

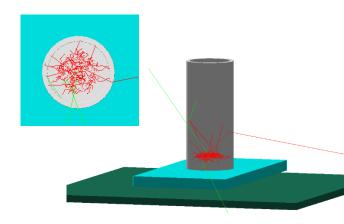
Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

Laboratori Nazionali di Legnaro – INFN

Work Package 2 Status of beta-imaging detector

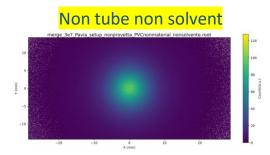
J. Delgado

June 20th, 2024

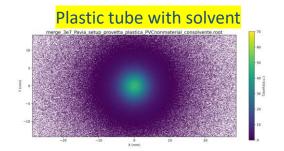


Preliminary simulation

- Preliminary simulation before measurement at Pavia using Geant4
- Selection of the vial containing the ¹¹¹Ag
 - Glass vial
 - Plastic vial with solvent
- 1 Alpide chip
- Total **number** of simulated events 3x10⁷
- **Source shape**: cylinder thickness 0.5 mm and radius 4mm, attached to the base of the vial
- **Tubes shapes**: radius 0.75 cm. Thickness 0.7 mm (plastic), 1mm (glass)
- Materials tubes: Pyrex_Glass and Polystyrene
- PVC board (air material), but the distance of 5 mm taken into account



Preliminary simulation



Conclusion: Glass tube attenuates more than the plastic tube with the solvent.

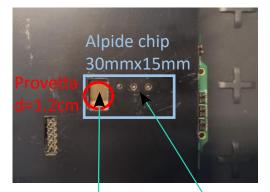
Number of events resgistered= 9227264 Eff_abs=30.75%, with respect to 3x10⁷

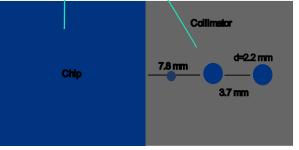
Number of events resgistered= 227737 Eff_int=2.47%

Number of events resgistered= 2144987 Eff_int=23.24%

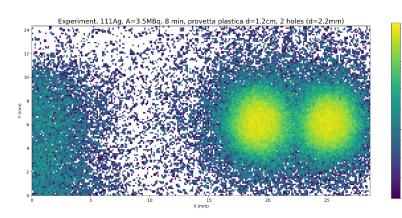
Measurement performed with different quantities of ¹¹¹Ag and different test vial at LENA (Pavia) April 2024.

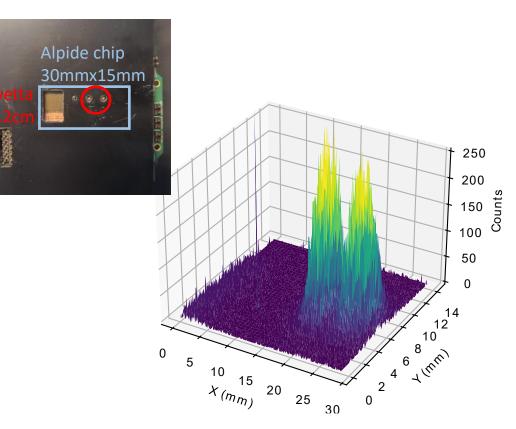
- 1kBq + Glass vial(d=0.96cm) (very low rate).
- 247kBq +Plastic vial(d=1.2cm) + solvent (0.4 ml) (low rate)
- 222kBq + Plastic vial(d=0.6cm) + solvent (0.4 ml) (low rate)
- 27.5MBq + Plastic vial(d=1.2cm) + solvent (0.4 ml) (high rate – measurement crashed)
- 3.5MBq + Plastic vial (d=1.2cm) + solvent (0.3 ml) (measurement crashed after two minutes). Vial used for the rest of the measurements.




Measurement at Pavia

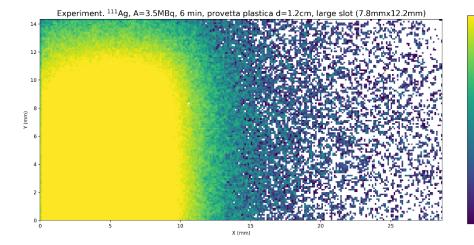
- Measurement performed with ¹¹¹Ag A=3.5 MBq, inside a plastic vial with d=1.2cm, and solvent solution 0.3ml.
- PVC was cut in order to have an idea of the spatial resolution of the detector:
 - 1. Two holes d=2.2mm
 - 2. Large slot 7.8mm x 12.2mm, almost half of the chip exposed
 - 3. Small and big holes, d=1mm and d=2.2mm

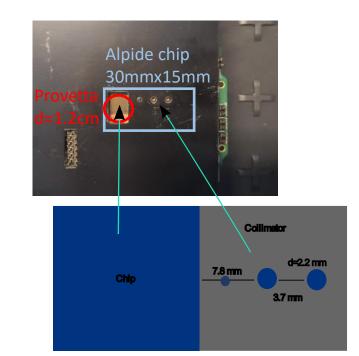

30 mm



Measurement 2 holes collimator

- Measurement performed with ¹¹¹Ag A=3.5 MBq, inside a plastic vial with d=1.2cm, and solvent solution 0.3ml.
- Collimator of two holes each hole with d=2.2mm
- 8 min measurement
- Good separation

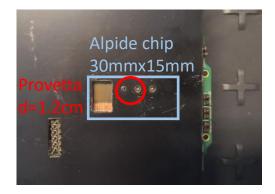



Measurement large slot

10²

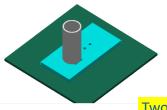
- Measurement performed with ¹¹¹Ag A=3.5 MBq, inside a plastic vial with d=1.2cm, and solvent solution 0.3ml.
- Large slot (7.8mm x 12.2mm)
- 6 min measurement

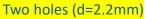
30 mm

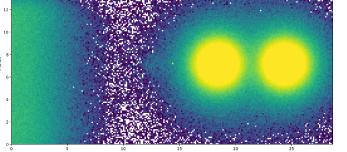

Measurement small and big holes

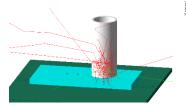
 10^{2}

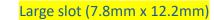
- Measurement performed with ¹¹¹Ag A=3.5 MBq, inside a plastic vial with d=1.2cm, and solvent solution 0.3ml.
- Small and big holes (d=1mm and d=2.2mm)
- 4 min measurement
- Possible to differentiated the 1 mm hole.

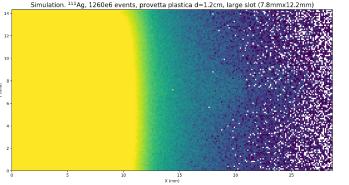




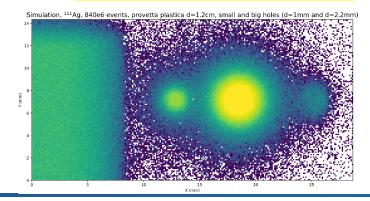

- Simulations on the same condition of the experimental measurements.
- Simulation of the beta spectrum emitted by the ¹¹¹Ag.
- Number of events simulated equivalent to the number of decays during the measurement

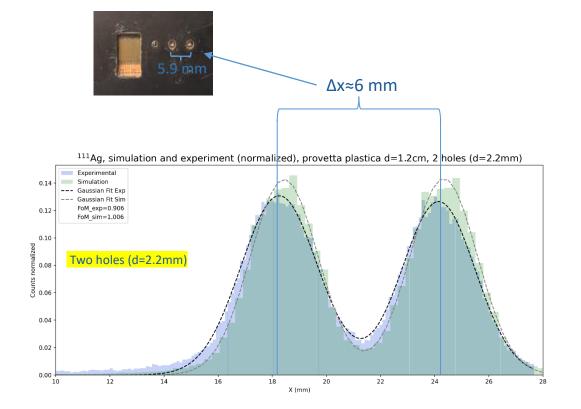


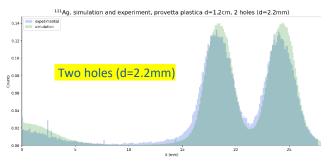




Simulation. ¹¹¹Ag, 1680e6 events, provetta plastica d=1.2cm, 2 holes (d=2.2mm)

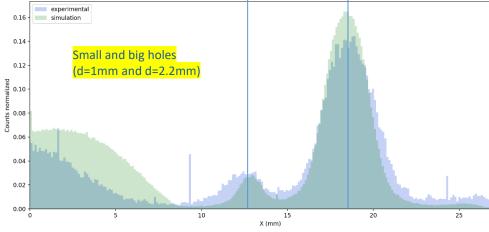


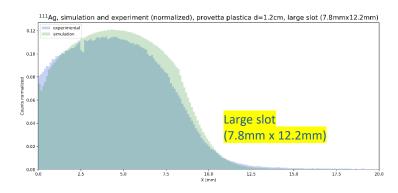

Small and big holes (d=1mm and d=2.2mm)



Exp. and Sim. comparison

- Good agreement of the spatial distribution between the experimental and simulations results.
- FoM_Sim=1.006 and FoM_Exp=0.906
- Discrepancy=10%



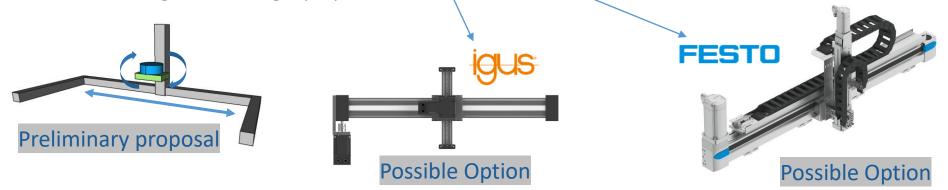

Exp. and Sim. comparison

• Good agreement of the spatial distribution between the experimental and simulations results.

∆x≈6 mm

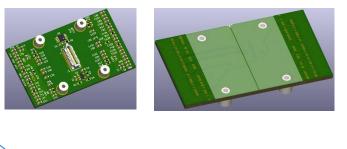
 111 Ag, simulation and experiment (normalized), provetta plastica d=1.2cm, small and big holes (d=1mm and d=2.2mm)

	Exp (counts)	Sim (counts)	Eff (%)	Higher
Aperture	6768623	39037992	17.33 <	r ate
Two holes	688339	1990557	34.58	Lower
Big and small holes	294995	842104	35.03	rate



Mechanical support

- Guidance and help from Roberto Michinelli, personnel from the Mechanical Design Service at INFN Bologna.
- Some difficulties related to the payment method.
- Options found: linear gantry two-dimensional movement, parameters can be customized by the user. Produced by IGUS and FESTO (German companies).
- Waiting for the budget proposal.



Design of the PCB for the chips

- Michele Giorato, a technician from the Physics department (UNIPD), has already designed the PCB where two of the ALPIDE chips will be mounted.
- However, the design of the mezzanine board is still pending.
- Followed by the connection to an embedded board.

PCB design

mezzanine board

FPGA board

connection from commercial FPGA (standard connectors) to custom PCB with ALPIDE chips

Following steps

- Perform measurement tests using ¹¹¹Ag with one ALPIDE chip at various rates (adjusting distance or varying the activity of ¹¹¹Ag) to analyze the system's dead time as a function of the rate, alongside simulations.
- Conclude with the acquisition of mechanical support.
- Construct the PCB already designed for the two chips, followed by connecting them and designing the mezzanine board.

Thank you ..!!