Activities of the ECFA ECR Panel

Emanuele Bagnaschi (INFN LNF) CERN ECFA ECR panel member 2022-2023

02 July 2024

LNF, Frascati, Italy

Overview of the activities of the panel

The ECFA Early Career Researcher's Panel: composition, structure, and activities, 2021 – 2022

The ECFA Early Career Researcher's (ECR) Panel

December 22, 2022

ph] 20 Dec 2022

The European Committee for Future Accelerators (ECFA) Early Career Researcher's (ECR) panel, which represents the interests of the ECR community to ECFA, officially began its activities in January 2021. In the first two years, the panel has defined its own internal structure, responded to ECFA requests for feedback, and launched its own initiatives to better understand and support the diverse interests of early career researchers. This report summarises the panel composition and structure, as well as the different activities the panel has been involved with during the first two years of its existence.

Structure and summary of the activity of the various working groups in 2021-2022 https://arxiv.org/abs/2212.11238

Activities of the ECFA ECR Panel

The ECFA ECR workshop at CERN

Day agenda

- Held at CERN on the 27th of September
- Topical presentations with ample discussion time
- Four main sessions: overview; challenges; different viewpoints; people and money
- Slides and recordings are available on **INDICO**
- INDICO: INDICO page

Welcome to the event	Emanuele Angelo Bagnoschi
222/9-001, CERN	09:00 - 06:05
Towards the future of particle physics	Jargen D'Hondt
22239-001, CERN	09:05 - 09:25
The future collider landscape	Tarsoya Nakada
222/R-001, CERN	09:25 - 10:00
Coffee	
222/R-001, CERN	10:10 - 10:30
Input from accelerator physicists	Daniel Schulte et al.
2228-001, CERN	10:30 - 10:45
Detector technologies and challenges	Mogens Dam et al.
222/R-001, CERN	11:00 - 11:15
Theory challenges: Precision calculations	Federico Buccioni
222/R-001, CERN	11:30 - 11:45
The Key4hep software stack: Beyond Future Higgs factories	Leonhard Reichenbach
222/9-001, CERN	12:00 - 12:05
Beam-induced background simulations for a multi-TeV muon collider	Daniele Calzolari
222/9-001, CERN	12:05 - 12:10
Proposal on the electromagnetic calorimeter for a muon collider	Carlo Giraidin
222/9-001, CERN	12:10 - 12:15
Bottom quark forward-backward asymmetry at the future electron-positron collider FCC-ee	Leonardo Toffolio
222/9-001, CERN	12:15 - 12:20
Design and Performance of the IDEA Vertex Detector at FCC-ee in Full Simulation and Relate Avrin (t)	ed R&D on Monolithic Silico
Machine Detector Interface for Staut(s) = 31 TeVS Muon Collider	Luca Castell
22289-001, CERN	12:25 - 12:30
Beamstrahlung dump and radiation levels in the experiment IRs	Alessandro Frasca
Bearnstrahlung dump and radiation levels in the experiment IRs 222/R-001, CERN	Alessandro Frasca 12:30 - 12:35
222/R-001, CERN	12:30 - 12:35
22239-002, CERN Calorimeter Clustering at FCC-ee with E(n) Equivariant Oraph Neural Networks	12:30 - 12:35 Gregor Krzmanc
222/IV-021, CENN Calerineter Clustering at FCC-ee with E(r) Equivariant Deaph Neural Networks 222/IV-021, CENN	12:30 - 12:35 Gregor Krzmanc 12:35 - 12:40 Shivani Sanjay Lorete 12:40 - 12:45
222h 001, CERN Caleformeter Classening at FCC-ee with E(n) Exploration Cough Neural Networks 2020-001, CERN Beam-induced background simulations in calorimeter at a muon collider	12:30 - 12:35 Gregor Krzmanc 12:35 - 12:40 Shiwari Sanjay Lorde

The ECFA ECR workshop at CERN

Day agenda

- Held at CERN on the 27th of September
- Topical presentations with ample discussion time
- Four main sessions: overview; challenges; different viewpoints; people and money
- Slides and recordings are available on **INDICO**
- INDICO: INDICO page

13:00	Software tools for future colliders	Enrico Bothmann
	222/R-001, CERN	13:00 - 13:15
	Theory perspective	Aske Biokoetter
	223/R-001. CERN	13:30 - 13:45
14:00	View point of low-energy physics	Giovanni Dal Maso 13:55 - 14:10
	222/R-001, CERN	1255-1410
	Costriciastro	Mauro Pieroni
	222/R-002, CERN	14:20 - 14:35
	Beam dump experiments	Jaroslava Bezshyiko
	222/R-001, CERN	14:45 - 15:00
15:00	Heavy ion (link to EIC)	han Vorobvey
	222R-00L CERN	15:10 - 15:25
	Coffee	
		15:40 - 16:10
16:00	222R-001, CERN	15.40 - 16.10
	Discussion on time scale impact on ECRs	Richard Haskings
	222/R-001, CERN	16:15 - 16:35
17:00	European/CERN funding Landscape & Lessons learned from the LHC	Elezer Rabinovici
27.00	222/R-001, CERN	16:50 - 17:05
	Socio-Economic Impact	Francesco Gilfoni et al.
	222/R-001, CERN	17:20 - 17:35
	Sustainability of FCs	Roberto Losito 0
	222R-001, CERN	17:40 - 17:55
18:00	Future colliders survey: Presentation of first results and live survey	Emanuele Angelo Bagnaschi et al.
	222/R-001_CERN	18:00 - 18:15
	Concluding remarks	Armin lig et al.

[Jorgen D'Hondt, Towards the future of particle physics] [slides, recording]

Requirements for the next HEP machine

- · From pure physics
 - Capable of H and t physics complementary to/beyond LHC and HL-LHC
 - Capable of Z and W physics beyond currently known ⇒ an e⁺e⁻ collider covering a region of 90-350 GeV centre of mass energy (cme)
- · Somewhat physics related issues
 - It is good to start data taking with some overlap with the HL-LHC operation since the results might influence each other's scientific programme.

 \Rightarrow A machine which can be built within the next 10~15 years.

- Can be upgraded to probe higher energy scales if physics result motivates.
- Should not damage the diversity of particle physics activities.

 \Rightarrow A machine with a reasonable cost

- HEP sociology
 - Continuity in the HEP programme to sustain the community
- · Other issues have become increasingly important
 - Environmental impact, energy consumption, resource availability, attractivity in technology, impact on industries, spinoffs, ...

27/09/2023 T. Nakada

andscape for the future colliders

[Tatsuya Nakada, The future collider landscape] [slides, recording]

[Daniel Schulte & Tatiana Pieloni, Input from accelerator physicists] [slides]

Precision measurements at FCC-ee

								Observable	present		FCC-ce
									value ± error	Stat.	Syst.
Baseline FCC-ee op	eration mod	ael (+ po	otential r	esonant Higg	s tor ele	ctron	Yukawa)	m _Z (keV)	91186700 ± 2200	4	100
Working point	Z, years 1-2	Z, later	WW	HZ	tť		(s-channel H)	Γ_Z (keV)	2495200 ± 2300	4	25
\sqrt{s} (GeV)	88, 91,	94	157, 163	240	340-350	365	m _H				
$Lumi/IP (10^{34} cm^{-2} s^{-1})$	115	230	28	8.5	0.95	1.55	(30)	$sin^2 \theta_W^{eff} (\times 10^6)$	231480 ± 160	2	2.4
Lumi/year (ab ⁻¹ , 2 IP)	24	48	6	1.7	0.2	0.34	(7)				
Physics Goal (ab ⁻¹)	150		10	5	0.2	1.5	(20)	$1/\alpha_{QED}(m_Z^2)(\times 10^3)$	128952 ± 14	3	small
Run time (year)	2	2	2	3	1	4	(3)	R_{ℓ}^{Z} (×10 ²)	20767 ± 25	0.06	0.2-1
				10^{6} HZ	10 ⁶ 1	ĩ		R_{ℓ} (x10)	20161 ± 25	0.06	0.2-1
Sumber of events	5×10^{4}	² Z	10 ⁸ WW	+	+200k HZ		(6000)	$\alpha_s(m_Z^2)$ (×10 ⁴)	1196 ± 30	0.1	0.4-1.6
				$25k WW \rightarrow H + 50kV$		$WW \rightarrow H$		σ_{had}^0 (×10 ³) (nb)	41541 ± 37	0.1	4
								$N_{\nu}(\times 10^{3})$	2996 ± 7	0.005	1
nysics at the Z-pole	W⁺W⁻⊚th	reshold	~ m.,, Hic	as factory th	athresh	old ~	m.	R _b (×10 ¹⁰)	216290 ± 660	0.3	< 60
·····	, e							R _b (×10 ⁻)	216290 ± 660	0.3	< 60
eat opportunities	for precision	n QCD:	a., iets, h	adronization	models			$A_{rn}^{b}, 0 (\times 10^{4})$	992 ± 16	0.02	1-3
								https://www.		0.02	
								$\Lambda_{PB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2
he foreseen precis	ion is stood	arina						τ lifetime (fs) τ mass (MeV)	290.3 ± 0.5 1776.86 ± 0.12	0.001	0.04
le loreseen precis	ion is slugg	erning.						τ mass (MeV) τ leptonic ($\mu\nu_e\nu_e$) B.R. (%)		0.004	0.04
nis poses <mark>astound</mark> i	ing but also	attracti	ve challe	nees on the	ru nredi	rtions		τ reptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (7c) m _W (MeV)	17.38 ± 0.04 80350 ± 15	0.0001	0.003
no pooco donodinal		- unit de la	re critane	ingeo on aneo	ng pico.			mw (mer)	00000 1 10	0.20	0.0
								Γ_W (MeV)	2085 ± 42	1.2	0.3
 calculations with 	ithin the SM	of equ	ivalent a	cumcu need	he						
				country needs	EU			$\alpha_{s}(m_{W}^{2})(\times 10^{4})$	1170 ± 420	3	small
								$N_{\nu}(\times 10^{3})$	2920 ± 50	0.8	
to exploit full o	aiscovery/e	xclusior									small
to exploit full o	aiscovery/e	xclusion									
	,			curamante a				m _{top} (MeV/c ²)	172740 ± 500	17	small small
 theory will ser 	ve as an inj	put in m	iany mea		.g.			$m_{top} (MeV/c^2)$	172740 ± 500		
	ve as an inj	put in m	iany mea		.9.			$m_{top} (MeV/c^2)$ $\Gamma_{top} (MeV/c^2)$		17	small
 theory will ser 	ve as an inj	put in m	iany mea		.g.			$m_{top} (MeV/c^2)$	172740 ± 500	17	small
 theory will ser 	ve as an inj	put in m	iany mea		.g.			$m_{top} (MeV/c^2)$ $\Gamma_{top} (MeV/c^2)$	172740 ± 500 1410 ± 190 1.2 ± 0.3	17 45	small small

[Federico Buccioni, Theory challenges: precision calculations] [slides, recording]

(Blondel, Janot 2106.13885) leading exp. error

Beam energy calibration

Beam energy calibration Beam energy calibration from $\Lambda_{FB}^{\mu\mu}$ off peak QED&EW errors dominate acceptance for leptons

peak hadronic cross section luminosity measurement Z peak cross sections Luminosity measurement

ratio of bb to hadrons stat. extrapol. from SLD

Beam energy calibration Beam energy calibration in radiative Z returns QCD errors dominate QCD errors dominate QCD errors dominate From $\sqrt{s} = 365 \text{ GeV run}$

from jet charge τ decay physics

[Federico Buccioni, Theory challenges: precision calculations] [slides, recording]

What we know

Anke Biekötter - JGU Mainz

3

[Anke Biekötter, Theory perspective] [slides, recording]

[Anke Biekötter, Theory perspective] [slides, recording]

з

[Anke Biekötter, Theory perspective] [slides, recording]

Activities of the ECFA ECR Panel

Reflections

- ECRs need to be involved in future projects it is your future
 - In the early stages, these projects are driven by experienced senior colleagues
 - They have the luxury/duty of preparing the future, but todays ECRs will benefit from this and actually carry out the science – get involved, you can make a difference ...
- Participating in running experiments gives invaluable experience
 - Real data is not simulation, but ATLAS SCT works a lot better than the testbeam
 - Experience the full chain from detector operations to paper acceptance
 - A different experience of collaboration, analysis WGs/hierarchies, getting results
 - Some colleagues worked only on LHC expts. from 1990 until now I'm glad I did not
- Expertise is transferrable between experiments / projects
 - Figure out what you are interested in and good at look for synergies
 - I have worked on tracking/b-tagging & precision measurements at OPAL and ATLAS
- Say yes to leadership opportunities even if it upsets your plans
 - Explore different areas, learn new skills, broaden your horizons
 - · Less-attractive tasks are still vital, people appreciate that you take them on
- Be prepared for setbacks, surprises and successes good luck !

27th September 2023

Richard Hawkings

9

[Richard Hawkings, Discussion on time scale impact on ECRs] [slides, recording]

[Eliezer Rabinovici, The view from the CERN council and ECRs] [slides, recording]

FCC Future Colliders for Early-Career Researcher

A preview of results of the quantitative model

Share of measurable socio-economic benefits directly attributed to FCC-ee (preliminary)

7.3 +35% BCHF ICT 4.6 4.4 spinoffs 4.3 BCHE BCHE 3.4 32 BCHF Collabo BCHF BCHE rative platform 1.4 Virtual visitors BCHF Virtual reposito Data & ICT Industrial Scientific Training Cultural Env. benefits Residual Total Total investment benefits for production benefit benefits (sustainable assets value (measurable) and operating suppliers electricity) benefits costs Benefits and costs are discounted at a Social Discount Rate of 2%.

> [Francesco Giffoni & Massimo Florio, Socio-economic impact] [slides, recording]

Benefit vs costs

(preliminary)

Activities of the ECEA ECR Panel

Measurable benefits vs the total public good value

- On-line surveys to representative samples of population in France, Switzerland, Germany, Israel, Italy, Japan, Poland, UK, USA: 10,448 total respondents.
- Estimation of their willingness to financially support FCC-ee, because of its perceived utility for humankind.
- Extrapolation of estimates to other potential FCC-ee contributing countries.

Secci, L., Giffoni, F., and Delugas, E. (2023). The value of particle physics research at CERN as public good (1.0). Zenodo. https://doi.org/10.5281/zenodo.7766949

[Francesco Giffoni & Massimo Florio, Socio-economic impact] [slides, recording]

CERN Environmental Protection Steering Board

[Roberto Losito, Sustainability of FCs] [slides, recording]

What are the considerations for choosing the next step

What do WE (the ECR community) find most important in the considerations for a next collider

We will not pick the next collider today, but we ask the questions that need answering

- · What are the physics questions we want answered?
- How can we make sure that the probable physics is diverse enough?
 - Are several smaller colliders preferable over one large collider for the diversity of the achieved physics program?
- What are the upgrade possibilities of proposed projects?
- How precise can we get, taking realistic improvements in theory predictions into account?
- How can we make sure the collaboration with other energy range experiment is ensured?
- Is the future collider programme compatible with ECR careers considering possible large time gaps after HL-LHC runtime?
 - Would/could muon colliders make it in time to follow the HL-LHC?
- Can we bridge the gap between HL-LHC and a large future collider with enough attractive projects?
- How can we make a next collider is sustainable in terms of energy use?
- At what time-scale should the ECR community dedicate itself to one particular proposal?
- How can ECRs make the impact they desire on the decision making process?

Additional questions; please email them to; ecfa-ecr-future-colliders@cern.ch

21

[Lydia Brenner, Final remarks] [slides]

Future activities of the ECFA ECR panel

Outlook

- Follow-up events at the national level, organized by local committees of the ECFA countries
- Goal: discuss country-dependent issues/aspects (e.g. funding sources, role of the national agencies etc.)
- Goal: help the formation of a cohese ECR community at the national level
- · Send an email to ecfa-ecr-future-colliders@cern.ch to participate
- Italian community effort?