Reliable, Optically Augmented RF Reference Distribution with Femtosecond Stability

Maximilian Schütte on behalf of Thorsten Lamb and the LbSync & LLRF Teams LLRF Workshop 2024, INFN-LNF, Frascati, 30th October 2024

HELMHOLTZ

RF Reference Distribution for Accelerators

- Storage rings have **localized** LLRF systems
 - small number of cavities, close together, approx. picosecond requirements
- Linear accelerators (LINACs) have distributed LLRF systems
 - large number of cavities, **distributed** along the LINAC, the system scales with facility size
 - FELs have the highest stability requirements (femtosecond and attosecond science)
- Finding a suitable solution: Gather your requirements:
 - Frequency → affects insertion loss
 - Distance, cable type \rightarrow insertion loss, drift stability
 - Number of clients, output power → power budget, amplifiers
 - Phase stability (time scale / bandwidth) → stabilization (active or passive) required?
- Not in this talk
 - In rack distribution aka "the last mile" (this is a common problem of all presented solutions)
 - Accelerator based drift compensation (beam based feedbacks)

Centralized Coaxial Distribution

Unstabilized RF Distribution

- Central RF Main Oscillator (RF-MO)
 - Redundant construction possible → high reliability
 - Low phase noise RF oscillators are expensive → only invest once
- RF amplifiers (as required)
 - Mature technology -> high reliability
 - Negligible timing jitter increase (if carefully selected / designed)
- Cables, splitters, couplers
- ➔ Scalable, affordable
 - Can be extended with high flexibility
- → Low complexity, reliable components, self-sufficient

- ➔ Drawback: Long term drift due to environmental changes
 - Temperature, Humidity (cable properties: **20fs/m/K or worse**, 100fs/m/%RH but with large τ)

ESS Phase Reference Line

Temperature and Pressure Stabilization

- 1-5/8" coaxial rigid transfer line .
 - Two segments, driven from the center, ~600m combined length
 - 56 tap points
- 2 frequencies transmitted (352 MHz and 704 MHz)
- No intermediate (drifting) amplifiers •
- Temperature stabilized (0.01°C pp)
- Transfer line flushed with dry nitrogen
 - Pressure stabilized to 1100mbar +/- 2 mbar
- Independent Stability measurement at 704MHz
 - Distance 123m, duration 60h
 - 0.58° (= 2.3ps) peak to peak drift -> well below spec
- Limited length and number of clients due to power budget
- Residual drift

Phase Reference Line for the European Spallation

PAL-XFEL Reference Line

Temperature Stabilization and Local Resynchronization

- Coaxial transfer line (Cellflex cable) •
 - 1.5km length, ~18 tap points
- 476 MHz transmitted ٠
- distributed DROs (2856 MHz) locally resynchronized ٠
- No intermediate (drifting) amplifiers •
- Temperature stabilized (0.01°C per day)
- Independent stability measurement at 2856 MHz •
 - distance 750m, 3 days →1ps peak to peak drift •

- Residual drift (is removed via beam based feedback) →
- Low phase noise DRO required
 - → Challenging installation (vibration sensitivity of DROs)

	FAC-AFEL requires silo 100 is split-inorgation of LLRR systems and optical lasers for stable operation and even lower jitter is favorable for the higher performance of FEL and the better time resolution of pump-probe experiments. The RF timing distribution system is based on a 476 MHz reference line, which is converted to 2.856 GHz at 16 locations over 1.5 km distance using phase- locked DRO. The 2.856 GHz signals are amplified and split to 10 outputs, which is connected to LLRFs, BAMs, and DCMs through low timing drift cables. The jitter between two different PLDRO units is estimated to -1 fs from 1 Hz to 1 MHz. The synchronization jitter between a Trisapplire laser and the 2.856 GHz signal is measured less than 20 fs	476 MHz reference signal is distributed to 16 locations over 1.5 Km distance including soft X-ray branch using a low loss cable. At each location, 476 MHz signal is con- verted to 2.856 GHz signal using a low phase noise DRO and phase-locked loop, which is developed by RUPP- tronik. One 2.856 GHz phase-locked DRO signal is am- plified and is split to drive up to six LLRFs and additional diagnostic systems such as BAM and DCM. This end S- band distribution is done by low temperature coefficient cable in phase (LCF38-S0). Its temperature coefficient is measured as 7 kmK at 30°C. The phase drift of the max- imum 50 m length cable with the temperature stability of 0.1 °C is estimated to 35 fs, which is considered small.
	INTRODUCTION PAL-XFEL is a hard X-ray SASE FEL, which is based on a normal conducting 10 GeV linear accelerator, undu- lators and experimental hutches. Additionally, soft X-ray SASE FEL is generated from branched electron bunches at 3 GeV in the main linac. Initially we are aiming to generate ≈100 fs X-ray laser pulses. For the stable opera- tion of the machine, well-defined and consistent electron bunches are required in energy and time axis. To satisfy this, we want to synchronize phase sensitive components within the X-ray pulsewidh. Two time scales are considered in our timing distribu- tion and synchronization scheme. The phase change at	Figure I: Schematic of timing distribution system in PAL-XFEL.
× t	temperature stab	ilized
	5 6	

Min (2016) https://doi.org/10.18429/JACoW-IPAC2016-THPOY057 Min (2023) Talk: LLRF '23

RF-MO

476 MH2

DRC

2856 MHz

Proceedings of IPAC2016, Busan, Kore

RF TIMING DISTRIBUTION AND LASER SYNCHRONIZATION COM-MISSIONING OF PAL-XFEL

Chang-Ki Min[†], Seong Hoon Jung, Changbum Kim, Sung-Ju Park, Heung-Sik Kang, In Soo Ko, PAL, Pohang, South Korea

Abstract

THPOV05

OCXO for the frequency stability and the phase noise wement in low offset frequency at 1 and 10 Hz. The

RF over Fiber (RFoF)

CW Optical Transmission

- Why use lasers if the client needs RF?
- Optical fibers have much lower insertion loss than RF cables
 - Example: 7/8" CELLFLEX 4dB/100m at 1GHz
 - Compare: SMF-28e+ 0.02dB/100m at 1550nm wavelength
 - → suited for long distance signal transmission
- Optical fibers are insensitive to EMI
- But: optical fibers are (like RF cables) not length stable
 - sensitive to temperature, humidity and mechanical stress
- Also: (phase stable) signal recovery is non-trivial
 - AM/PM in photodiodes, SNR
 - Low RF power from photodiodes, might need amplification (stability issue)
- Different topology: point to point connections, no intermediate taps (if stabilized)

- Examples: Berkeley Sync Head (accelerator community development, pioneering work)
 - i-tech Libera Sync 3 (commercial system, developed with PSI)
 - → 40fs peak to peak drift (24h, 3GHz, Hunziker (2014) https://epaper.kek.jp/IBIC2014/papers/moczb2.pdf)

Intermediate Summary

Unstabilized Centralized Coaxial Distribution

- Periodically amplify the signal, tap/split as needed
- Low complexity → high robustness
- → Cost efficient and scalable (number of clients, transmission distance)
- → Phase drifts of cables, amplifiers, ... (many picoseconds)

Stabilized Coaxial Distribution

- Temperature stabilization, pressure stabilization
- Interferometric stabilization (not presented)
- → Successfully implemented in actual accelerators
- ➔ No intermediate amplifiers (limited number of clients, limited distance)
- → Stabilized but with residual drift (picosecond range)

RF over Fiber

- Suited for long distance transmission
- Only point to point connections, no intermediate taps
- Careful additive jitter characterization (due to photodiodes)
- → Stabilized but with residual drift (> 40 femtoseconds)

Can we **combine all advantages** in one system?

- Cost efficient and scalable
- Long Distance Transmission
- Robust
- Low additive jitter (femtosecond range)
- Low drift (below 10fs) over long distances (~km)

Pulsed Optical Synchronization Systems

Use the Existing Infrastructure

- Many FELs already have pulsed optical synchronization systems •
 - SwissFEL, LCLS-II, FERMI, EuXFEL, FLASH, SHINE, SXFEL, TELBE, CLARA
- How to make use of the pulsed optical RE distributions system to stabilize your Active fiberlink stabilization with femtosecond stability (using optical cross-correlation) ٠
 - Suited for long distances due to low fiber insertion loss (point to point connections) •
- A pulsed optical synchronization system is typically used to ٠
 - synchronize lasers on a femtosecond scale (using optical cross-correlation)
 - measure the bunch arrival time with femtosecond precision (BAM)

Opto-Electrical Phase Detection

For Cross-Domain PLLs

- Low drift and low noise signal recovery using photodiodes is tricky and **not recommended if you aim for fs stability**
 - AM/PM in photodiodes, SNR
 - Temperature and humidity sensitivity of components
- ➔ Use an opto-electric phase detector to measure and correct the drifts of your RF signals
 - fs stability and sensitivity required
- Established techniques for opto-electrical phase detectors
 - Sagnac Loop based phase detectors (known as BOM-PD, FLOM-PD, ...)

Kim (2004)	https://doi.org/10.1364/OL.29.002076
Kim (2006)	https://doi.org/10.1364/OL.31.003659
Jung (2012)	https://doi.org/10.1364/OL.37.002958
Jeon (2018)	https://doi.org/10.1364/OL.43.003997

• MZM based phase detectors (known as L2RF phase detector)

Lamb (2017) https://doi.org/10.3204/PUBDB-2017-02117

Sampling the RF Signal with Laser Pulses (Simplified)

Sampling the RF Signal with Laser Pulses (Simplified)

Sampling the RF Signal with Laser Pulses (Simplified)

Sampling the RF Signal with Laser Pulses

L2RF Phase Detector Stability

Out-Of-Loop Measurement of Two L2RF Phase Detectors

REFM-OPT Engineering

- Redundant amplifiers
- Controllable (electrical) phase shifter and attenuator
- Phase stable cables: Teledyne Phasemaster 190E 874
- Weatherproof RF splitter
 - stabilized, low differential drift: <40 fs/K
- Environmentally stabilized L2RF phase detector
 - Temperature controlled,
 - humidity sealed and buffered (silica gel) enclosure
 - Stabilizes all internal RF components
- Diagnostics (optical power, 2x RF power, temperatures, humidity, controller data, ...)
- Remote management (supply voltage, current, soft fuses)
- Remote operation (control parameters)
- 3x control loops (RF power, RF phase, L2RF bias)

RF Distribution With Optical Augmentation

Corrected Drifts of the Coax Distribution

Corrections Applied by REFM-OPTs at the European XFEL During User Operation / Maintenance

L2RF Short Term Performance

REFM-OPT A3M In-Loop Performance

L2RF Short Term Performance

Additive Jitter Measured of the REFM-OPT A2M

DESY. | Reliable, Optically Augmented RF Reference Distribution with Femtosecond Stability | Maximilian Schütte, Thorsten Lamb | 2024-10-30

Advantages of the Augmented Reference Distribution System

Scalability

- Add more unstabilized clients with minimal effort
- Add more resynchronization points (REFM-OPT)
- Efficiency
 - Use existing infrastructure (pulsed optical synchronization system)

Reliability:

- Feedback and reference failures affect the signal stabilization but not the delivery
- Fiberlink failures cause local drifts, can be stabilized downstream due to daisy chaining

Costs

- Every REFM-OPT requires a dedicated pulsed reference (point to point, expensive)
- Passive distribution where requirements are relaxed

Performance (where needed)

Sub 10 Femtosecond (short and long term) stabilization and phase noise measurements at arbitrary positions in the accelerator tunnel

Thank you! Questions?

Contact

Deutsches Elektronen-Thorsten LambSynchrotron DESYMSK | Laser Based Synchronization (LbSync)

www.desy.de

Thank you to my colleagues from the MSK LbSync, LLRF, and Analog Hardware teams: Frank Ludwig, Heinrich "Heinz" Pryschelski,