

中国科学院高能物理研究所

Institute of High Energy Physics

Chinese Academy of Sciences

Phase distribution system of HEPS

MA Xinpeng, GAN Nan, LIU Fang, LI Jingyi, CAO Jianshe, PENG Yongyi, MU Yajie ZENG Hao, GAO Wenbin

> Institute of High Energy Physics (IHEP) Chinese Academy of Sciences 2024-10-30

Outline

HEPS Project

- Master Oscillator system
- Phase distribution system
- Summary

HEPS High Energy Photon Source

 New constructed, first 4th gen high-energy SR in China
 Modified hybrid 7BA lattice

Shin, S. New era of synchrotron radiation: fourthgeneration storage ring. AAPPS Bull. 31, 21 (2021)

neter
1360.4 m
454.5 m
48×7BA
6 GeV
200 mA
60 pm·rad
>1×10 ²² phs/s/mm²/mrad²/0.1%BW

LLRF Topical Workshop 2024, INFN, MA Xinpeng

HEPS High Energy Photon Source

2019/06 Civil starts
2022/02 Linac&Booster start to install
2023/03 Linac first beam
2023/11 Booster passes acceptance
2024/07 Storage ring commissioning
2024/12 First X-ray
2025/12 Project completed and operation

HEP5

Timing system:

+ Phase reference line (or synchronization, MO + phase distribution)

+ Global event timing (timing triggers fanout)

RF reference requires 700+ signals:

Sub-system	Frequency/MHz	Number Location		
Linac	166.6/499.8/2998.8	1/1/6	Linac	
Booster LLRF	499.8	6	RF Hall	
Booster Bl	499.8	88	Tunnel/Linac/HETL	
SR LLRF	166.6/499.8	5/3	RF Hall	
SR BI	166.6/119/499.8/83.3	11/601/2/1	~50 stations in SR	
EVG	166.6/499.8	1/1	Timing station	
Beam Line	499.8	1	M10	

Event timing

- Adopted MRF MicroTCA.4 hardware
- Dedicated swap-out injection

Liu, F., Lei, G., Duan, Z. et al. The design of HEPS global timing system. Radiat Detect Technol Methods 5, 379–388 (2021)

HEPS High Energy Photon Source

Timing system: + Phase reference line + Event timing Master Oscillator system RF transfer by optical fiber RF transfer by coaxial cable 420m

LLRF Topical Workshop 2024, INFN, MA Xinpeng

DMO requirements:

- 4 channels: ch1 166.6MHz and ×3=499.8MHz for SR active 3HC RF (more ×, less ÷) ch2 499.8MHz for Booster RF, ch3 499.8MHz for Linac, ch4 time-reso exp./backup
- freq. tuning requires all the signals tuning simutaneously, resolution < 0.01Hz, and ch1 & ch2 ±100kHz for chromaticity/dispersion measure separately
- phase continuous when freq. tuning
- jitter should be low enough: better < 40fs(10Hz-10MHz)
- spurs no >-110dBc/Hz at 100Hz-1MHz especiall near sync. freq.
- phases monitored between 4 channels, and kept synchronized after freq. tuning & power cycle

So MO SHOULD be low jitter, 4 independent signals, frequency tuning, phase continuous, phase recovery after Freq.tuning

Commercial oscillator freq. tuning test:

- R&S SMA100B flash-down
- Keysight 8257D flicker
- Anapico 4-ch APMS40G flash-down
- Keysight 2-ch N5191A(DDS based) freq&phase continuous
- AD9912/9914 based SG jitter >70fs(10Hz-10MHz) and noisy

- Keysight and R&S oscillators used by many labs OK phase continuous, jitter good;
- □ 4 oscillators cost >1 million CNY ...
- Maybe enough, but not perfect, could be better?

New multiple signal generator(MSG)

- □ Signal Generator(SG) is SMA100B, as DAC/FPGA clock, global freq. tuning
- Clock jitter 27.3fs, chosen for signal noise purity, DAC works as DDS by FPGA, 48 bit freq. control register
- □ Measurement results
- CH1 166.6/CH2-CH4 499.8MHz jitter <35/34fs(10Hz-10MHz)
- no spurs within $\pm 3MHz$ bandwidth
- both freq. and phase continuous when freq. change
- output power is within ± 0.01 dB at all freq.&phase
- frequency resolution <0.01Hz, phase < 0.1°
- phase between 4 channels restored after power cycles

Master Oscillator System

LLRF Topical Workshop 2024, INFN, MA Xinpeng

Phase Noise

+3MHz

0.01°/0.01dB/0.01°C Phase detector: to monitor phase drift of various signals, mostly MSG/MO system itself

- I/Q demodulator (ADL5380) and 24 bits ADC (AD7768),

resolution: <0.01°@499.8MHz, BW: 400M-3GHz.

- phase stability < ±0.1°@±1°C room temp.
- amplitude stability<0.01dB, temperatute stability<0.01°C

- Pros: phase restored after power cycle

□ Goal: Transfer RF signals from MO to Linac and booster by optical fiber in sub-ps scale □ To compensate the phase drift: detect \rightarrow control \rightarrow adjust (feedback) \rightarrow stable

Very brief summary of phase reference line by optical fiber from control point

Detect ways		Adjust ways	Applications
 phase detector/analog IC 		Aphase shifter (analog)	KEK-25E/15D
	②digital LLRF	Bphase shifter (IQ)	I-T(Libra)-④A/①F
CW optical	③heterodyne interferometer	©receiver cali.	LBNL-3C
	④loopback+circulator	Doptical piezo	DESY-⑦DE
	5two wavelength+circulator	©optical motor	DLLRF-2B
Pulsed optical	6 harmonic extract+BPF	Etemp.oven	HEPS-15A/B
	⑦OXC		

□ New optical reference transfer modules

Based on Dense Wavelength Division Multiplex (DWDM)

- Two laser wavelength gap >0.3nm, avoid Rayleigh scattering, keep least phase error
- Detect phase error of return signal, phase shifter and Tx laser with reference RF input
- □ Feedback by RF analog phase shifter;

IQ Φ-shifter
 -Pros: 360° (big delay)
 -Cons: additive ~10fs jitter

passive Φ-shifter: -no additive jitter -not 360°

D Measure the phase noise Input(Green), Output(Brown): 34.8/38.7fs (10Hz-10MHz)

calibrate shifter phase vs voltage
 220°@499.8MHz full range, 110fs/mV
 resolution could <0.01° if voltage allows

□ More input power, better jitter

LLRF Topical Workshop 2024, INFN, MA Xinpeng

Specfication				
Center frequency	499.8MHz			
Bandwidth	±3MHz@0.01dB ±10MHz@0.1dB			
Input amplitude	>10dBm			
Output amplitude	>12dBm x 2			
Max phase delay range	120ps@0.01dB amp. sta. 540ps@0.1dB amp. sta.			
Additive jitter	<18fs(10Hz-10MHz)			
Long-term stability (out-of-loop)	200fs (p-p)- 3days			
Long-term stability (in-loop)	100fs (p-p) - 7days			
Temperature stability	±0.01°C			
Remote communication	LAN/support EPICS			
Cooling	Conduction cooled, no fans			
Automation	work point recover after power cycle or close/open loop			

Results show: typical 3 days close loop
 Residual phase drift was measured by phase detector between Tx RF and Rx RF.
 ±0.02°(±110fs) out-of-loop in 3 days.

Measurements agreed with calculation:
 400m YOFC-PSOF was used, temp.
 coefficient is ~6fs/m/°C, the compensated
 phase change is twice the fiber length =
 6*400m*4°C*2=19.2ps

□ Reference signals for Booster LLRF

Received 499.8MHz of Booster LLRF jitter: 35.42fs / 41.9fs (10Hz-1MHz / 10Hz-10MHz)

□ Phase reference signal to Linac stability:

- June 17- July 7 (3 weeks)
- 380m phase-stable optical, fiber TCD=6fs/m/°C
- temperature variation ~15°C per day
- □ Feedback ON, phase stability within <0.02° or 120fs
- □ Compensated phase by shifter drifts 6.5° or 38ps,

temperature stability < ±0.01°C

phase stability < ±0.01°, feedback ON

- Reference clock to BI electronics: FB, BPM, BCM, Camera...
 Mostly by coaxial cables, so measured temp. coef. of delay (TCD), the best:
- From MO to SR RF: CommScope LDF2-50A: 3.5fs/m/°C
- Ref line of Linac: ZTT HCAAYZ-50-12: 10.2fs/m/°C
- Ref line of BI: Trigiant HCTAYZ-50-22: -8fs/m/°C

Vendor/Brand	Type Name	Spec. /OD	Veloci- ty/ ρ (*c)	TCD@20~40 °C (ppm)	TCD (fs/m/°C)
Commscope	LDF1-50	1/4" feeder	0.86	2.4	9.3
HU- BER+SUHNER	SUCOFLEX 104	LD-PTFE,5.5mm	0.77	5	21.6
HU- BER+SUHNER	S-10162-B-11	Flexible	0.87	35	134.1
WITC	WL60R	Flexible, 11.7mm	0.87	5.9	23.1
Commscope	LDF2-50	3/8" feeder	0.85	1/-1.3/-0.5/0.9	3.5
Trigiant	HCAAYZ-50-8	3/8" feeder	0.86	-2.5/-2.3	-8.9
Commscope	LDF4-50A	1/2" feeder	0.88	-2	-7.6
Zhongtian(ZTT)	HCAAYZ-50-12	1/2" feeder	0.88	2.5/1.2/2.7	10.2
Kingsignal	HCAAYZ-50-12	1/2" feeder	0.88	-4	-15.2
Datang	HCAAYZ-50-12	1/2" feeder	0.88	-9.8	-37.1
Trigiant	HCAAYZ-50-12	1/2" feeder	0.88	2.1/-4.8	8.0
Commscope	FSJ4-50B	1/2"SuperFlexible	0.81	-9.2/-7	-37.9
Hengxin	HRCAYZ-50-9	1/2"SuperFlexible	0.82	7.5	30.5
Kingsignal	HCAHY-50-9	1/2"SuperFlexible	0.81	17.8/16.4	73.3
Zhongtian(ZTT)	HRCAYZ-50-9	1/2"SuperFlexible	0.82	-5.5	-22.4
Trigiant	HCTAYZ-50-22	7/8" feeder	0.88	2/3/-3/2/-2.1	-8.0
Wutong	HCTAYZ-50-22	7/8" feeder	0.88	-10/-9	-37.9
Hansheng	RF50Z-7/8"	7/8" feeder	0.88	4	15.2
Commscope	AVA5-50	7/8" feeder	0.91	-8	-29.3
Boyang	HCTAYZ-50-22	7/8" feeder	0.88	-10.3	-39.0

28 29 Temperature/dec

□ Locally distribute RF signals in the rack/chassis

□ Choose ultra-low noise amplifier: Mini-circuits PGA103, Qorva SPF5189 ...

Made 57 16-channels distribution chassis for BPM/LLRF/MO, with remote monitoring. Additive jitter of 499.8MHz is < 5fs(10Hz-10MHz)</p>

22

Summary

- HEPS installation has completed and beam commission ongoing
- MO 'system' is DDS-based with freq. tuning and phase monitor
- Phase distribution system is optical based, stablized within 100fs
- The system is in stable operation 1.5 years
- Next more applications on BEPCII-U and PWFA project in IHEP

Thank you very much!