

Femtosecond Synchronization System for Free Electron Laser

Zhichao Chen

(on behalf of Synchronization team) Dalian Institute of Chemical Physics, CAS Institute of Advanced Science Facilities, Shenzhen 2024/10/30

>Synchronization Methods

FEL projects & Fs-Synchronization Systems

➢ Acknowledgment

Importance of high-brightness advanced light source

- The highly sensitive detection method based on the high-brightness light source is the most important driving force to promote the scientific research of matter and materials.
- High-brightness light source (such as laser technology) pave a way for the development of modern revolutionary technology.

Various scientific applications

X-ray and VUV light sources are not available easily!

Development of Free Electron Laser

Milton et al, SCIENCE 292, 2037(2001)

Exponential Gain and Saturation of a Self-Amplified Spontaneous Emission Free-Electron Laser

S. V. Milton,^{1*} E. Gluskin,¹ N. D. Arnold,¹ C. Benson,¹ W. Berg,¹ S. G. Biedron,^{1,2} M. Borland,¹ Y.-C. Chae,¹ R. J. Dejus,¹ P. K. Den Hartog,¹ B. Deriy,¹ M. Erdmann,¹ Y. I. Eidelman,¹ M. W. Hahne,¹ Z. Huang,¹ K.-J. Kim,¹ J. W. Lewellen,¹ Y. Li,¹ A. H. Lumpkin,¹ O. Makarov,¹ E. R. Moog,¹ A. Nassiri,¹ V. Sajaev,¹ R. Soliday,¹ B. J. Tieman,¹ E. M. Trakhtenberg,¹ G. Travish,¹
I. B. Vasserman,¹ N. A. Vinokurov,³ X. J. Wang, G. Wiemerslage,¹ B. X. Yang¹

Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and lowemittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.

Yu et al. SCIENCE 289, 932(2000) High-Gain Harmonic-Generation Free-Electron Laser

L.-H. Yu,^{1*} M. Babzien,¹ I. Ben-Zvi,¹ L. F. DiMauro,¹ A. Doyuran,¹
W. Graves,¹ E. Johnson,¹ S. Krinsky,¹ R. Malone,¹ I. Pogorelsky,¹
J. Skaritka,¹ G. Rakowsky,¹ L. Solomon,¹ X. J. Wang,¹
M. Woodle,¹ V. Yakimenko,¹ S. G. Biedron,² J. N. Galayda,²
E. Gluskin,² J. Jagger,² V. Sajaev,² I. Vasserman²

A high-gain harmonic-generation free-electron laser is demonstrated. Our approach uses a laser-seeded free-electron laser to produce amplified, longitudinally coherent, Fourier transform-limited output at a harmonic of the seed laser. A seed carbon dioxide laser at a wavelength of 10.6 micrometers produced saturated, amplified free-electron laser output at the second-harmonic wavelength, 5.3 micrometers. The experiment verifies the theoretical foundation for the technique and prepares the way for the application of this technique in the vacuum ultraviolet region of the spectrum, with the ultimate goal of extending the approach to provide an intense, highly coherent source of hard x-rays.

LCLS – LINAC Coherent Light Source

e Beam Transport 227m above ground facility to transport electron beam (SLAC)

Undulator Hall: 170m tunnel housing undulators (ANL)

Electron Beam Dump: 40m facility to separate er and x-ray beams (SLAC)

niector/L

600m e

accelerator

(SLAC)

Front End Enclosure:40m facility for photon beam diagnostics (LLNL) Near Experimental Hall: 3 experimental hutches prep areas, and shops (SLAC/LLNL)

X-Ray Transport & Diagnostic Tunnel: 210m tunnel to transport photon beams (LLNL)

r Experimental Hall: cavern with 3 experimental ches and prep areas LAC/LLNL)

FLASH (Free-Electron Laser in Hamburg)

RE Bunch Bunch RF Gun Stations SFLASH Compresso Compressor Undulators Diagnos-Laser harmonic tics Accelerating Structures FEL Bypass Experiments 150 MeV 5 MeV 500 MeV 1.2 GeV 315 m

FEL promotes the revolution of laser technology from THz to hard X-ray.

Some Free Electron Laser Facilities

Facility	Country	LINAC	Beam energy/GeV	Photon energy/keV	Rep. rate/Hz	Length/m	Status
LCLS-I	USA	RF	14.3	1-15	120	3100	Operation
SACLA	Japan	RF	8	0.44-20	60	750	Operation
FERMI	Italy	RF	1.5	0.0124-0.3	50	350	Operation
PAL XFEL	Korea	RF	10	0.124-12.4	60	1100	Operation
SXFEL	China	RF	1.5	0.1-0.6	10	532	Operation
DCLS	China	RF	0.3	0.007-0.041	50	150	Operation
SwissFEL	Swizerland	RF	5.8	0.25-12.4	100	715	Operation
FLASH	Germany	SRF	1.25	0.014-0.31	5000	315	Operation
Eu-XFEL	European	SRF	17.5	8.4-30	27,000	3400	Operation
LCLS-II	USA	SRF	8	0.2-5	1,000,000	3200	Operation
SHINE	China	SRF	8	0.4-25	1,000,000	3110	Under construction
S ³ FEL	China	SRF	2.5	0.04-1	1,000,000	1700	Under construction
DALS	China	SRF	0.1 / 0.6	- / 0.007-0.19	1,000,000	60/750	Under construction

Fs-Synchronization System manages FEL timing with fs-level.

Task:

- Providing femtosecond level stable Master clock ~Laser & RF
- > Distributing Master clock to clients of Laser, LLRF, and Diagnostic
- > 10 fs-additive jitter locking clients to the Master clock

Function:

FEL can work and be stable

Research ability especially for Time-Resolved experiment

>Synchronization Methods

FEL projects & Fs-Synchronization Systems

>Acknowledgment

>Synchronization Methods

Adapted from Dr. Holger Schlarb slide

>Synchronization Methods

Various synchronization methods have been developed

Approach		Developed by	Jitter fs[10Hz,10MHz]	Drift fs/24h/km	Advantage	Disadvantage
Fiber Link	Pulsed laser + PMF	MIT-CFEL DESY	<0.5	~5	Lowest jitter Drift free Large distance	Expensive
	CW laser + SMF	PSI LBNL	<20	~40	Low jitter Long distance	Certain drift
RF Link	Temperature stabilized RF	PAL SACLA	<10	>250	Stable	Large drift

European XFEL

SwissFEL

PAL XFEL

>Synchronization Methods

Hybrid SYNC with pulsed laser link as the backbone has become the mainstream design of large-scale FELs.

Facility	RF	CW Laser Link	Pulsed Laser Link
LCLS	•		•
SwissFEL	•	•	•
FERMI	•	•	•
PAL XFEL	•	•	
SACLA	•	•	
SXFEL	•	•	•
DCLS	•		•
LCLS-II	•	•	•
FLASH	•		•
EuXFEL	•		•
SHINE	•		•
S ³ FEL	•	•	•
DALS	•	•	•

>Synchronization Methods

FEL projects & Fs-Synchronization Systems

>Acknowledgment

>FEL projects & Fs-Synchronization Systems

Dalian

- Dalian Coherent Light Source (DCLS) Operation since 2017
- Dalian Advanced Light Source (DALS)

Building, Pre-study project

Shenzhen

Shenzhen Superconducting Soft-X-ray Free Electron Laser (S³FEL)

Designing

Dalian Coherent Light Source

Unique Free electron laser facility in the VUV and EUV range

- ➤ Tunable Wavelength : 50 150 nm
- > Pulse Energy : >100 uJ (1 mJ)
- Pulse length: 100 fs /1 ps
- > Bandwidth : Close to Fourier transform limit
- ➢ Jitter: <30 fs [10 Hz, 10 MHz]</p>
- > Rep. Rate: 50 Hz

国家自然科学 基金委员会 National Natural Science Foundation of China

DCLS 30-fs Synchronization System

Item		Property	Requirement	Pulsed Laser/fs	RF/fs
Master clock	RF Master Oscillator (RMO) (2856 MHz)	Jitter	<30 fs [10 Hz, 10 MHz]	30	
	Optical Master Oscillator (OMO) (238 MHz)	Jitter	<10 fs [1 kHz, 10 MHz]	1	
Link	Fiber / RF cable	Jitter & Drift	<10 fs [35 µHz, 10 MHz]	5.5	2000
Client	Photoinjector Laser (79.33 MHz)	Jitter & Drift	<100 fs [35 µHz, 10 MHz]	15	50
	Seed Laser (79.33 MHz)	Jitter & Drift	<20 fs [35 µHz, 10 MHz]	15	50
	LLRF (2856 MHz)	Jitter & Drift	<30 fs [35 µHz, 10 MHz]	25	30
	BI (2856 MHz)	Jitter	<200 fs [10 Hz, 10 MHz]		30
Function				Operation	Backup

Scientific Customer \rightarrow FEL \rightarrow Synchronization System \rightarrow Sub-system

DCLS 30-fs Synchronization System

30 fs-Pulsed Laser Synchronization System Cooperation with Cycle 50 fs-RF Synchronization System Cooperation with SINAP

Scientific Research at DCLS User drive project!

Photodissociation of small molecule in VUV range

Nat. Commun., 11,1547(2020) Nat. Commun., 12, 2467 (2021) Nat. Commun., 12, 4459 (2021) Nat. Commun., 12, 6303 (2021) Science Advances, 7, eabg7775 (2021) Chem. Sci. 14, 2501(2023) Nat. Sci. Rev. nwad158(2023) Chem. Sci. 14, 2501 (2023) Science, 383, 746 (2024)

Deep understanding of interstellar photo-chemistry process

The structure of neutral water cluster

PNAS, 117, 15423(2020)
Nat. Comm., 11, 5449 (2020)
Nat. Catal., 4, 959 (2021)
J. Phys. Chem. Lett., 12, 472(2021)
J. Phys. Chem. Lett., 13, 5654(2022)
Cell Rep. Phys. Sci., 3, 100748(2022)
J. Am. Chem. Soc., 144, 21356 (2022)
J. Phys. Chem. Lett., 14, 3878 (2023)

Pentamer is the smallest water droplet. Octamer is the smallest ice cube.

Nat. Protoc. 18, 2600 (2023) Nat. Struct. Mol. Biol. 30, 629 (2023) Nat. Nanotechnol. 17, 993 (2022) Nat. Catal. 4, 607 (2021) J. Am. Chem. Soc. 145, 1285 (2023) J. Am. Chem. Soc. 145, 11477 (2023) J. Am. Chem. Soc. 146, 8832 (2024)

Characterization of intramolecular hydrogen bonds of proteins

International Collaboration on surface scattering

Alec Wodtke MPI from Germany

Xueming Yang DICP from China

> World-wide Users

Leipzig University DE University of Göttingen DE Bristol University UK Radboud University NL

Institutes from CAS University of Science and Technology of China Southern University of Science and Technology Fudan University Nanjing University Dalian University of Technology Chinese University of Hong Kong East China Normal University Zhejiang Normal University

DCLS

UC. Berkeley Yale University Brown University University of Colorado Boulder

We are looking forward to have more users from the world!

> Dalian Advanced Light Source (Pre-study project)

Goal: Demonstrating the key technologies of high repetition rate FEL based on superconducting accelerators

> Electron beam test platform installation is in progress

Key devices have been delivered and the entire system is under integration

Preliminary installation : mechanical supports, magnets, RF power source, vacuum system, beam diagnosis, beam dumps, cryo-distribution box, electrical supply and cooling water supply, etc.

Tunnel

Electrical and RF power source gallery

> Pre-study project at DALS

Conceptual design in 2021

Birdview in June 2024

DALS 20-fs Synchronization System

		Referenc	DALS		
System Device		e Mode	f=1300 MHz	Jitter & Drift (fs)	
	Photo injector Laser	Pulsed Laser	f/36	<80[35 μHz, 10 MHz]	
Lagan	Heat Laser	Pulsed Laser	f/36	<100[35 μHz, 10 MHz]	
Laser	Seed Laser	Pulsed Laser	f/18	<20[35 μHz, 10 MHz]	
	Experimental Laser	Pulsed Laser	f/18	<20[35 μHz, 10 MHz]	
	VHF Gun	CW RF	f/6	<180[10 Hz, 10 MHz]	
	Buncher	CW RF	f	<30[10 Hz, 10 MHz]	
LLRF	1.3GHz SCRF Module	CW RF	f	<30[10 Hz, 10 MHz]	
	3.9GHz SCRF Module	CW RF	f*3	<30[10 Hz, 10 MHz]	
	BAM/BLM/L AM	Pulsed Laser	f/6	<10[35 μHz, 10 MHz]	
Diagno sticsTDS bandCW RFf/36*83CBPMCW RFf	TDS band	CW RF	f/36*83	<60[10 Hz, 10 MHz]	
	<100[10 Hz, 10 MHz]				
Timing	Network switch	CW RF	f/12	<10 ps	

DALS 20-fs Synchronization System On the way!

Cycle System & Some measurement

fs

Jitter

Shenzhen Superconducting Soft-X-ray Free Electron Laser

>Planning

It has been proposed in the city of Shenzhen and approved in 2023.

S³**FEL Schematic Layout**

Design and construction of a superconducting CW-FEL facility with a pulse repetition rate of 1 MHz in the soft X-ray region (1-30 nm) to serve the scientific community.

Parameters	Objective	Units
Final electron energy	2.5	GeV
Bunch repetition rate	1	MHz
Bunch charge	100	pC
Undulator lines	3+3	-
FEL wavelength	1-30	nm
FEL pulse energy	~100	μJ

S³**FEL Schematic Layout**

1.7 km facility-wide, 10 fs-level synchronization of FEL devices including lasers, low level RF system, diagnostics and control system.

S³**FEL synchronization requirements**

S	Derries	Reference	S ³ FEL / 479 units			
System	Device		f=1300MHz	Jitter & Drift (fs)	Units	
		Pulsed Laser	f/36	<80[35µHz, 10MHz]	2	
	Photo Injector Laser		f/18	<80[35µHz, 10MHz]	1	
Laser	Heat Laser	Pulsed Laser	f/36	<100[35µHz, 10MHz]	1	
	Seed Laser	Pulsed Laser	f/18	<20[35µHz, 10MHz]	5	
	Experimental Laser	Pulsed Laser	f/18	<20[35µHz, 10MHz]	4	
	VHF Gun	CW RF	f/6	<180[10Hz, 10MHz]	2	
	Buncher	CW RF	f	<30[10Hz, 10MHz]	2	
	1.3GHz SCRF Module	CW RF	f	<30[10Hz, 10MHz]	26x8	
	3.9GHz SCRF Module	CW RF	f*3	<30[10Hz, 10MHz]	2x8	
Diagnostics	BAM/BLM/LAM	Pulsed Laser	f/6	<10[35µHz, 10MHz]	11	
	TDS band	CW RF	f/36*83	<60[10Hz, 10MHz]	4	
	TDX band	CW RF	f/9*83	<60[10Hz, 10MHz]	5	
	СВРМ	CW RF	f	<100[10Hz, 10MHz]	218	
Timing	Network switch	CW RF	f/12	<10 ps	1	

> Design of S³FEL Synchronization system

Hybrid SYNC design including pulsed laser link, CW laser link, and temperature stabilized RF link.

Master clock Optical clock (OMO) RF clock (RMO) GNSS disciplined rubidium clock (GNSS-Rb)

Stabilized reference distribution Pulsed laser link (PL-Link) CW laser link (CW-Link) Temperature stabilized RF link (TS-Link)

Locking of lasers and RF devices Laser-to-laser lock (L2L) Laser-to-RF lock (L2RF)

Optical Clock

- Commercial osc.
- 216.667 MHz →1.3 GHz/6
- Ultra-low phase noise
- 1550 nm
- 24/7 operation

RF Clock

- Commercial osc.
- 1.3 GHz
- Ultra-low phase noise
- 24/7 operation

Master clock has been built with jitter better than 18.4 fs.

> Stabilized reference distribution

The topological structure of SRD network based on pulsed laser link.

> Pulsed laser link

Timing error detection & correction

- Balanced optical cross-correlation(BOC)
- Insensitive to laser pulse fluctuations
- Slope 15 mV/fs
- Piezo-based fiber stretcher BW~5 kHz

1E-3 EDFA-LINK jitter: 570 as Timing jitter density (fs²/Hz) 1E-5 1E-7 DS0-X 3054T, Mr61410164, 07,40,2021031200; Sub Arr. 23,14; 1E-9 1E-11 1E-13 100 10k 100k $1 \,\mathrm{M}$ 10M 1k 10 **Frequency offset(Hz)**

Demo PL-Link has been built with sub-fs jitter (in loop) & a few fs drift per day.

> CW laser link

CW laser link

- Commercial CW laser link
- Low additive jitter & drift
- SYNC3 @ 2.6 GHz for TDS & TDX
- Wavelink @ 1.3GHz for CBPM

CW-Links are tested by companies and meet requirements of some of the devices of S³FEL.

> Temperature stabilized RF link

Temperature stabilized system

- 0.1 mK sensitivity
- PID feedback
- Double-layer thermal control system
- Internet setting, monitor, and data recording

TS-Link with 10-meter cable

RF reference is distributed over TS-Link with less than 30 fs drift .

> Synchronization of lasers

Laser-to-Laser Lock

- Two-color balanced optical cross-correlation(TCBOC)
- **RF Pre-lock function**
- Insensitive to laser pulse fluctuations
- Slope 10 mV/fs
- Piezo-based feedback BW~5 kHz

Mode-Locked fiber laser @1030nm

$(\frac{10^{-1}}{10^{-2}})^{10^{-1}} \frac{10^{-1}}{10^{-4}} \frac{10^{-4}}{10^{-4}} \frac{10^{-4}}{10^{-4}} \frac{10^{-4}}{1$

Frequency (Hz)

Mode-Locked Solid-State laser @800nm

Locking of lasers has been tested and meet PIL, HL, SL, and PPL requirements.

> Synchronization of RF clients

Laser-to-RF Lock

- Balanced optical-microwave phase detector (BOMPD)
- Insensitive to laser pulse fluctuations
- Slope 1 mV/fs
- Locking BW~5 kHz

Additive noise testing

Locking of RF devices has been built and its performance is better than requirements.

> Requirement of 1 fs/ sub-fs Synchronization System

Terawatt-scale attosecond X-ray pulses from a cascaded superradiant free-electron laser

P. Franz et al. Nature Photonics 18, 698 (2024).

Experimental demonstration of attosecond pump– probe spectroscopy with an X-ray free-electron laser

Z. Guo et al. Nature Photonics 18, 691 (2024).

Attosecond x-ray free-electron lasers utilizing an optical undulator in a self-selection regime

X. Xu et al. Phys. Rev. Accel. Beams 27, 011301 (2024).

Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water

S. Li et al. Science 383, 1118 (2024).

> Requirement of 1 fs/ sub-fs Synchronization System

1 ps

2000

Synchronization ability

$$Total Jitter = \sqrt{Jitter^2 + Drift^2}$$

Jitter~ 1 fs [10 Hz, 10 MHz], OK Drift ~10 fs [35 uHz, 10 Hz], (40 fs/m/°C)

Technology Strategy

- Temperature stabilization with ~mK level
- Micro-optics design / Optical chip
- Cross-system coupling: LLRF-SYNC, Laser-SYNC

1 fs ?

2030

A Big Challenge with Exciting Future !

100 fs

2010

10 fs

2020

>Acknowledgement

Prof. Dr. Xueming Yang Prof. Dr. Weiqing Zhang Prof. Dr. Guorong Wu Dr. Zhigang He Dr. Wei Liu Dr. Wei Liu Dr. Yuhuan Tian Mr. Chenyang Song Mr. Yongjin Ding

Synchronization team @Dalian & Shenzhen

Prof. Dr. Bo Liu (SARI) (TJU) **Prof. Dr. Ming Xin Prof. Dr. Yingchao Du** (THU) **Prof. Dr. Youjian Song** (TJU) **Prof. Dr. Xiaopeng Xie** (PKU) (IHEP) **Dr. Xinpeng Ma** (DESY) **Dr. Holger Schlarb Dr. Frank Ludwig** (DESY) (FERMI) **Dr. Mario Ferianis** (PSI) **Dr. Zheqiao Geng** (CFEL) **Prof. Dr. Franz Kaertner**

Thanks for attention

Welcome to visit us

Dalian

