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ABSTRACT DYNAMIC MODE DECOMPOSITION (DMD) [1,2]
For high-Q over-coupled SRF cavities like those DMD is formulated as a linear regression
used in the LCLS-II Linac, precise -cavity problem based on measurement data and is used
resonance control is crucial for ensuring stable to predict the future state of the system.
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operational and capital expenses due to the need
for additional RF power. To address this
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To maximize the hidden features extracted by the
f DMD model, it is essential to diversify the
— training data as much as possible. The cavity
MODEL PREDICTIVE CONTROL (MPC) drive signal is randomized to cover the

operational range, and a chirp is used to drive the
piezo to cover the microphonics frequency range
and its amplitude

The MPC algorithm is shown in the diagram
below. It has 3 targets (cavity 1&Q and detuning),
and one control signal (piezo output). The
optimization step is based on grid search and the

~
wn

iezo Drive [Hz]
[=)] ~Jl
o o
o o
== _———— s,
é "
-.i.-_-_-__:_
Plar— o 5 %
| ———

i i/ ] H ] H ¥ L] H N ~ -
- 1 ol (] 1.0 - ] o [ R . L] - - - - —_ - 1
T T T T T T L T T P R IR rR E N B T RO H I L
Wy I Rry 1 L] A e iy 1 TR el o [ 13' W N Ty e N R A R T -
=| L I ! A :|" R IH & o h iy ) I ! Ay :|" IR |:|FF Hoa ! :Il Lo .:\_Iu::'_| A T | ':'—l‘-ll'ul 0.4
v s ) ~ \ . h " o " Y Ol i~y \ - ' X = o L
i g TG IN Mt A Sive N wimp St e S e wdR Al SRS BN 5 WLTL P ' aid N2
[N (R 1R Il YR iR RS R e A R e N PN PNE
R ol A el R N R i H" =Wt I TV s o0
18N T ‘:"‘_.‘i; TEEELV IR 3 f ﬂ 150 200 250 300 il
TR TENILEEI' HETE SR T ™ ‘ T T ’
1 [ [ l[ 1 1 [l I I I
AU AR | ‘ ll ll i ik WM‘M
|
! 1 i I
L Ly :,\ il i L L 1 i H L A L h A 1 | rh A L0.0

F—40

minimum of a cost function. A gain factor is
included to generate a smooth control signal. A
lightweight model based on DMD is used since
MPC requires extensive computation. MPC uses
the predictions of DMD to find the optimum
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RESULTS

The MPC controller was tested using LCLS-II SRF
cavities, that have a nominal m-mode resonant
frequency of 1.3 GHz. We modified the existing
LLRF and resonance control systems to enable
the implementation of the MPC controller.

TEST 1: With the LLRF and resonance control
systems disabled, the cavity was driven by a
signal of 1.3 GHz and constant amplitude. The
MPC controller was enabled (at about 3.5 s in the
plot below), and ~1 second latter the cavity
amplitude reached the target field. The detuning
was also reduced and centered at 0 Hz.
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TEST 2: The cavity was tuned and driven with the
LLRF system enabled (SEL mode) and the
resonance control system disabled. Amplitude
and phase were stable. Microphonics limited the
cavity gradient. We enabled MPC to evaluate the
impact on cavity detuning. Factors including the
maximum step of the piezo output affected the
performance of the controller. If the settings of
the MPC are not set correctly, the MPC will
induce detuning in the cavity, instead of reducing
it.
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