

RF synchronization and phase recovery using a White Rabbit network for the Large Hadron Collider at CERN

A. Spierer, T. Gingold, G. Hagmann - 28th October 2024 | LLRF Topical Workshop

Overview

Context of the LLRF upgrade (Phase 0)

• High-Luminosity LHC (HL-LHC)

- Increase of the integrated luminosity
 - Beam intensity increase : Injectors upgrade
 - Increased focusing : New quadrupoles
 - Beam orientation : Crab cavities
- Planned for restart in 2030, operation until 2040+

LLRF upgrade motivation

- Obsolescence of the LHC beam control hardware (frequency program, reference RF generators)
- Modernization of the clock distribution, requested by users
- Need for an RF distribution to the Crab cavities
- Parallel upgrade of the machine timing to White Rabbit

Current distribution

- Analog RF distribution over fibers (uncompensated): 40-400 MHz, pulses
 - To cavity controllers
 - To instrumentation
 - To experiments

Requirements

- Providing glitch-free clocks for experiments triggers, FPGAs, ...
- Phase locked in all locations
- Phase recovery after the power cycle of an endpoint
- Scalability Limiting the number of optical fiber links
- Phase noise, thermal drift and reproducibility described in the WR2RF poster
- Reliability 24/7 operation

- RF distributed digitally over a White Rabbit network
- Generated locally, at the endpoint

28th October 2024

• Based on the Super Proton Synchrotron (SPS) experience

- Same/similar hardware uTCA+VME (eRTM for clocks, WR2RF modified for 400MHz, AFCZ, WR switches)
- New: RF over ethernet (RoE) instead of streamers, lightweight and generic
- New: Glitch-free operation
- Towards a more generic approach
 - Shared networks with general timing and other accelerators
 - Opportunity to connect and synchronize with the up/downstream machine

Solution (Phase 0)

- Replacement of the frequency program
 - WR capable
- WR2RF to generate reference RF for loops and accelerating cavities
- Dedicated low-latency network (~20 us)
 - Accelerating cavities LLRF, Beam Control LLRF
- Injection of RoE in the machine timing WR network (~200 us)
 - For experiments, Crab cavities, instrumentation

Solution (Phase 1+)

Update of the cavities and Beam control LLRF

- Long shutdown 4, ~2033
- nodes are all WR-enabled

Synchronization example: WR2RF

Recovering the relative phase between two distant nodes

28th October 2024

A. Spierer | LLRF Topical Workshop

The WR2RF contains two types of oscillators

- The clocks and analog LOs are at constant frequency (in red)
- The IF that sweeps during acceleration

RF generation

RF generation – tracking the sweeping RF

- The frame is sent once per beam revolution (~90 microseconds) by the beam control
- It is received and applied to the RFNCO with a fixed delay set at the receiver side*

RF generation – Locking fixed frequency DDS

- The endpoints are locked to the atomic time (TAI) through the WR link
- After a power cycle, a pulse locked to the TAI second* is used to synchronize the DDS phase as well as RFNCO LO phase
 - These oscillators must have an integer number of periods in N seconds

RF generation – Phase recovery

- Higher synchronization period N*second => broader choice of LO frequencies
- The graph shows how the resolution improves when increasing N

RF generation – Reference phase recovery

- The reference RFNCO phase (Beam Control) is transmitted over WR
- It is compared to the local RFNCO phase, if different triggers a re-sync.
- In case of re-sync., the phase difference is linearly ramped down

Timeline

Conclusion and outlook

- We use a White Rabbit network and distributed NCOs to replace the obsolete RF generation and distribution in the LHC
- Based on the successful SPS system
 - With a series of updates and modification to fit the LHC constraints
- Installation ongoing and the restart with the new system planned in 2030
- In collaboration with our controls group, going towards a generalized transmission of the RF information together with the general timing
- Improvement of the received clock quality (Phase noise, drift)
- Easier network extensions/installations

References

• Workshop: G. Hagmann & al. Poster

• HL-LHC RF distribution over White-Rabbit, the WR2RF and eRTM modules

• Workshop: G. Papotti & al. Presentation

- High-precision clocks and triggers for longitudinal beam measurements in high energy synchrotrons
- Phase Stability Compliancy Testing of a White Rabbit Based Solution for the LHC RF and Timing Distribution Backbone Upgrade
 - https://indico.cern.ch/event/1381495/contributions/5988793/

• RoE

- https://roe-mapping.web.cern.ch/
- WR
 - http://white-rabbit.web.cern.ch/

• SPS beam control

<u>https://cds.cern.ch/record/2845762?In=en</u>

Clock & LO generation

Temperature range (degC): • crate: 26.45 - 28.74 (Δ 2.29) • lab: 24.89 - 26.68 (Δ 1.80)

• WRS rear: 26.14 - 27.84 (∆ 1.70)

 μ = -49.1927 ps; σ = 2.7105 ps; pk-pk = 15.413 ps

- Clock phase reproducibility = WR reproducibility
- Full characterisation ongoing with WR switches in cascade
- eRTM 14/15 phase noise performance

Effect of WR delay

- Requires cable length compensation for sweeping frequencies
- Introduces a lag in phase for distant devices (200us)
 - OK for experiments as they are working only at flat top frequency
 - OK for Crab cavities for the same reason

RF generation

Frame content

Field	Туре	Size	Comment
FTW_prog_b1 (1)	FTW	48 (2)	Includes radial_correction_b1 dFTW
FTW_prog_b2 (1)	FTW	48 (2)	Includes radial_correction_b2 dFTW
FTW_master_b1 (1)	FTW	48 (2)	FTW_prog_b1 + dFTW phase and synchro loop b1
FTW_master_b2 (1)	FTW	48 (2)	FTW_prog_b2 + dFTW phase and synchro loop b2
synchro_error_b1	phase	16	For phase 0, if VCXO drifts with temperature, receivers
synchro_error_b2	phase	16	can take this offset in account.
controls	bits	16	NCO_reset
			NCO_resync
			DDS_resync
resync_phase_prog_b1	phase	48	Used for glitch-free synchronization
resync_phase_prog_b2	phase	48	
resync_phase_master_b1	phase	48	
resync_phase_master_b2	phase	48	
Total Payload		432	(54 bytes)

WR Network

LHC: RF over White-Rabbit architecture

