

IETS: The APS Injection/Extraction Timing System

U. WIENANDS Senior Accelerator Physicist

T. FORS, T. BERENC, D. PASKVAN, T. MADDEN, S. FARRELL

IETS core team

29-Oct-2024 LLRF 2024 Workshop, LNF Frascati, IT.

APS-Upgrade Project

World-class ultra-low emittance upgrade of the APS

- 40-period MBA Lattice with reverse bends to lower emittance
- 6 GeV, 200 mA, 42 pm-rad electron-beam emittance MBA lattice.
- 100-fold increase in X-ray beam brightness.
- Superconducting bunch-lengthening cavity running at 2K
 - presently at 550 kV design 1.25 MV.
- Swap-out injection rather than top-up due to machine acceptance.
- Completed end of March 2024, in user ops since July 2024.
- Presently running at 140 mA in 162 bunches at nominal 42 pm-rad electron-beam emittance.
- Uptime ≈ 93%

Project Key Performance Parameters

Key Performance Parameter	Thresholds (Performance Deliverable)	Objectives	
Storage Ring Energy	> 5.7 GeV, with systems installed for 6 GeV operation	6 GeV	
Beam Current	\geq 25 mA in top-up injection mode with systems installed for 200 mA operation	200 mA in top-up injection mode	
Horizontal Emittance	< 130 pm-rad at 25mA	≤ 42 pm-rad at 200mA	
Brightness @ 20 keV1	$> 1 \ge 10^{20}$	> 1 x 10 ²²	
Brightness @ 60 keV1	$> 1 \ge 10^{19}$	$> 1 \ge 10^{21}$	
New APS-U Beamlines Transitioned to Operations	7	\geq 9	

 $^1photons/sec/mm^2/mrad^2/0.1\% BW$

Accelerator, Front Ends and IDs, and Experimental Systems

Upgraded APS 24 hours History

14 beam lines active for this particular period

U. Wienands, LLRF 2024 Workshop, LNF Frascati, IT.

Motivation & Requirements for IETS

APS had 1104 m circumference and ran at 351.930277 MHz

- Booster at 1/3 the circumference ran at SR rf
- APS now has 1103.682 m and runs at 352.055282 MHz
 - 125 kHz difference, Booster could not follow that
- Adjusting Booster length would have been non-trivial rebuild
- => Consider running Booster at different rf than APS sr
 - Vary Booster frequency to synchronize and target bunch into sr bucket.

Requirements

- ≤ 50 ps timing jitter (bunch vs SR rf; triggers of strip-line kickers)
- Ability to prevent swap-out if substandard bunch in Booster
- "Slow Beam Abort" decohere-dump bunches in short order.

Fundamental Idea

- Rational relation between Booster and sr rf:
 - $f_{Boo} = f_{SR} \bullet (1-1/N) = f_{PAR} \bullet 36$, N integer, at Booster injection
- Vary Booster rf to target sr bucket and back before extract.
 After Booster extraction, ramp Booster rf back so Booster appears as if variation never happened.
- Bonus: Can ramp Booster rf to extraction and back, for emittance manipulation.
- Frequency ramp and targeting bump./
- Pipelining: PAR accumulates linac pulses while Booster accelerates.

Booster Acceleration Cycle

- The Booster magnet cycle is aligned to the 60-Hz phase of the mains
 - Jitters by 100s of µs against absolute time; rf cycles not reproducible.
 - The rings have an arbitrary orientation against each other at StartRamp.
- This is dealt with by detecting the sr revolution clock "P0" and tie the algorithm to that.
 - Booster orientation kept track of by "Orientation Counter"

U. Wienands, LLRF 2024 Workshop, LNF Frascati, IT.

Frequency Variations

- For the frequency variation in booster, choose cosine-like shape to minimize transients.

 - *c* is time in sr rf periods

- time shift can be calculated (from the integral of the above):

The time-shift expression can be solved for the bump height coefficient.

Keeping track of Ring Orientations

- To calculate the targeting bump, system needs to know relative orientation of sr and Booster at Booster injection.
- This is done with the "Orientation Counter"™:
 - $n_{sr} \mod (N*1296)$. Count sr rf periods. Goes through 0 every time the rings are precisely aligned.

$$1 \qquad 2 \qquad N-1 \qquad N \qquad \text{sr rf periods (1 turn)}$$

$$1 - \frac{1}{N} 2 - \frac{2}{N} \qquad N-1 \qquad N-1 \qquad \text{sr rf periods (1 turn)}$$

$$-\frac{N-1}{N} \qquad \text{Booster rf periods (3 turns)}$$

- After 1296*N sr rf periods, Booster had made 1296 less rf periods than SR, => perfect alignment as at beginning, OC = 0. Resolution is 1/N.
- Sampling OC at "Start Ramp" provides the info to calculate the exact bump amplitude, hence generate the frequency program.
- bump+ramp add integer no. of Booster turns in one cycle.

Implementation

- Rf reference generation using DDS (firmware).
 - 48 bit tuning word; 16 bit DACs.
- BTC (Booster Timing controller) central component
 - Rf cycle counting, internal turn clock generation
 - Interface to IOC for cycle parameters
 - Calculate rf program, upload to the DDSs for play-out.
 - Two MicroBlaze cores, one with FPU, for IOC interface and for start-up calculations for frequency program.
 - actual frequency tables calculated in FPGA fabric, ≈1500 pts. for Booster cycle.
 - works at 187.5-MHz clock frequency $(f_{SR}+f_{IF})/2$
- Integrate with existing APS timing and IOCs
 - This allowed frequent testing of the new system at the APS, as it was being built up.
 - Biggest difference is *N*: 92377 at APS; 2713 at APS-U.

Major Hardware Components

HiTech Global HTG-960

- Virtex Ultrascale+ FPGA
- 8,938K Logic Cells
- 75.9 Mb Block RAM
- 3,840 DSP Slices
- 80 GTY (32.8Gbps)Transceivers
- 6 FMC+ Connectors
- 80 GPIO pins
- HiTech Global HTG-FMC-X10SFP+
 - 10 SFP+ cages
- HTG-FMC-x24MSMP
 - Provides Mini SMP connector interface to transceiver data and clock signals
 - 64 GPIO pins
- DC2303A (x3) not shown
 - 16-bit DAC from Analog Devices

HTG-FMC-X10SFP+ HTG-FMC-x24MSMP

Details

- The BTC has three clock domains to work with:
 - BTC clock; (f_{SR} + f_{IF})/2, ≈ 187.5 MHz
 - $f_{SR} = 352.055282 \text{ MHz}$
 - Booster/PAR rf, 319.933083 MHz
- Each counting input is run through a 2-stage synchronizer (shift register) to reduce jitter to an acceptable level
- The frequency program is calculated in terms of BTC clock periods, which is $(1/f_{SR})/(f_{clk}/f_{SR})$. (f_{clk}/f_{SR}) is a rational number
- A "rear porch" (frequency offset) added to each program cycle ensures Booster rf program is exactly transparent at the end of the cycle (done in tuning-word space).
- About 30 ms are available after StartRamp to calculate and setup the frequency program. Actual use is about 100 µs.

High-Level Schematic

BTC

- implements the DDSs
- calculates frequency program parameters
- calc. & uploads the targeting bumps and the ramp to the DDSs
- reads & monitors fiducials and frequencies.
- counts the rf periods
- monitors charge in Booster

ATTs

- generate hardware triggers
- Fibers are 8b/10b encoded SM fibers.
 Argonne

Frequency Sources

- 48-bit DSSs with 16-bit ADCs are being used to generate references for SR, Booster and PAR
- all in BTC200

T. Berenc

<-- BTC

<-- Rf converters

Rf --> distribution

Diagnostics

- IETS scope (3 rf waveforms plus 3 selectable triggers or other signals)
- Bunch-arrival monitor (BAM), bunch time in BTS vs SR rf.
- Libera Spark to monitor charge in Booster by BTC.

Also useful in cross-checking time scales.

- IETS panel for setup and data presentation.
- DAQ system can log a number of BTC parameters each fill

System tests & Performance

- System tests using the prototype and temporary RS-422 links quickly showed that the system was able to meet the requirements: < 50 ps jitter and random access to all sr buckets.
- A persistent issue experienced was the occasional bad shot due to Booster skipping a turn. This was eventually tracked down to synchronization issues between the three clock domains the BTS has to work in.

Live Display of Frequency Program

Total area: 1 Booster turn

Trigger Links

IETS System										
Ramp Cycle Parameters System Status										
Target Bucket: 768 Configuration										
Target Charge: 3.200 Trigger Links										
Linac Triggers Counted: 7										
Ramp Number: 360963										
With Status										
Ramp Calculation										
Algorithm: Bump Only										
Start Ramp Source: ICR Start Ramp 👻										
Eng. Screen										
Start Ramp Rate:										
Ramp Arrival Monitor Extraction Phase Histogram										
Bucket Scale: Bucket Shift: C_B0 Corr: X Axis:										
0.000000E0 0.000000 0 Bucket C_B0 Reset Plot										
🛞 🎢 📥 🕇 🔛 🔍 🔍 🌒 🖕 🧼 🛸										
DDS Phase at B Extraction										
e s)										
В, –										
4										
8 - ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
C_DV										

IETS Scope

Booster rf phase against Extraction time (long-term trace): σ = 8.75 ps.

Measur	ement Re	sults								× Plot 1 - Histogram	(× Plot 2 - 1	Histogram ×	Plot 3 - Histogram 🔅
Name	Meas	Src(s)	Mean	Min	Мах	Pk-Pk	Std Dev	Рор	Info	- 🔥 Low amplitude	p-1	P-	1
Meas 3	Delay	Ch 4, Ch 5	606.4432 ps	-11 050 ns	17.391 ns	28.442 ns	1 5605 ns	1 37611e+	Low amplitude		· · 1 Mhic		
Meas 4	Delay	Ch 4, Ch 2	-307.1246 ps	-353.27 ps	-263.63 ps	89.635 ps	8.7490 ps	2.56694e+			·	20 khits	
Meas 5	Delay	Ch 1, Ch 2	-85.60696 ps	-106 78 ps	1 2990 ns	1 4058 ns	4 3851 ps	2.56694e+			E		
Wavefo	rm View					F				-10 n , , , 0 , , , 10	0 n	111-300 p Strin 171	10,,,500 <u>0,,110,,</u>
SR	1			<u> </u>		· · · · ·	1:0	(:: Ť			A: : : /		40
6	: /:		/:\:		/		Mas 5	\backslash	eas-5		/ \ /	$ \left \right $	200 m
	J	\bigvee					V	\bigvee		$\vee \vee$	\bigvee	\bigvee	-2000m
BOO	<i>[</i> :		\frown	\bigwedge		\bigwedge	Mas 5	ans 4					480 m 240 m
).	\bigvee						[V]					-240 m
PAR C3	\bigwedge	\int	\setminus /	\mathbf{i}		\bigwedge	\bigwedge	\bigwedge	$\langle \land \rangle$	\bigwedge	\land	\wedge	480 m 240 m
V		\bigvee	\bigvee	\mathbf{V}					\bigvee \setminus		\bigvee	\checkmark	-240 m
c_et (É	xtraction	Turn + Tar	get Bucket)			6		Meas 4	Man				1.50
6	: :	-16 ns	-12	 	-8 ns		-4 115			s	······································	1 5	16 ns 0
5.00					••••								2
3.00									· · · · · · · · · · · · · · · · · · ·				500 m
(C)													0
1.1			:::				: :	: : :	(····			: : : ;	1.50
sich	ATT in the	MCD	: :				: :					: : : :	1 1 1 11
5_Gate	ung (in	MI MICK)				: : :		: : ;		: : : :			500 m
1 66)													0

U. Wienands, LLRF 2024 Workshop, LNF Frascati, IT.

Bunch Arrival Monitor

- Extracted bunch time vs SR rf.
 - should not vary with targeted sr bucket

- rms spread ≈ 2.6 ps. Well within performance spec. of 50 ps.
 - no variation with target bucket => targeting algorithm works!
- rms Trigger jitter ≈ 17 ps (after DG645 delay unit) against sr turn clock

Varying Targeting Bumps (Calvey, Harkay, Fors, UW)

- X position in dispersive BPM (B1C4P1)
- Positive frequency bump \rightarrow negative X bump
- Bump height different for each shot
- Instability seen for negative frequency bump
 - See it twice for large negative bump (crossing cavity res.)
 - No beam loss
 - Larger detuning helps higher charge ($\rightarrow 10 \text{ nC}$) with ramp

5.0×104

turn

2

0

-2

-4

-6

0

B1C4P1:x (mm)

Summary

- IETS allows Booster and sr rf to decoupled from each other
- The necessary program for the Booster rf achieves accurate targeting with negligible error.
- Ramping the Booster rf to extract further off momentum has been tested and works, but has limited effectiveness without the high-power coupler for the rf cavities (descoped from APS-U).
- IETS is largely transparent to operation.

Backup Slides

U. Wienands, LLRF 2024 Workshop, LNF Frascati, IT.

Swap-out Injection

- On-axis injection
- Existing stored bunch will be kicked out.
- Short-pulse (≈ 10 ns) kickers to pick out individual bunches.

SR Rf Noise Spectrum

Yellow: R&S SMA100B; blue: PTS500

- need to understand origin of the lines (mostly not 60-Hz harmonics)

U. Wienands, LLRF 2024 Workshop, LNF Frascati, IT.