Phase and Amplitude Noise Measurements

Fundamentals and Best Practices

Maximilian Schütte LLRF Workshop 2024 – INFN-LNF, Frascati 29th October 2024

LLRF Topical Workshop on Timing, Synchronization, Measurements and Calibration LLRF Workshop Series

HELMHOLTZ

Talk Overview

The goal of this talk is to understand ...

• Phase & amplitude noise

$$\mathcal{L}(f) = \frac{1}{2} S'_{\varphi}(f), \qquad S_{\varphi}(f) = \mathbb{E}\left[\int_{-\infty}^{\infty} R_{\varphi}(\tau) e^{-i2\pi f\tau} \,\mathrm{d}\tau\right]$$

Graphical representations

• Measurement techniques & analyser settings

Common mistakes and limitations

Advanced techniques

Courtesy F. Ludwig, M. Hoffmann

Perspective

An Overview: Reference Distribution and Synchronization Systems From Sub-picoseconds to Sub-femtoseconds Stability

> Marie Kristin Czwalinna (DESY)

Tomorrow – 09:05

Basics of RF Reference Signal Generation and Synchronization Systems

> Krzysztof Czuba (Warsaw University of Technology)

> > Tomorrow - 16:35

Phase & Amplitude Noise Theory

The Importance of Phase Noise

An example related to fs pump-probe experimentation with particle accelerators

The Importance of Phase Noise

An example related to fs pump-probe experimentation with particle accelerators

- Bunch propagation is **absolute** measure of time.
- Phase noise accumulated over this time causes wrong ETA $\rightarrow \frac{1 \text{ fs}}{1 \text{ µs}} = 10^{-9}$.
- Can estimate RF field stability requirements: **0.01% amplitude**, **0.01° phase**.

► Δt.

100 fs

0 fs

The Harmonic Oscillator

Phase & Amplitude Noise Calculations

Timing jitter & drift

Statistical Properties – Time Domain

RMS phase / timing fluctuations •

$$x_{\rm RMS} = \sqrt{\frac{1}{T} \int_{-T/2}^{T/2} x(t)^2 \, \mathrm{d}\tau} = \sqrt{\sigma_x^2 + \bar{x}^2}$$

Often ignored

Phase fluctuations are unbounded random walks. •

$$\lim_{T\to\infty} x_{\rm RMS} = \infty$$

- Averaging Time / Bandwidth is essential! •
- Peak-to-Peak drift \rightarrow "12fs pk-pk over 24h". •
- ITU definition: "Drift / Wander" > ~ 0.1 s > "Jitter". •

Phase & Amplitude Noise Calculations

Spectral representations

Statistical Properties – Frequency Domain

- Spectral analysis via Fourier Theory ... but Fourier Transform is only meaningful for deterministic signals.
- (Two-sided) power spectral density (PSD)

$$S_{\varphi}(f) = \int_{-\infty}^{\infty} R_{\varphi}(\tau) e^{-i2\pi\tau} d\tau, \qquad \left[S_{\varphi}(f)\right] = \frac{\mathrm{rad}^2}{\mathrm{Hz}}$$

• Auto-correlation function $R_{\varphi}(\tau)$ not accessible ... estimation via Wiener-Khinchin **Periodogram**:

$$S_{\varphi}(f) = \lim_{T \to \infty} \frac{1}{T} |\hat{\varphi}_T(f)|^2$$

- Real signal \rightarrow one-sided spectrum $S'_{\varphi}(f)$ is sufficient.
 - "Single-Sideband" only applies to carrier signals.

Mathematical Rigor

"Does Wiener-Khinchin apply?"

Process $\boldsymbol{\varphi}(t)$ must be:

- Wide-sense stationary
- Ergodic

Solution:

- Only observe for a finite time and assume stationarity
- Remove phase offset at each
 measurement and assume ergodicity.

Averaging in Estimation – Bartlett and Welch's Method

Improving the estimate, reducing sample variance

Phase & Amplitude Noise Definitions (IEEE Standard 1139)

Old habits definitions die hard

Phase Noise

• Definition since '99

$$\mathcal{L}(f) = \frac{1}{2} S'_{\varphi}(f), \qquad [10 \log_{10} \mathcal{L}(f)] = \frac{\mathrm{dBc}}{\mathrm{Hz}}$$

• Preferred in practice

Amplitude Noise

• Definition since '99

$$\frac{1}{2}S'_{a}(f), \qquad \left[\frac{1}{2}S'_{a}(f)\right] = \frac{1}{\mathrm{Hz}}$$

• Often also in dB / Hz

Historical Context

Phase noise **used** to be derived from the carrier's side-lobes on an RF analyser.

- Not accurate close to the carrier.
- Does not discriminate phase and amplitude fluctuations.

Phase & Amplitude Noise Calculations

Integrated Jitter

Linking Time & Frequency Domain

• Using the Plancherel Theorem, we find

$$x_{\rm RMS} = \frac{1}{2\pi\nu_0} \sqrt{\int_0^\infty S'_{\varphi}(f) \, \mathrm{d}f} = \infty$$

• Perhaps more useful: "Integrated (Timing) Jitter",

$$J_t = \frac{1}{2\pi\nu_0} \sqrt{\int_{f_1}^{f_2} S'_{\varphi}(f) \, \mathrm{d}f}$$

• Cumulative integrated jitter curve

 $f_1 \rightarrow f_2$, or, $f_2 \rightarrow f_1$

• Always state integration bounds!

Phase & Amplitude Noise Calculations

Spurious Content

Handling the discrete & deterministic

- Non-random disturbances cause narrow spikes = "Spurs".
- Jitter adds in root-sum-square.

$$J_t = \sqrt{J_{t,\text{smooth}}^2 + J_{t,\text{spur1}}^2 + \dots + J_{t,\text{spurN}}^2}$$

- Same as integrating over "Spurs in dBc / Hz" trace.
- Beware: Display on analysers varies!

Spurious Content

An example from the FSWP analyser

Noise Plots

Do's & Don'ts

- Clearly declare omitted spurs.
- Avoid non-standard units.
- Use caption to clarify measurement conditions.

• There is no one-fits-all solution.

Use second axis for alt. units, spur jitter or integrated jitter

Phase & Amplitude Noise Measurement Techniques

Phase Noise Measurements

Saturated Mixer

- Mixing in quadrature with LO @ v_0 yields zero-IF.
- Only linear in small angle approximation
 → only for small PM.
- Low bandwidth PPL to LO ensures zero-IF.
 → PLL response needs to be taken into account!
- AM (mostly) suppressed.
- LO phase noise, mixer & LNA flicker added to DUT noise.

DESY. | Phase and Amplitude Noise Measurements | Maximilian Schütte, 29.10.2024

Phase Noise Measurements

I/Q Detection

- Dual saturated mixer, in-phase + quadrature.
- Demodulation: $\varphi = \tan^{-1} \frac{Q}{I}$, $a = \frac{\sqrt{I^2 + Q^2}}{A} 1$.
- Not reliant on small angle approximation.
- I/Q calibration necessary.
- LO derived ADC clock allows for phase-coherent IF sampling
 → Better harmonic disturbance rejection.
- Closer to a 360° phase detection system needed by LLRF controls.

Phase Noise Measurements

Frequency Discriminator Method

- Self-referenced, no LO. •
- Delay line loss \rightarrow better for optical. ٠
- Delay line drifts. •
- Low sensitivity / SNR for slow DUT phase drifts. •
- Elimination at $f = N/\tau \rightarrow$ limited frequency range. ٠

 $1/\tau$

Frequency

Improving Phase Noise Measurements

Cross-Correlation Techniques

inverted common noise!

.

• Cross-correlation is convolution in TD, i.e. multiplication in FD:

XCORR(
$$\varphi + w_1, \varphi + w_2$$
) = ($\varphi + w_1$) * ($\varphi + w_2$) = $\overline{\hat{\varphi}} \cdot \hat{\varphi} + O\left(\frac{1}{\sqrt{N}}\right)$
Phase detector noise scales with $\frac{1}{\sqrt{N}}$
• -3 dB @ N = 4
• -15 dB @ N = 1024.
Sample variance shrinks at the same time.
Common noise not supressed (e.g. AM).
Cross-spectral breakdown for phase

I

W,

Absolute, Residual and Additive Measurements

Absolute

- Stability of an oscillator
- Analyser LO better than DUT (or XCORR)

Residual

- Locking performance of PLL
- Reference as ext. analyser LO

Additive

- Excess noise of components
- Int. or ext. analyser LO

Phase Noise Analysers

Phase Noise Analysers

Agilent / Keysight E5052B

- Double saturated mixer scheme
- Found in many labs, weighs a ton.
- Important settings:
 - Attenuation (ideally 0-5 dBm after att.)
 - IF Gain (as high as possible without saturation error)
 - XCORR (double until PN doesn't improve anymore)
 - LO optimization, Capture range "normal"
- ±35V / 50 Ohm baseband input (DC block capacitor)
- Careful: Baseband shows V/Hz, but really is V/\sqrt{Hz} !
- (now superseded by SSA-X series)

ssa0207 © Keysight

Phase Noise Analysers

Rohde & Schwarz FSWP / FSPN

- Double I/Q-detection scheme
- Non-zero IF leads to less distortion, no PLL
- Important settings:
 - Resolution Bandwidth (5%, 2%, 1% are common)
 - XCORR (aim for 10dB headroom to device sensitivity)
- Useful: Auto-Setup, fast, sensitivity indicator
- ±2V / 50 Ohm baseband input
- Pulsed measurements (bandwidth limited to $f_{pulse}/2$)

Practical Measurement Considerations

Proper Documentation is Key

A few minutes can save hours of work

- Measurements are worthless without measurement conditions which you **will** forget.
- Keep screenshot, showing device settings.
- Store as many info as possible in trace file.
- A photo takes just two seconds.
- Use presets for consistent measurements.
- Note down external factors (PLL settings, optical power, LNA supply voltage, ...).

Beware:

 Ground-loops, unshielded cables, bad soldering, broken / unreliable components, sufficient signal power, power grid disturbances.

MultiView 8	Phase Noi	se 🖾	Spectrum
Signal Frequency	1.3 GHz	RBW	3%
Signal Level	14.87 dBm	XCORR Facto	or 50
Att	0 dB	Meas Time	~82 s
1 Noise Spectrum			
	100 Hz		1 kHz
-90 dBc/Hz <mark>Range 1</mark>			

Measurements on Optical Sources

Mode-locked lasers & Pulsed optical fibre timing links

- Free-running MLL are "drifting sources".
 → Generally unreliable below 10 Hz offset.
- Understand your detection chain:
 - Photodiode AM/PM dominates after ~ 1-10 kHz.
 - Amplifier excess noise
- 50 Ohm system, PD properly terminated?
- Photodiode bias voltage and amplifier supply voltage ideally from analyser (ground loops).
- Analyser itself can be the disturbance source!
 - Heat
 - EMI (Spurious)

Baseband Measurements / External Phase Detectors

- Useful for:
 - Power supply noise (careful HV!)
 - External phase detectors
 - Relative intensity noise
- Standard units $\frac{V}{\sqrt{Hz}}$ displayed in dB. But: $20 \log_{10} \left[\frac{V}{\sqrt{Hz}} \right] = 10 \log_{10} \left[\frac{V^2}{Hz} \right]$
- Watch out for impedance mismatches!
- Correlation measurements only possible with certain devices.
- Ground-loops are critical! Use isolation transformer.
- Very sensitive, even to "swinging" cables.

Measuring at the Limit

Problems & Physical Boundaries

• Mechanical Stability

 $-180~\text{dB}~\text{rad} \rightarrow 4\cdot 10^{-12}~\text{m}$

• Theoretical DUT thermal noise floor at (300K, > 1kHz offset from carrier)

$$-177 \frac{\text{dBc}}{\text{Hz}} - P_{\text{carrier}}$$

- Cross-correlations do not help indefinitely (exponential measurement time, numerical problems, cross-spectrum collapse).
- "Close to the carrier", analyser sensitivity is limited by RF component flicker in the receiver.
- Harmonic distortion during down-conversion & ADC sampling.
- Baseband is noisy!

Measuring at the Limit via Carrier Suppression Interferometry

- Mixing moves carrier power to DC •
- Carrier suppression interferometry deletes carrier • power
- No additive 1/f flicker when amplifying! •

1.3 GHz

Main

Oscillator

Coupler

10dB

Splitter

Springer et al. - Phase Noise Measurements for • L-Band Applications at Attosecond Resolution

Fine Adjustment

Shifter

ÁRRA

L9428A

Phase

Shifter

ATM

P1103

Cal. Unit

Coarse Adjustment

IFW

Modulation

Phase

Frequency Phase and Amplitude Noise Measurements Maximilian Schütte, 29.10.2024

References & Further Reading

For the serious phase noise enthusiast

Theory

- Demir "Phase Noise in Oscillators A Unifying Theory and Numerical Methods for Characterisation" (1998)
- Rubiola "<u>Phase Noise and Frequency Stability in Oscillators</u>", Cambridge University Press (2009) (and other works)
- Da Dalt "Understanding Jitter and Phase Noise", Cambridge University Press (2018)
- Gardner "<u>Phaselock Techniques</u>", Wiley, 3rd ed. (2005)

Practice

- Rubiola Slides from <u>rubiola.org</u>
- Rohde & Schwarz "Understanding Phase Noise Measuring Techniques"
- NIST various resources and papers

Thank you!

Questions?

Contact

Deutsches Elektronen-Synchrotron DESY

www.desy.de

Maximilian Schütte MSK - LbSync maximilian.schuette@desy.de +49 40 8998 1811 Many thanks to my colleagues for their valuable input putting this talk together:

- MSK Analog Team: Frank Ludwig, Matthias Hoffmann, Heinrich "Heinz" Pryschelski, et al.
- MSK LbSync Team: Sebastian Schulz, Thorsten Lamb, Matthias Felber, et al.