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EuPRAXIA

European Plasma Research Accelerator with Excellence in 
Applications

à The first project developing user-oriented accelerators 
based on plasma accelerator technology

à  Distributed Research Infrastructure building TWO 
facilities driven by high-gradient plasma wakefield 
accelerator
à > 1 GV/m accelerating field 
à Beam-driven and laser-driven facilities

àProvide a practical path to more research facilities and 
ultimately to higher beam energies for the same 
investment in terms of size and cost 
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Included in 2021 
European Roadmap For Research 
Infrastructure (ESFRI) Roadmap 
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EuPRAXIA
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At LNF: the beam-driven facility: EuPRAXIA@SPARC_LAB

European Plasma Research Accelerator with Excellence in 
Applications

à The first project developing user-oriented accelerators 
based on plasma accelerator technology

à  Distributed Research Infrastructure building TWO 
facilities driven by high-gradient plasma wakefield 
accelerator
à > 1 GV/m accelerating field 
à Beam-driven and laser-driven facilities

àProvide a practical path to more research facilities and 
ultimately to higher beam energies for the same 
investment in terms of size and cost 
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EuPRAXIA@SPARC_LAB

• Soft X-ray (2-4 nm) FEL based on Plasma Wakefield Acceleration (PWFA) at Frascati

• 500 MeV, 30 pC electron bunch boosted to 1 GeV in 60-cm-long plasma 
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130m
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RF gun
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• Soft X-ray (2-4 nm) FEL based on Plasma Wakefield Acceleration (PWFA) at Frascati

• 500 MeV, 30 pC electron bunch boosted to 1 GeV in 60-cm-long plasma 
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RF gun

S-Band RF sections
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• 500 MeV, 30 pC electron bunch boosted to 1 GeV in 60-cm-long plasma 
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RF gun

S-Band RF sections X-Band RF sections
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• Soft X-ray (2-4 nm) FEL based on Plasma Wakefield Acceleration (PWFA) at Frascati

• 500 MeV, 30 pC electron bunch boosted to 1 GeV in 60-cm-long plasma 
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• Soft X-ray (2-4 nm) FEL based on Plasma Wakefield Acceleration (PWFA) at Frascati

• 500 MeV, 30 pC electron bunch boosted to 1 GeV in 60-cm-long plasma 
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RF gun
500 MeV

~ 55 m

500 MeV
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EuPRAXIA@SPARC_LAB

• Soft X-ray (2-4 nm) FEL based on Plasma Wakefield Acceleration (PWFA) at Frascati

• 500 MeV, 30 pC electron bunch boosted to 1 GeV in 60-cm-long plasma 
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RF gun

S-Band RF sections X-Band RF sections

Plasma

Undulators

Key ingredients:

à Free-electrons lasers

à PWFA

500 MeV

~ 55 m

500 MeV

~60 cm
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Free-electron laser (FEL)

• Electrons propagating in oscillating magnetic field
à emission of radiation

• Electrons emit COHERENTLY under resonance condition:
radiation slips ahead by one wavelength per undulator period 

• Fundamental wavelength: 𝜆! =
"!
#$"

1 + %"

#

NUMERICAL EXAMPLES

𝐾 ≈ 1 and 𝜆! = 1 cm: 
Weakly relativistic beams: 𝜸 = 𝟑 => 𝝀𝒓 ≈ 𝟏 mm => Microwaves 
Relativistic beams: 𝜸 = 𝟑𝟎 => 𝝀𝒓 ≈ 𝟏𝟎 µm => Infrared 
Ultra-relativistic beams: 𝜸 = 𝟑𝟎𝟎𝟎𝟎	(𝑬~𝟏𝟓𝑮𝒆𝑽) => 𝝀𝒓 ≈ 𝟎. 𝟏 nm 

  è X-rays 

Further tunability is possible through 𝐵! and 𝜆! as 𝐾 ∝ 𝐵!𝜆!

𝐾 = #$%!
&'(")

≪ 1 for undulators
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Free-electron laser (FEL)
• Coherent emission à 𝐼 ∝ 𝑁!

(as opposed to incoherent emission in synchrotrons 𝐼 ∝ 𝑁)

• Electron bunch is modulated into microbunches
à Emitted power increases up to saturation within gain length Lg

Fundamental FEL parameter



Funded by the 
European Unionat SPARC_LAB

16

Free-electron laser (FEL)

• Applications: studies of dynamical properties of 
matter (soft x-rays: water window)

• Requests: 
• Short-wavelength (X-rays)
• High-energy 
• Ultra-short (few femtoseconds, or less) 
• Transverse and longitudinal coherence
• Monochromaticity
• Tunability in wavelength (10 to 0.1 nm) 
• Defined polarization
• Stability and reproducibility

• All potentially satisfied by FEL’s

9 orders of 
magnitude
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Plasma Wakefield Acceleration

• RF cavities are limited to ~ 100MV/m (but even less in operation)

• Plasmas can sustain waves with amplitude up to:

𝐸"#~	100
𝑉
𝑚

𝑛$%[	𝑐𝑚&']

   E.g. for npe = (1014 – 1018) cm-3, 𝐸"# = 1 − 100 	𝐺𝑉/𝑚 
Plasma: 
• Ionized gas 

• Collisions can be (most of time) neglected 
à Electromagnetic interaction dominates
 

• Large number of particles è collective behavior

• Quasi-neutral (𝑛*#~	𝑛*+)
ions (+) à npi

electrons (-) à npe
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Plasma Wakefield Acceleration

18

neutral plasma

• Let’s take a plasma with density npe

(inspired by P. Muggli’s CAS lecture)
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Plasma Wakefield Acceleration

neutral plasma

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) 

or a high-intensity laser pulse

e-

Vb ~ c

(inspired by P. Muggli’s CAS lecture)
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Plasma Wakefield Acceleration

20

neutral plasma

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind the 
bunch head 
à restoring force

Longitudinal (accelerating – decelerating) wakefields

Transverse (focusing – defocusing) wakefields

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) 

or a high-intensity laser pulse

e-

Vb ~ c

+

(inspired by P. Muggli’s CAS lecture)
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Plasma Wakefield Acceleration

21

(inspired by P. Muggli’s CAS lecture)

neutral plasma

e-

Vb ~ c

𝜆*# =
2𝜋𝑐
𝜔*#

	

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind the 
bunch head 
à restoring force

3. Oscillation of plasma e- with 𝜔pe
à periodic density variation

𝜵 " 𝑬 =
𝝆
𝜺𝟎

à WakefieldsßLongitudinal (accelerating – decelerating) wakefields

Transverse (focusing – defocusing) wakefields

++ --

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) 

or a high-intensity laser pulse
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Plasma Wakefield Acceleration

22

(inspired by P. Muggli’s CAS lecture)

neutral plasma

e-

Vb ~ c

𝜆*# =
2𝜋𝑐
𝜔*#

	

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind the 
bunch head 
à restoring force

3. Oscillation of plasma e- with 𝜔pe
à periodic density variation

𝜵 " 𝑬 =
𝝆
𝜺𝟎

à WakefieldsßLongitudinal (accelerating – decelerating) wakefields

Transverse (focusing – defocusing) wakefields

++ --

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) 

or a high-intensity laser pulse
Witness bunch takes 
energy transferred 
from driver to plasma
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Plasma Wakefield Acceleration

23

(inspired by P. Muggli’s CAS lecture)

neutral plasma

e-

Vb ~ c

𝜆*# =
2𝜋𝑐
𝜔*#

	

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind the 
bunch head 
à restoring force

3. Oscillation of plasma e- with 𝜔pe
à periodic density variation

𝜵 " 𝑬 =
𝝆
𝜺𝟎

à WakefieldsßLongitudinal (accelerating – decelerating) wakefields

Transverse (focusing – defocusing) wakefields

++ --

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) 

or a high-intensity laser pulse

Simulations (non-linear regime)
M. Litos et al., Nature 515, 92–95 (2014)
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• Laser driven plasma wakefield acceleration (LWFA)

Advantages: 
• Compact 
• No need for photoinjector
• Extremely high gradients
Disadvantages: 
• Light travels at v<c in mediumà slower than 

particles
à DEPHASING

• Pulses carry energy O(J) 
à fast DEPLETION

• Light is not focused by uniform plasma
à need mitigation of DIFFRACTION

24

Plasma Wakefield Acceleration

Witness bunch
Laser pulse

D’s
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Plasma Wakefield Acceleration

• Laser driven plasma wakefield acceleration (LWFA)

Advantages: 
• Compact 
• No need for photoinjector
• Extremely high gradients
Disadvantages: 
• Light travels at v<c in mediumà slower than 

particles
à DEPHASING

• Pulses carry energy O(J) 
à fast DEPLETION

• Light is not focused by uniform plasma
à need mitigation of DIFFRACTION

• Beam driven plasma wakefield acceleration (PWFA)

Advantages: 

• No D’s 

• Witness bunch quality 
initially low from injector

Disadvantages: 

• Need accelerator generating both bunches

• Intra-beam alignment issues

• Non-trivial bunch separation after plasma

Witness bunch
Laser pulse

Witness bunch
Drive bunch

D’s
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Plasma Wakefield Acceleration

• Laser driven plasma wakefield acceleration (LWFA)

Advantages: 

• Compact 

• No need for photoinjector

Disadvantages: 

• Light travels at c/n à slower than particles
à DEPHASING

• Pulses carry energy O(J) 
à fast DEPLETION

• Light is not focused by uniform plasma
à need mitigation of DIFFRACTION

• Beam driven plasma wakefield acceleration (PWFA)

Advantages: 

• No D’s 

• Witness bunch quality 
initially low from injector

Disadvantages: 

• Need accelerator generating both bunches

• Intra-beam alignment issues

• Non-trivial bunch separation after plasma

Witness bunch
Laser pulse

Witness bunch
Drive bunch

D’s

CHOSEN FOR EuPRAXIA@SPARC_LAB
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PWFA Results

~ 42 GeV in 85 cm 
npe = 2.8 x 1017 cm-3

FFTB - SLAC
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PWFA Results

~ 42 GeV in 85 cm 
npe = 2.8 x 1017 cm-3

FFTB - SLAC From bunch of 
electrons to electron 

bunch

FACET - SLAC
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PWFAà FEL
Beam Quality: Energy spread minimization
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PWFAà FEL
Beam Quality: Energy spread minimization

Good enough for lasing

Lasing of PWFA witness bunch (SASE)

Pompili et al. Nature 605, 659-662 (2022)

Lasing of PWFA witness bunch
(Seeded)

Galletti et al. PRL 129, 234801 (2022)

Results building up expertise 
and paving the way towards EuPRAXIA
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Requirements for Applications

Free-electron Laser

Conditions for lasing:
𝜎E<𝜚 ~ 10-3 à Cold electron beam
𝜀≈𝜆/4𝜋 ~ 0.5 mm-mrad à Electron-photon phase space 
matching
𝑍𝑅 /𝐿𝐺 >1 à Diffraction losses from the beam less than 
 the gain length

Requirements for user facility:
• 1 Hz – 1kHz
• 24/7 operation
• Photon energy tunability
• Flux (high)
• Bandwidth (narrow)

e+e- collider

• Need to accelerate both species
(positron acceleration being the most outstanding challenge so far)

• >kHz – MHz repetition rate

• Luminosity
• Emittance << mm - mrad
• Flat beams (beamstrahlung)
• High charge per bunch

• Efficiency 
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Requirements for Applications

Free-electron Laser

Conditions for lasing:
𝜎E<𝜚 ~ 10-3 à Cold electron beam
𝜀≈𝜆/4𝜋 ~ 0.5 mm-mrad à Electron-photon phase space 
matching
𝑍𝑅 /𝐿𝐺 >1 à Diffraction losses from the beam less than 
 the gain length

Requirements for user facility:
• 1 Hz – 1kHz
• 24/7 operation
• Photon energy tunability
• Flux (high)
• Bandwidth (narrow)

e+e- collider

• Need to accelerate both species
(positron acceleration being the most outstanding challenge so far)

• >kHz – MHz repetition rate

• Luminosity
• Emittance << mm - mrad
• Flat beams (beamstrahlung)
• High charge per bunch

• Efficiency 

Realizing a plasma-based FEL for users 

step towards a collider 

Plasma-Based Features: 
• Compact
• Efficient
• Short Bunches (<fs)
• Large chirp (useful, if one knows how to use it..)
• Emission of Radiation (betatron radiation)
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EuPRAXIA@SPARC_LAB - Timeline
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Experimental Results (<2023) 

Plasma Dechirper

Shpakov et al. PRL 122, 114801 (2019)

Active Plasma Lens

Pompili et al. PRL 121, 174801 (2018)

Lasing of PWFA witness bunch (SASE)

Pompili et al. Nature 605, 659-662 (2022)

Lasing of PWFA witness bunch
(Seeded)

Galletti et al. PRL 129, 234801 (2022)

Energy Spread Minimization

Pompili et al. Nat. Phys. 17, 499-503 (2021)
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Experimental Results (2023) 
Guiding of e- bunch in curved plasma

R. Pompili et al., PRL 132, 215001 (2024) 

HYSICAL
EVIEW
ETTERS

P
R
L

American Physical Society

24 May 2024

Volume 132, Number 21
Published by 

Published week ending

• Active Bending Plasma (ABP) acts as a curved active plasma 
lens

Azimuthal magnetic field 𝐵. =
/#
0 ∫1

0 𝐽 𝑟2 𝑟2𝑑𝑟′	

à restoring force keeps bunch close to longitudinal axis



Funded by the 
European Unionat SPARC_LAB

Experimental Results (2023) 
Acceleration and focusing in all-plasma device

• Single device: 
• Active plasma lens for injection
• Accelerating section
• Active plasma lens for extraction

• Common gas injection

• Independent discharge pulse circuit for each device

R. Pompili et al., PRE 109, 055202 (2024) 

Lenses ON
Accelerator OFF

Lenses ON
Accelerator ON



Funded by the 
European Unionat SPARC_LAB

Experimental Results (2023) 
Direct observation of space-charge field of the electron bunch

S. S. Baturin, A. D. Kanareykin, PRL 113, 214801 (2014)
S. Y. Park, J. L. Hirshfield, PRE 62, 1 (2000) 

• Space-charge field of relativistic bunches interacts with slow-wave structures
à Cherenkov/Dielectric wakefields (DW)
à Acting back on the drive bunch and on the witness bunch
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Experimental Results (2023) 
Direct observation of space-charge field of the electron bunch

S. S. Baturin, A. D. Kanareykin, PRL 113, 214801 (2014)
S. Y. Park, J. L. Hirshfield, PRE 62, 1 (2000) 

• Space-charge field of relativistic bunches interacts with slow-wave structures
à Cherenkov/Dielectric wakefields (DW)
à Acting back on the drive bunch and on the witness bunch

• Beam couples with dipolar mode when traveling off-axis in a dielectric capillary
à Transverse deflection in the misalignment direction
à Head-to-tail correlation
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L. Verra et al., accepted PRL
https://arxiv.org/abs/2406.11314
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Experimental Results (2023) 
Direct observation of space-charge field of the electron bunch

L. Verra et al., accepted PRL
https://arxiv.org/abs/2406.11314

• Space-charge field of relativistic bunches has the same properties of an electromagnetic field

• Plasma screens electromagnetic fields as 𝐸0 ∝ 𝑒
3$%  è full screening at r >> plasma skin depth 𝛿 = 𝑐 ("4#

5&"' 6
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Experimental Results (2023) 
Direct observation of space-charge field of the electron bunch

L. Verra et al., accepted PRL
https://arxiv.org/abs/2406.11314

• Space-charge field of relativistic bunches has the same properties of an electromagnetic field

• Plasma screens electromagnetic fields as 𝐸0 ∝ 𝑒
3$%  è full screening at r >> plasma skin depth 𝛿 = 𝑐 ("4#

5&"' 6

• No dielectric wakefields when Beam-To-Capillary distance D >> 𝛿
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Implications on 
alignment tolerances in 
PWFA à EuPRAXIA
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Experimental Results (2023) 
Development of high repetition rate plasma source

Intense activity to demonstrate: 

• High repetition rate and material resistance 

• High plasma density uniformity and repitability

Shapal à Ceramic material with 
high heat conductivity and melting 
temperature

Angelo Biagioni, Lucio Crincoli, Romain Demitra
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Experimental Results (2023) 
Development of high repetition rate plasma source

Intense activity to demonstrate: 

• High repetition rate and material resistance 

• High plasma density uniformity and repitability

Shapal à Ceramic material with 
high heat conductivity and melting 
temperature

Angelo Biagioni, Lucio Crincoli, Romain Demitra

Over a 60-cm-long capillary
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EuAPS Project

Good example of exploiting the 
unique features of plasma-based 

accelerators!
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SABINA Project

Upgrade of SPARC Linac + THZ FEL line

à See Ilaria Balossino’s talk later!
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Conclusions

• EuPRAXIA: distributed European facility within ESFRI
à Goals: building 2 plasma-based FELs

• EuPRAXIA@SPARC_LAB will be the beam-driven FEL at LNF

• First ”real” plasma-based accelerator delivering beam to users 
• Step towards collider

• In the meantime, developments based on beautiful physics 
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Guided tour at SPARC

WE ARE HERE

LUNCH



EUROPEAN
PLASMA RESEARCH
ACCELERATOR WITH
EXCELLENCE IN
APPLICATIONS
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