CERN and open source	White Rabbit	White Rabbit and RF	Community	WR Collaboration	Plans

White Rabbit

Status and plans of the technology and the community around it

Javier Serrano

European Laboratory for Particle Physics (CERN)

LLRF Topical Workshop on Synchronization, Measurements and Calibration

INFN-LNF, Frascati, Italy 28 October 2024

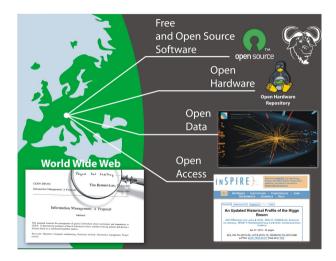
CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000
Outline					

- CERN's knowledge dissemination mandate
- White Rabbit
- White Rabbit and RF
- Community
- 5 The White Rabbit Collaboration

CERN and open source ●○○	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000
Outline					

- CERN's knowledge dissemination mandate
- 2 White Rabbit
- 3 White Rabbit and RF
- 4 Community
- 5 The White Rabbit Collaboration

6 Plans


RN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000
)issemination					

CEF

CERN and open source White Rabbit White Rabbit and RF Community WR Collaboration Plans

How to interpret one's dissemination mandate in the 21st century

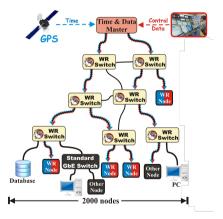
Javier Serrano | CERN BE-CEM-EDL

White Rabbit status and plans

CERN and open source	White Rabbit ●○○○○○○	White Rabbit and RF	Community	WR Collaboration	Plans 0000000
Outline					

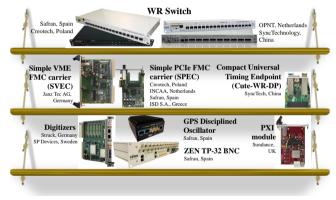
- CERN's knowledge dissemination mandate
- White Rabbit
- 3 White Rabbit and RF
- 4 Community
- 5 The White Rabbit Collaboration

6 Plans


CERN and open source	White Rabbit ○●○○○○○○	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000

What is White Rabbit?

 Initially meant for Big Physics facilities/projects: CERN, GSI, Nikhef...


Based on well-established standards

- Ethernet (IEEE 802.3)
- Bridged Local Area Network (IEEE 802.1Q)
- Precision Time Protocol (IEEE 1588)
- Extends standards to meet new requirements and provides
 - Sub-ns synchronisation
 - Deterministic data transfer
- Initial specs: links ≤10 km & ≤2000 nodes
- Open source and commercially available

CERN and open source	White Rabbit	White Rabbit and RF	Community	WR Collaboration	Plans 0000000

Open and commercially available off-the-shelf

Companies selling White Rabbit:

www.ohwr.org/projects/white-rabbit/wiki/wrcompanies

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000

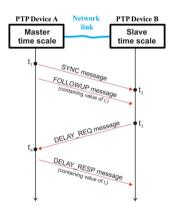
White Rabbit technology - sub-ns synchronisation

Based on

IEEE 1588 Precision Time Protocol on Gigabit Ethernet over fibre

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000
					/

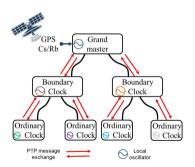
White Rabbit technology - sub-ns synchronisation


Based on

• IEEE 1588 Precision Time Protocol on Gigabit Ethernet over fibre

Enhanced with

- Layer 1 syntonisation
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model


Precision Time Protocol (IEEE 1588)

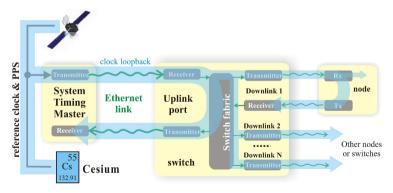
- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$



Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network

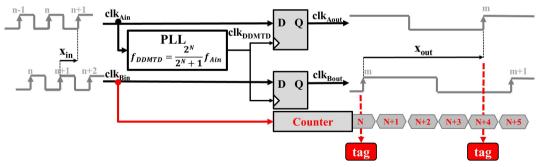
Precision Time Protocol (IEEE 1588)



- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network
- Shortcomings of traditional PTP:
 - devices have free-running oscillators
 - frequency drift compensation traffic can compromise determinism of other messages
 - assumes symmetry of medium
 - resolution of timestamps

Lover 1 Sunt					
CERN and open source	White Rabbit	White Rabbit and RF	Community	WR Collaboration	Plans

Layer 1 Syntonisation

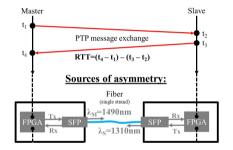

- Clock is encoded in the Ethernet carrier and recovered by the receiver chip
- All network devices use the same physical layer clock
- Clock loopback allows phase detection to enhance precision of timestamps

CERN and open source	White Rabbit ○○○○○○●○	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000

Digital Dual Mixer Time Difference (DDMTD)

- Precise phase measurements in FPGA
- WR parameters:
 - clk_{in} = 62.5 MHz
 - clk_{DDMTD} = 62.496185 MHz (N=14)
 - clk_{out} = 3.814 kHz
- Theoretical resolution of 0.977 ps

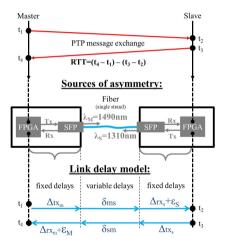
CERN and open source	White Rabbit ○○○○○○●	White Rabbit and RF	Community	WR Collaboration	Plans 0000000
Link delay m	odel				


• Correction of Round Trip Time (RTT) for asymmetries

CERN and open source	White Rabbit ○○○○○○●	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000
l ink delay m	odel				

Link delay model

- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion



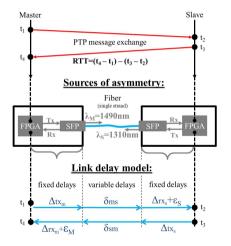
CERN and open source	White Rabbit ○○○○○○●	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000
Link dolou m	adal				

Link delay model

- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion
- Link delay model:
 - Fixed delays calibrated/measured
 - Variable delays evaluated online with:

$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - \mathbf{1} = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

CERN and open source	White Rabbit ○○○○○○●	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000
Link dolou m	adal				


Link delay model

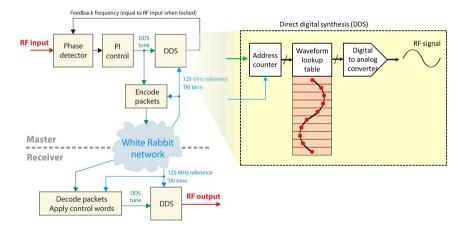
- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion
- Link delay model:
 - Fixed delays calibrated/measured
 - Variable delays evaluated online with:

$$\alpha = rac{
u_g(\lambda_s)}{
u_g(\lambda_m)} - \mathbf{1} = rac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

Accurate offset from master (OFM):

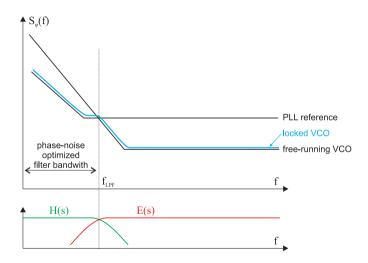
$$\delta_{ms} = \frac{1+\alpha}{2+\alpha} \left(RTT - \sum \Delta - \sum \epsilon \right)$$
$$OFM = t_2 - \left(t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S \right)$$

CERN and open source	White Rabbit	White Rabbit and RF ●○○○○○	Community 000	WR Collaboration	Plans 0000000

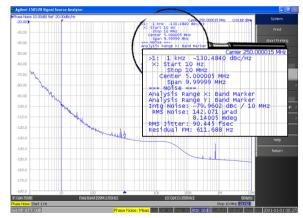

Outline

- CERN's knowledge dissemination mandate
- 2 White Rabbit
- White Rabbit and RF
- 4 Community
- 5 The White Rabbit Collaboration

6 Plans


CERN and open source	White Rabbit	White Rabbit and RF	Community	WR Collaboration	Plans 0000000

WR-derived reference clock signal for RF synthesis and sampling


CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000

Minimising jitter by using a good OCXO

CERN and open source White Rabbit occessor White Rabbit and RF Community WR Collaboration Plans

The eRTM14/15 MTCA.4 module for SPS LLRF

See https://ohwr.org/project/ertm15-llrf-wr/wikis for details

CERN and open source

White Rabbit

White Rabbit and RF

Community

WR Collaboration

Plans 0000000

RF over Ethernet (RFoE) using WR: the WR2RF board

See also https://roe-mapping.web.cern.ch/

CERN and open source	White Rabbit	White Rabbit and RF ○○○○○●	Community	WR Collaboration	Plans 0000000
Fundamental	limits				

• WR is about getting the best possible time and frequency using off-the-shelf components and following standards.

- WR is about getting the best possible time and frequency using off-the-shelf components and following standards.
- "The [DDMTD] phase detector introduces a limitation in short-term stability equal to MDEV 4E-13 at $\tau = 1$ s (ENBW 50 Hz), with a flicker PM behavior from $\tau = 1$ s to $\tau = 100$ s and more. The origin of flicker PM is due to the LVDS input clock buffer of the currently used FPGA and its related internal clock distribution. Similar results are observed for newer FPGAs, where a (slightly reduced) flicker PM is still present."

- WR is about getting the best possible time and frequency using off-the-shelf components and following standards.
- "The [DDMTD] phase detector introduces a limitation in short-term stability equal to MDEV 4E-13 at $\tau = 1$ s (ENBW 50 Hz), with a flicker PM behavior from $\tau = 1$ s to $\tau = 100$ s and more. The origin of flicker PM is due to the LVDS input clock buffer of the currently used FPGA and its related internal clock distribution. Similar results are observed for newer FPGAs, where a (slightly reduced) flicker PM is still present."
- See https://ohwr.org/project/wr-low-jitter/wikis for more details, in particular *M. Rizzi et al. "White Rabbit Clock Synchronization: Ultimate Limits on Close-In Phase Noise and Short-Term Stability Due to FPGA Implementation"*

CERN and open source	White Rabbit	White Rabbit and RF	Community ●○○	WR Collaboration	Plans 0000000
Outline					

- CERN's knowledge dissemination mandate
- 2 White Rabbit
- 3 White Rabbit and RF
- Community
- 5 The White Rabbit Collaboration

6 Plans

- 2008: first meeting at CERN
- 2009: first switch prototype
- 2012: first COTS switch available (open-source hardware, gateware, firmware, software)
- 2012: first operational deployment of WR (Gran Sasso National Lab)
- 2013-2018: WR concepts standardised within IEEE 1588
- 2024: creation of the WR Collaboration (see launch event)

CERN and open source	White Rabbit	White Rabbit and RF	Community ○○●	WR Collaboration	Plans 0000000

WR post-standardisation

A technology supported by a friendly community working on a fully open-source implementation of IEEE 1588-2019 High-Accuracy (HA) profile, with a guaranteed sub-nanosecond accuracy

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration ●○○○○○○○	Plans 0000000
Outline					

- CERN's knowledge dissemination mandate
- 2 White Rabbit
- 3 White Rabbit and RF
- 4 Community
- 5 The White Rabbit Collaboration

6 Plans

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000

Entering a new phase

Post-standardisation issues

- How to maintain good support after the increase in uptake of the technology, both in industry and academia?
- How to ensure a high level of quality in the foundations of WR (switch and WR PTP core)?

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration ○○●○○○○○○	Plans 0000000						
The White D	abbit Callak	The White Dehbit Colleboration in a putchall									

The White Rabbit Collaboration in a nutshell

Ensuring sustainability

- Members pay a yearly fee and shape the future of the technology
- Fees are used to pay the WR Collaboration Bureau, which offers support (including training) and ensures WRS and WRPC are always in good health

CERN and open source	White Rabbit	White Rabbit and RF	Community	WR Collaboration	Plans 0000000

The White Rabbit Collaboration in a nutshell

Letting information flow

- Collaboration with vendors ensures coherent growth of the WR ecosystem
- Keeping members well informed: online presentations, forum, regular meetings...
- Connecting people, institutes, companies (e.g. connecting NRENs with industry)

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000

The White Rabbit Collaboration in a nutshell

Ensuring high-quality

- Making the evolution of WRS and WRPC the main task of the Bureau
- Teaming up with laboratories to establish a set of tests and qualification criteria
- Connecting the use of the WRC logo to the successful passing of those tests

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000			
The White Babbit Collaboration in a nutshell								

The white Rabbit Collaboration in a nutshell

Projects! Some examples:

- Ongoing: collaboration with GMV and IQD on hold-over.
- Quantum: see e.g. CERN's Quantum Tech Initiative at https://quantum.cern
- Under discussion: robust, long-distance WR for smart grids

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans 0000000

An experiment in public-private partnerships

Getting the best of both worlds

- Dissemination according to our Open Science mandate
- Impact and sustainability

Economics

- Companies can add value of top of WR and monetise products based on those developments
- They decide what they contribute as open source and what they keep proprietary

 CERN and open source
 White Rabbit
 White Rabbit and RF
 Community
 WR Collaboration
 Plans

 000
 0000000
 0000000
 0000000
 00000000
 00000000
 00000000

WRC members in 2024

CERN and open source White Rabbit White oco

White Rabbit and RF

Communi

WR Collaboration

Plans 0000000

White Rabbit Collaboration

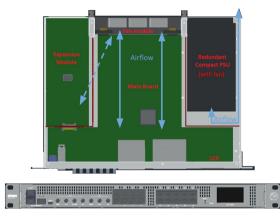
Join us! For more details, see https://www.white-rabbit.tech

CERN and open source	White Rabbit	White Rabbit and RF	Community	WR Collaboration	Plans ●○○○○○○
Outline					

- CERN's knowledge dissemination mandate
- 2 White Rabbit
- 3 White Rabbit and RF
- 4 Community
- 5 The White Rabbit Collaboration

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans ○●○○○○○

Plans


WR Switch v4

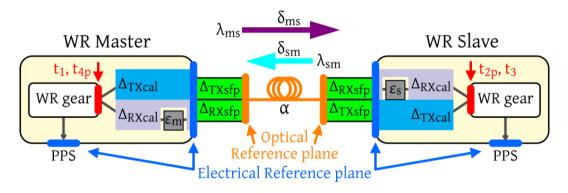
- GbE and 10GbE support
- Redundant and serviceable fans and power supplies
- Based on Xilinx/AMD Zynq UltraScale+ System-on-Chip (SoC)
- Expansion board slot for enhancements (low phase noise, hold-over...)

See https://ohwr.org/project/wr-switch-hw-v4/wikis for more details.

CERN and open source	White Rabbit	White Rabbit and RF	Community 000	WR Collaboration	Plans ○o●oooo

WR Switch v4

Prototyping stage, v3 functionality before the end of the year.


CERN and open source	White Rabbit	White Rabbit and RF		Plans ○○○●○○○

WR Switch v4

CERN and open source	White Rabbit	White Rabbit and RF	Community	WR Collaboration	Plans ○○○○●○○

Standardisation++

Courtesy Henk Peek and Peter Jansweijer

CERN and open source	White Rabbit	White Rabbit and RF	Community	WR Collaboration	Plans ○○○○○●○

Standardisation++ (P. Jansweijer, M. Lipiński)

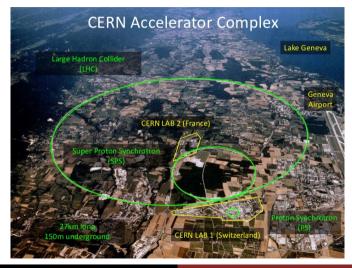
Amendments to IEEE 1588-2019

- Absolute calibration
- In-situ calibration of asymmetry

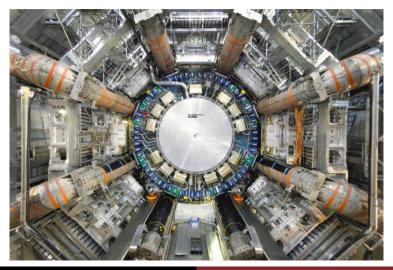
Within the SNIA SFF working group

Storage of calibration parameters in SFP EEPROM

Possibilities for collaboration: non-exhaustive list

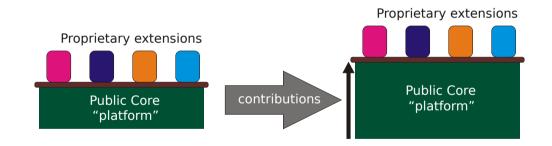

• Improving WR performance

- In-depth studies of transceiver behaviour inside SoCs
- Sensitivity to external factors such as temperature variations
- Improving WR usability
 - Monitoring and logging of important parameters and events with time stamps
 - Automation of calibration of port delays and fibre asymmetry
- Quantum: both QKD and entangled qubits
- Robustness: hardware and system-wide (clock ensemble). Redundancy and seamless switch-over (<1ns jump)
- Other?

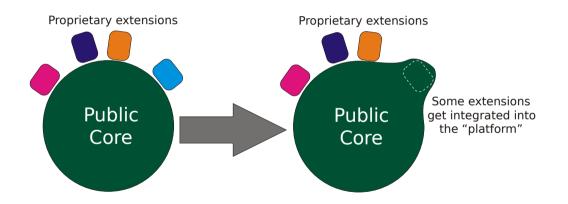

Backup slides

Backup slides

Accelerators



Detectors



Commercial		Non-commercial
Open	Winning combination. Best of both worlds.	Whole support burden falls on developers. Not scalable.
Proprietary	Vendor lock-in.	Dedicated non-reusable projects.

Public-private partnerships

Public-private partnerships

