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Background

» Precisely calibrating RF forward (Vf) and the reflected signals (Vr) are crucial for accurately
assessing cavity bandwidth and detuning.

» However, the finite directivity of waveguide directional couplers affect the measurement of
signals Vi* and V§".

> Also, calibration drifts caused by humidity and temperature fluctuations pose a challenge to
the calibration of RF signals.

> Long-term calibration drifts should be analyzed, predicted, and compensated.

RF Signal Calibration

To correct the measured RF signals Vi and V5" due to finite directivity of waveguide
coupler, a calibration matrix is applied.
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Calibration error is defined as the difference between the Section A, 169172 (2024).

measured probe signal V" and the vitual probe V;:
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Calibration Drift

Humidity and temperature fluctuations Long-term calibration drift (EA)
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The amplitude of the calibration errors E 4 fluctuate with environmental factors.
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Recalibrate RF Signals and Correlation Analysis

> Calibration is achieved by performing a nonlinear least square optimization constrained by
energy conservation laws (A. Bellandi, et al. Nucl. Instr. Meth. Phys. Res. Section A, 169172 (2024)).

> Amplitude and phase corrections are applied to RF signals /)" and V}".
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Predicting Calibration Error and Phase Correction Results

> Predicting calibration errors, calibration conefficients, and phase corrections of RF signals
with the Sysidentpy Package
> Splitting Data: 80% for Training, 20% for Validation

— Data collected every 10 mins for 1 week or 2 weeks
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Calibration error based on the predicted calibration coefficients.

Historical Data Analysis and Preliminary Results

1.0 - Humidity, A25 . .
Phase corrections, A10 > Historical data were collected for all
0.8 Temperat“fe A25 stations (one cavity each for M12, M34);
i . > Data from A7, A10, Al11, A13, A19, and
061 ' ,i AT m A A25 were analyzed;
| t .
0.4 - | ; ' 1 e ! i > Data preprocessing:
i ‘ { = Outliers removing

0.2 - | = Data Interpolation with equal time intervals
= Data normalization
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Example historical humidity, temperature, and dynamic phase corrections for the past three years and nine months

LINAC Environmental Model Model for predicting phase corrections
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Predicted humidity at station A25 based on Predict the dynamic phase correction for the probe
humidity at stations A7, 11, 13 and A19. signal at station A10 based on the humidity and
temperature at stations A7, A11, A13, A19, and A25.
Time interval of data: 0:16:40
200 steps ahead : 2 days, 7:33:20

> Predicted by the Sysidentpy Package
The order of the polynomial model is set to 2 and the number of regressors to 22 or 30.
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» Environmental models can be used to predict local humidity/temperature for any given cavity

* Predictions of phase corrections to probe signals show that phase corrections to forward and
reflected signals can also be predicted.
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Summary and Future Work

> Long-term calibration drift analysis

> Correlation analysis of calibration errors and calibration coefficients with environmental
factors

> Prediction of calibration error and phase correction based on environmental factors

> Historical Data Analysis: environmental model and model for predicting phase corrections

"% Longer-term data analysis need to be validated
" Analysis of calibration error with the fitting based on Sysidentpy package
1 Calibration thresholds: when to calibrate, especially in CW mode
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