals (either harmonic RF or 
optical)

• Called also Phase Reference Distribution System (PRDS)

• Consists of a Master/Main Oscillator (MO) and set of signal 
distribution links

• Sometimes linked with optical Master Laser Oscillator

• Output signals are used at receivers to synchronize phase of devices 
or to synthesize other signals (e.g., LO for downconverters) 
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Some Basics

Real sinewave signal
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Figure source: IEEE Std 1139 -2022

V0 - nominal voltage amplitude

ν0 - nominal frequency, called also instantaneous

𝛼(t) - amplitude fluctuation

𝜑(t) - phase fluctuation

𝑣 𝑡 = 𝑉0 1 + 𝛼 𝑡 cos(2𝜋𝑣0𝑡 + 𝜑(𝑡))

More details in talk by Maximilian Schütte, Tuesday 11:20



Even More Basics

Expressing phase changes in units of time is convenient for quantifying phase instabilities in 
distribution media (by means of propagation delay change) - it does not depend on the signal 
frequency.
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Δ𝑡 =
𝜙𝑇

360𝑜

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 𝜈0 = 1300 𝑀𝐻𝑧 →  𝑇 ≈ 0,769 𝑝𝑠, 
 Φ = 1𝑜 → Δ𝑡 ≈ 2,13 𝑝𝑠



Phase Stability is Expressed as Instability

Instabilities can be distinguished by:
• Character: 

• random (phase noise)

• deterministic (temperature influence, mains AC harmonics)

• Reference: 

• absolute (phase noise/jitter measured at given PRDS output)

• relative (drifts or residual noise/jitter, phase change between different outputs)

• Observation time: 

• short-term

• long-term
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Short- and Long-Term Instabilities

The short-term instability refers to all phase/frequency changes about the 
nominal of less than a few second duration

- “fast” phase noise components (f > 1 Hz)

- expressed in units of spectral densities or timing jitter

The long-term instability refers to the phase/frequency variations that occur 
over time periods longer than a few seconds

- derives from slow processes like long term frequency drifts, aging and susceptibility to
environmental parameters like temperature

- expressed in units of degree, second or ppm per time (minute, hour, day ...)

- Considered either in time >1s or >10s probably because it is hard to measure phase noise <1Hz
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Phase Noise and Jitter
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Phase Jiitter

Phase jiitter in 
units of time

Note 1/ν0 – higher frequency results in lower 
time jitter for the same phase noise levels!

Single Sideband Noise 
Power Spectral Density
measured in dBc/Hz

Fig. Courtesy of Maximilian Schütte

Traditional phase noise definition



Phase Noise and Integrated Jitter Example

1300 MHz oscillator signal
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The closer to the carrier, the 
bigger the phase noise 
contribution to jitter!



Phase Noise and Drifts

Jitter calculated for frequencies below 1 Hz (or 0.1 Hz) is treated as (absolute) phase drift 
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1Hz



Residual Phase Noise and Jitter
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May be an issue when using devices introducing significant noise to the signal. 

E.g. wrongly designed amplifier with AM/PM noise conversion



Reference Signal Generation

• In most cases the very signal source is a crystal oscillator (OCXO)

• Typical OCXO long term frequency stability is ~10-10

• If better frequency stability is required, the OCXO can be
synchronized to:
• Atomic (Rubidium) clock ~10-12

• GPS receiver ~10-14

• OCXO frequency rarely exceeds 200 MHz

• Higher frequencies must be synthesized
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„Simplest” MO Solution

• Off the shelf signal synthesizer

• There are some devices offering high-performance signals

• Phase jitter in range of tens of fs

• Relatively high noise floor (-155 to -160 dBc)

• But still sufficient for many machines

• For higher performance and non typical requirements a custom design is 
necessary
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Other MO Requirements

• Low far from carrier phase noise

• Multiple output frequencies

• Many outputs

• Higher power levels

• High-availability (redundancy)

• Included diagnostics

Definitely a custom design required
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Frequency Synthesis with a Multiplier

• Usually the multiplication factor N = 2 or 3

• Rather narrow frequency range

• Limited choice of high-performance devices

• Limited flexibility but still possible to make a 
good design

• Phase noise floor rarely below -155 dBc!

• May drift significantly with temperature
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Phase-Locked Loop Synthesizer

• Phase – locking of a VCO to a reference 
signal

• Flexibility in selecting output frequency

• Proper selection of PLL components 
allow for phase noise (jitter) reduction 
comparing to a standard multiplier
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High-Performance MO and RF Synch Scheme
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• Design by Lund University and ESS

• Output power +6.3 dBm

• RMS Jitter laboratory test (10 Hz – 1 MHz): 

• ~ 80 fs @ 352 MHz

• ~43 fs @ 704 MHz

  Running ...

 R&S FSUP  8 Signal Source A nalyzer  LOCKED 

Set t ings Residual Noise [T1] Spur List

Signal Frequency: 704.420000 MHz Int PHN (10.0   .. 1 .0  M)  -77.5  dBc   

Signal Level: 14.69 dBm Res idual PM 10.853 m°   

C ross  C orr Mode Harmonic  1 Res idual FM 6.502 Hz   

Internal Ref Tuned Internal P hase Det RMS Jitter 0 .0428 ps   

36.042 Hz -83.38 dBc

49.990 Hz -79.25 dBc

76.492 Hz -102.20 dBc

82.453 Hz -98.60 dBc

 Phase Noise [dBc/Hz]   Marker 1  [T1]

 RF A tten 5 dB  10 Hz

 Top -70 dBc/Hz 3 of 3 -88.33 dBc/Hz
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Spot Noise [T1]

100.000 Hz -103.36 dBc/Hz

1.000 kHz -128.24 dBc/Hz

10.000 kHz -150.26 dBc/Hz

100.000 kHz -158.80 dBc/Hz

1.000 MHz -162.27 dBc/Hz

1

Date: 21.FEB.2020  15:13:39
Courtesy of A. Svensson, A. J. Johansson



FLASH 2020+ MO Design - Very High Performance
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• Design by WUT and DESY

• Distribution by KVG



FLASH MO 2020+ Performance
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Phase Jitter (10 Hz do 1 MHz)

Old FLASH 
MO

E-XFEL MO NewFLASH2020+ MO

108 MHz 86.1 fs - 27.8 fs

1300 MHz 55.9 fs 19.5 fs 10.7 fs

1517 MHz 1390 fs - 45.8 fs

OCXO phase noise optimization



After signal generation …
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Instabilities in Practice

• The absolute instability depends mostly on the MO phase noise

• Passive components do not contribute to jitter (well… EMC, low power)

• It is possible to select amplifiers with negligible additive phase noise

• Well designed distribution „transports” MO phase jitter to user devices

• Required timing signal stability usually exceeds tens of ps or ns range

• High-performance clocks for fast ADCs are synthesized from the phase 
reference signal

• Any distribution media introduces phase drifts
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Typical Reference Signal Distribution Scheme
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Main Distribution to RF Stations 

and other accelerator 

subsystems

Local Distribution: 

racks, crates, PCBs

The importance of a local distribution is frequently underestimated

Main Enemy
PHASE DRIFTS



Phase Drifts in Distribution Media
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K. Czuba, D. Sikora, “Temperature stability of coaxial cables”, 
ACTA PHYSICA POLONICA, Vol. 119 (2011), No. 4, p. 553

Signal phase in cable and fiber can drift by degrees / 1oC per 1 meter!

Temperature stabilization or feedback on phase required



Phase Drift Mitigation

• Depends on machine size and stability requirements

• For small accelerators a simple passive distribution may be sufficient

• For larger machines it can be:

• Passive with cables/fibers selected with opposite temperature coefficients

• Semi-active by temperature stabilization

• Active  - feedback on phase applied

• See talk by Marie Kristin Czwalinna on Friday 9:05 for state of the art. 
systems
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Cable Temperature Stabilization

• Either by cooling water or by heating tapes

• Very well known, robust, good performance

• Require a good thermal insulation to achieve good temp. 
stability far from sensors

• Feasible for up to several hundred meters

• Demonstrated ~0.1o p-p phase stability / 100m @ 704 MHz 
at ESS

• For longer distances and higher frequencies stability and 
cost may be compromised
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Active Drift Mitigation (1)

By locking phase of a round trip signal

• Either with RF short at the end of the 
link or 2nd cable for return signal

• Well suited for point-to-point RF and 
optical links

• Demonstrated 33 x drift reduction in 
~40 m long link at ESS
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Active Drift Mitigation (2)

Interferometer/phase averaging 
scheme

• Round trip signal phase locked at 
the transmitter

• But also reflected back and 
summed at outputs of directional
couplers

• Signal vector sum averages out 
phase drifts

• Relatively difficult to setup

• Many problems with parasitic 
reflections

• Offers excellent performance for up 
to few hundred meters
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Active Drift Mitigation  - Example

• WUT and DESY developed 
interferometric link prototype with 
automatic calibration

• ~85 h long test 

• output vs input phase with 
feedback on and with feedback off

• Open loop phase changes in cable
(~10 ps) compensated to 50 fs p-p

• Drift reduced ~200 times!
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D. Sikora et. Al. "Phase drift compensating RF link for femtosecond 

synchronization of E-XFEL”



Summary

• Building a „heart” of the accelerator may be a very challenging task

• Timing systems distribute trigger, event information and low/mid 
performance clocks (ps to ns of jitter)

• PRDS/PRL are used to distribute harmonic RF signals with down to fs 
precision

• Phase noise is relatively easy to achieve and distribute (short term stability)

• The big problem is mitigation of phase drifts at the level of sub ps on long 
distances (above hundred meters)

• State-of-the-art (femtosecond) PRDS use active drift stabilization techniques 
either for RF cables or optical links
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Thank you for attention!
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