

A b at FCC-ee & ALICE ITS3 Phase-II Upgrade

Activities in Trieste and Udine

Marta Urioni^{1,2}, <u>Leonardo Toffolin</u>^{1,3,4} ¹ University of Trieste ² INFN Trieste & ³ INFN Trieste, Gruppo Collegato di Udine ⁴ ICTP

3rd July 2024 First ECFA-INFN Early Career Researchers Meeting Laboratori Nazionali di Frascati <u>https://agenda.infn.it/event/42205/</u>

A_{FB} at FCC-ee: introduction

- $A_{FB}^{\ b}$ in $e^+e^- \rightarrow Z \rightarrow b\overline{b}$ events:
 - $A_{FB}^{b} \equiv \frac{N_{F} N_{B}}{N_{F} + N_{B}} \quad \text{with} \quad \begin{array}{c} N_{F} = \int_{0}^{1} \frac{d\sigma}{d\cos\theta} d\cos\theta \\ N_{B} = \int_{-1}^{0} \frac{d\sigma}{d\cos\theta} d\cos\theta \end{array}$

 \rightarrow >2 σ deviation with respect to global EW fits \rightarrow still unsolved since ~25 years

$$\theta_{b} \text{ distribution (at LO)} \quad \frac{d\sigma_{b\bar{b}}}{d\cos\theta_{b}} = \sigma_{b\bar{b}} \frac{3}{8} \left(1 + \cos^{2}\theta_{b} + \frac{8}{3}A_{\rm FB}^{b}\cos\theta_{b}\right)$$

• Measurement:

- A^{b}_{FB} extracted from **cos\theta(b)** distribution
- \circ experimental distinction between *b* and \overline{b} needed
 - \Rightarrow quark **charge** determination crucial
 - via "jet charge" (e.g. weighted sum of charged tracks in jet, or vertex charge of <u>MVA tagger</u>)
 - with soft-lepton-tagging
 - using machine-learning techniques to combine all infos

Results on the A_{FB}^b feasibility study

- Event generation and selection:
 - beam energy: 45.5348 GeV (Z-pole) from "Spring2021"
 - signal: 2 *b*-tagged jets
 - 1 jet with charge > 0
 - 1 jet with charge < 0
- Building truth-level and reco-level cosθ distributions for b-quarks and b-quark-jets
- **Response matrix** and efficiency correction vector built from 1.10⁶ events
 - re-scaling the event number to match expected luminosity at *Z*-pole: $L_{Z-pole} = 140 \text{ ab}^{-1}$
- **Unfolding with simple matrix inversion**, 10x10 matrix used
- Statistical uncertainty extracted from pseudo-experiments
- Different sources of systematic uncertainty investigated:
 - modelling of heavy-quark fragmentation
 - emission of final-state QCD radiation
 - Pythia versus Dire parton shower
 - *b*-tagging and *c*-mistagging rates

more details in the <u>technical note</u> (also on <u>INSPIRE</u>)

Trieste: R&D for ALICE ITS3 (& ALICE 3 Tracker)

ITS3: 3 layers of curved, ≤ 50 µm thick, wafer-scale MAPS in TPSCo 65 nm CMOS process

- Replacing ITS2 Inner Barrel (innermost radius reduced from 24 mm to **19 mm**)
- Each half-layer made of one wafer-size flexible sensor
- **In-silicon** data transmission and power distribution
- Minimal **carbon foam** support structures
- Air cooling

- Minimal material budget: $\sim 0.09\%$ X_o on average
 - Uniform ~0.07% X₀ on most of the acceptance

266 mm

Longeron

L0 [r] = 19 mmL1 [r] = 25.2 mm

L2 [r] = 31.5 mm

Cylindrical support structure

Marta Urioni

Lab and in-beam characterization of CMOS sensors

65 nm CMOS process validated on test structures with laboratory tests (also in Trieste):

- Efficiency > 99%
- Fake-hit rate < $2 \cdot 10^{-3}$ pix⁻¹ s⁻¹

over a wide operating range, even after irradiation at ITS3 required level

- Sensor characterization @ Trieste:
 - In-lab parameter scan, noise minimization, energy response of digital prototypes
 - Participation in test beams for efficiency and spatial resolution measurement

Detection efficiency and fake-hit rate Vs threshold and irradiation levels, as measured on 15 μm pitch Digital Pixel Test Structures (DPTS)

APTS Seed pixel signal response to ⁵⁵Fe Vs irradiation levels, as measured on 15 μm pitch Analog Pixel Test Structures (APTS)

INFN

Mechanical bending of sensors and effects on performance

- MAPS performance in curved geometry has been validated
 - Efficiency preserved on bent ALPIDE (180 nm CMOS sensors)-
 - Charge collection properties preserved on bent APTS (65 nm CMOS)

- @ Trieste:
 - Development of the first tools and procedure to mechanically bend the silicon
 - First in-lab electrical and functional characterization of bent sensors

6

THANK YOU FOR YOUR KIND ATTENTION

BACKUP

b-quark charge determination

• Two classes of **methods**:

1. Jet charge:

many possible variations exist, e.g. based on exclusive final states from B-hadron decays, secondary vertex reconstruction...

- charge of jet obtained as weighted **sum** of charges of constituent **tracks**
- can be applied to all jets ⇒ maximal efficiency
- relatively low purity
- strong dependence on jet shape and hadronization

2. Soft lepton tagging:

- charge of *b* inferred from charge of *e* or *µ* in *B*-hadron semileptonic decay
 - crucial to minimize $b \rightarrow c \rightarrow \mu$ contribution that "fakes" charge
- relatively low efficiency (restricted to semileptonic decays)
- better purity
- highly sensitive to B-hadron decay modelling

Analysis strategy

- Analysis framework:
 - 1. **feasibility study** with **Key4hep-FCCAnalyses** framework and **standalone Madgraph private** simulation
 - **EDM4hep** for event generation
 - Pythia8 for parton shower simulation
 - Delphes for detector fast-simulation
 - 2. Software features:
 - IDEA detector concept
 - Durham ee-kT jet algorithm used, R=0.4
 - simplified Delphes *b*-tagging (flat 80% efficiency, 10%/1% *c*/light-mistagging)
- Investigated workflow:
 - 1. build **reco-level observable** using:
 - jet direction
 - charge determined with one of the two methods (studies in parallel)
 - 2. perform **unfolding** from reco-level to parton-level
 - 3. extract A_{FB}^{b} from **fit** to unfolded distribution

Other activities: IDEA pre-shower simulation in Key4hep Nitika Nitika Postdoc (ATLAS)

→ Pre-shower geometry implementation Initially establishing the

detector geometry in terms of simple cylinders with sensitive layers and then advancing towards intricate and descriptive geometry based on complex tiling of $\mu RWELL$ technology.

→Digitization of the Pre-shower

 \rightarrow Integration of the Pre-shower with the ECAL for the calorimeter reconstruction process.

→Photon identification algorithm implementation to reject the false signals (π^0) as it is important to differentiate the photons from the Higgs decay channel to π^0 .

Table/The configuration of the barrel and endcap Pre-shower detector.

Pre-Shower	Layer	R or R _{in} (mm)	L(mm) or R _{out}	Thickness (mm)	Pixels size (mm ²)
Barrel	µRWELL	2450	±2550	20	0.4×500
Endcap	μRWELL	390	2430	20	0.4×500

XML file corresponding to the simple sensitive cylindrical geometry has been formally created and will be publicly available in the near future (probably by next week).