

Laboratori Nazionali di Legnaro - INFN

WP4 - Updates on cellular dosimetry models and simulations

A. Leso, A. Arzenton

OUTLINE

In vitro experiment

- GEANT4 predictions
- Codes comparison
- Experiment preparation

Model validation

- The model: motivation and assumptions
- Data and Geant4-DNA predictions
- Model validation
- Future applications

In vitro experiment

GEANT4 PREDICTIONS

From Emma Reniero's Master thesis

The chosen configuration is the **ellipsoidal** one. In this geometry, the membrane source distribution gives the highest absorbed dose in the nucleus.

CODES COMPARISON

- The 3 MC codes give compatible results;
- Uncertainty lower than 5%.

EXPERIMENT PREPARATION

- 2 dose rates;
- 5 different injected doses;
- o 3 petri dishes for each dose.

Some doses are the same for the 2 dose rates

Model validation

THE MODEL: motivation

External beam radiotherapy

- 1. Dose rate per cell not dependent on cell population.
- 2. Uniform radiation cycles.
- Exposure time shorter than biological processes.

Cell survival as a function of absorbed dose.

Targeted radionuclide therapy

- 1. Dose rate per cell dependent on the amount of cell receptors.
- 2. Radiation decays in time.
- 3. Exposure time comparable with biological processes.

> Time-resolved cell survival and dose rate.

THE MODEL: assumptions

- o z_n : cells with n complex lesions, each one with repair rate ρ ;
- Repair implies recovery of lethal aberration with probabilities $\mathbf{k_r + k_a = 1}$;
- O Aberrant cells z_a die with rate η.

DNA damage will have 3 components:

- Self-absorbed;
- o Crossfire;
- Culture medium.

DATA PREDICTION

Ref.: joint measurement of **clonogenic survival** and **uptake** using ¹²⁵I-loaded antibodies [Pouget et al. (2008)].

- o A-431 and SK-OV-3 cells irradiated for 48 h.
- Model curve minimum (minus the aberrating cells at the same time) associated to the surviving fraction.

GEANT4-DNA PREDICTIONS

The δ parameter in the model represents the number of lesions per dose unit.

$$\delta = (9.7 \pm 0.9) \,\mathrm{Gy}^{-1}$$

Estimated by running 10⁵ decay events of ¹²⁵I in a simplified ellipsoidal human cell geometry and counting DSB+ and DSB++.

- \circ **DSB+**: at least one DSB and an additional lesion within $d_{dsb} = 10$ bp;
- DSB++: at least two DSBs within 100 bp.

The algorithm of the **moleculardna** example was used. [Chatzipapas et al. (2023); Sakata et al. (2020)]

MODEL VALIDATION: k_r variation

- o The model was applied considering the parameters given in the article.
- δ was chosen as described in the previous slide.
- k_r (i.e. the correct repair probability of a damage) is varied in order to get the best agreement between model outcomes and data.

The slope of the model curve is very sensitive to slight variations of k_r .

MODEL VALIDATION

- o **kr = 0.99** reproduced the measured slopes.
- o Discrepancies < 10%.

FUTURE APPLICATIONS

- In July more dose points will be added to the high dose rate (4 days) test.
 - Which dose points will we consider?
- In September the low dose rate (10 days) test will be redone due to the overpopulation of cells observed in the latest experiment.
 Moreover, a clonogenic assay will be performed.

- Validate the model with ¹¹¹Ag
- \circ Study the possible effect of low-dose hyper-radiosensitivity on ρ and $k_{\rm r}.$

Thank you for your kind attention