Mitigation for a shorted cavity probe at EuXFEL

M. Diomede^{*}, V. Ayvazyan, J. Branlard, M. Grecki, D. Kostin, B. Lautenschlager, U. Mavric, C. Schmidt, N. Walker (Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany)

Abstract

Since the commissioning of the European hard X-ray Free-Electron Laser (EuXFEL), one of the 784 superconducting cavities of the linac has a short circuit at the probe connector. For this reason, its signal cannot be used for field regulation. Instead, the signal coming from a high order mode (HOM) coupler antenna is included in the vector sum regulation. This cavity shows a direct impact on the beam arrival time profile along the bunch train. In this work, limitations and operational solutions are described.

EuXFEL

- Hard X-ray free-electron laser for user experiments [1]
- 776 superconducting 1.3 GHz TESLA RF cavities [2] + 8 3.9 GHz SRF cavities [3]
- 3 bunch compression stages (BC0, BC1, BC2) + 10 beam arrival monitors (BAMs) NRF
- Beam arrival time jitter <10 fs adopting LLRF beam based feedback at station A5 (last one upstream BC2), measured at the end of the linac [4]

- The cavity with faulty probe connector is also located at A5 (C1.M1.A5)
- This cavity needs to be included in the vector sum for field control of the RF station [5]
- Spread of ~300 fs generally along the bunch train arrival time •
- This might cause the beam based feedback to become unstable (limiters hit and pulse cuts)
- Pre-compensation with amplitude slopes is usually necessary

Signal from the HOM coupler

- It is less stable and more damped in comparison with the probe
- it needs to be treated in a special way
- An isolator + band-pass filter + amplifier chain was installed between the cryo-module patch panel and the MTCA downconverter
- Detuning and loaded quality factor computations are affected
- The shape during flat top depends on the bunch train length

Calibration and beam arrival time measurements

• Calibration performed with beam-transient techniques [6] [7]

Linear detuning tests

• Detuning the cavity to quantify its impact on the arrival time

Static detuning tests

- Oscillations still visible in the arrival time with max motor steps
- Detuning the cavity to its parking position is not satisfactory

Summary and outlook

- A spread of ~300 fs is generally visible along the bunch train arrival time
- QI tuning performed minimizing the reflected power at the end of the filling time
- Final tuning of the amplitude calibration coefficient minimizing the impact of the probe amplitude shape on the bunch train arrival time flatness with feedback acting at A2

200 bunches

40 fs

600 bunches

1300 bunches

- A superconducting cavity has short-circuited probe at cryogenic temperatures (C5.M1.A5)
- The HOM coupler signal is instead used for field regulation
- Dedicated electronics for signal treatment has been developed
- Detuning tests confirmed that C5.M1.A5 is the root cause of the arrival time spread
- Detuning of the cavity with max motor steps still leaves some oscillations in the arrival time
- Calibrated the cavity with beam-transient techniques
- Amplitude shape that is dependent on the bunch train length
- The max spread in arrival time is minimized from 300 fs to 50 fs
- It corresponds to a max amplitude deviation of 1.4 MV ($\Delta E = \Delta t \cdot c \cdot E/R_{56}, R_{56} = -30 \text{ mm}$)
- The beam based feedback can deal with it and no amplitude slopes are needed to pre-compensate
- In the future, we can explore the possibility of field regulation via virtual probe [8] [9]
 - Firmware implementation is needed
- Another option is to completely detune the cavity and terminate the waveguide
 - The energy loss would be ~25 MV

References

[1] W. Decking et al., "A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator", Nature Photonics, vol. 14, no. 6, 2020. [2] B. Aune et al., "Superconducting TESLA cavities", PRAB, vol. 3, no. 9, 2000.

[3] P. Pierini et al., "Third Harmonic Superconducting Cavity Prototypes for the XFEL", in Proc. of LINAC2008, Victoria, BC, Canada, 2008, pp. 821-823.

[4] B. Lautenschlager et al., "Achievements and Challenges for Sub-10 fs Long-Term Arrival Time Stability at Large-Scale SASE FEL Facilities", in Proc. FEL2022, Trieste, Italy, 2022, pp. 421-424. [5] J. Branlard et al., "The European XFEL LLRF System," in Proc. of IPAC2012, New Orleans, LA, USA, 2012.

[6] V. Ayvazyan, "Digital RF Control System for the Pulsed Superconducting Linear Accelerator", in

Free Electron Lasers, S. Varro, Ed. Intechopen, 2012.

[7] N. Walker et al., "Beam-Transient-Based LLRF Voltage Signal Calibration for the European XFEL", in Proc. LINAC2022, Liverpool, UK, 2022, pp. 80-82.

[8] S. Pfeiffer et al., "Virtual Cavity Probe Generation using Calibrated Forward and Reflected Signals", in Proc. IPAC2015, Richmond, VA, USA, 2015, pp. 200-202.

[9] A. Bellandi et al., "Calibration of Superconducting Radio-Frequency cavity forward and reflected channels based on stored energy dynamics", NIM A, vol. 1069, no. 169825, 2024.

*marco.diomede@desy.de This work was funded in the context of the R&D program of the European XFEL

HELMHOLTZ

Bundesministerium für Bildung und Forschung

LLRF Topical Workshop - Timing, Synchronization, Measurements and Calibration - 28–30 Oct 2024 - INFN-LNF (Frascati)