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Baryon - photon vertex
 and are the 

Dirac and Pauli form factors
Fℬ

1 (q2) Fℬ
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⟨Pi Jμ
EM (0) Pf⟩ = eū(pf)[γμFℬ
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iσμνqν

2Mℬ
Fℬ

2 (q2)] u(pi)

Given a baryon , the electromagnetic current isℬ

Fℬ
1 (0) = Qℬ Fℬ

2 (0) = κℬ
 is the electric chargeQℬ  is the anomalous magnetic momentQℬ

Breit frame
(pf − pi)μ = qμ = (0, ⃗q)

Sachs form factors
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Fℬ
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M (0) = Qℬ + κℬ = μℬ

 is the total magnetic momentμℬ



Cross section
dσ
dΩ

=
α2E′￼e cos2(θ/2)
4E3

e sin4(θ/2) [(Gℬ
E )2 − τ (1 + 2 (1 − τ) tan2(θ/2)) (Gℬ

M )2] 1
1 − τ

Annihilation cross section

𝒞 =
παβ

1 − e−παβ

Scattering cross section

dσ
dΩ

=
α2β𝒞
16E2 [(1 + cos2(θ)) Gℬ

E

2
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1
τ

sin2(θ) Gℬ
E
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Coulomb correction

 is a final state interaction effect𝒞



Asymptotic behaviour
The asymptotic form factors behaviour is given in pQCD by 
counting rules as q2 → − ∞

•  

• 2 gluon propagators distributing the 
momentum transfer of the virtual photon 

•

Jλ,λ(q2) ∝ Gℬ
M (q2)

Gℬ
M (q2) ∼ (q2)−2

Helicity flip Helicity conservation

•  

• [2 gluon propagators] /  

•

Jλ,−λ(q2) ∝ Gℬ
E (q2)/ −q2

−q2

Gℬ
E (q2) ∼ (q2)−2

Dirac and Pauli Form Factors

Fℬ
1 ∼

q2→−∞
(q2)−2

Fℬ
2 ∼

q2→−∞
(q2)−3

Sachs Form Factor Ratio

Gℬ
E (q2)

Gℬ
M (q2)

∼
q2→−∞

constant



Form factors in the time-like region
In the time-like region,  and  are complex functionsGℬ

E (q2) Gℬ
M (q2)

Crossing symmetry:  ⟨P(p′￼) Jμ P(p)⟩ → ⟨P̄(p′￼)P(p) Jμ 0⟩
Optical theorem

Im(⟨P̄(p′￼)P(p) Jμ 0⟩) ≈ ∑
n

⟨P̄(p′￼)P(p) Jμ n⟩ ⟨n Jμ 0⟩ ⇒ {
Im (Fℬ

1,2) ≠ 0

for q2 > 4M2
π

Where  are intermediate states, i.e.  n⟩ n⟩ = 2π, 3π, . . .

Asymptotic behaviour in the time-like region

lim
q2→+∞

Gℬ
M (q2) = lim

q2→−∞
Gℬ

M (q2)

Phragmén Lindelöf theorem
If  as  along the straight line  
and  as  along the straight line , 
and  is regular and bounded in the angle 
between the lines, then  and 

 in the region between  and 

f(z) → f1 z → ∞ L1
f(z) → f2 z → ∞ L2
f(z)

f1 ≡ f2 = f12
f(z) → f12 L1 L2



Analyticity of form factors
Spacelike region Timelike regionUnphysical region

q2 < 0 q2 > q2
physq2

th < q2 ≤ q2
phys

eℬ → eℬ ℬℬ̄ → e+e−ℳ0 e+e− ↔ ℬℬ̄

Gℬ
E (q2), Gℬ

M (q2) Gℬ
E (q2) , Gℬ

M (q2)
Gℬ

E (q2) , Gℬ
M (q2)

arg (Gℬ
E /Gℬ

M )*,

 Sine of the argument measurable in polarized cross section only*



 Form FactorsΛ
Theoretical threshold

q2
th = (2Mπ + Mπ0)2

, and the lightest isoscalar hadronic state is 
 

I(ΛΛ̄) = 0
π+π−π0

Physical threshold

q2
phys = (2MΛ)2 Lowest center of mass energy to produce a  coupleΛΛ̄

• Unphysical and space-like regions have 
no data 

• The relative phase is measured through 
the weak decay , Λ → pπ− Λ̄ → p̄π+

• Form factors have nonzero imaginary 
parts for  

•  vanishes for  

q2 ≥ q2
th

GΛ
E (q2) q2 = 0



Dispersion relations
The form factors  are analytic functions on the -complex plane with a cut  on 
the real axis.

GΛ
E,M q2 (q2

th, ∞)

Dispersion relation for the imaginary part ( ):q2 < 0

G(q2) =
1
π ∫

∞

q2
th

Im(G(s))
s − q2

ds ln (G(q2)) =
q2

th − q2

π ∫
∞

q2
th

ln G(s)

(s − q2) s − q2
th

ds

Dispersion relation for the logarithm ( ):q2 < 0

Experimental Inputs Theoretical Inputs
• Time-like data for form factor’s moduli 

from  

• Time-like data for the relative phase from 

e+e− ↔ ℬℬ̄

e+e− ↔ ℬ↑ℬ̄

• Analyticity 

• Threshold values 

• Asymptotic behaviour

Dispersion relations are based only on unitarity and analyticity  model independent approach⇒



Data for modulus and phase of GΛ
E /GΛ

M

𝒫y = −
2MΛ q2 sin(2θ) GΛ

E /GΛ
M sin (arg(GΛ

E /GΛ
M))

q2 (1 + cos2(θ)) + 4M2
Λ GΛ

E /GΛ
M sin2(θ)

• Sine of the relative phase accessible through 
polarization 

• No hints on the determination of the relative 
phase 



The meaning of the phase
• Consider the complex function  with  

poles and  zeroes  and a 
branch cut  

• Taking the integral over the contour  gives the 
Cauchy’s argument principle 

 

• By taking each contribution into account

R(z) N
{pj}N

j=1 M {zk}M
k=1

(x0, ∞)
Γr

lim
r→∞

1
2iπ ∮Γr

d ln (R(z))
dz

dz = M − N

lim
r→∞

1
2iπ ∮Γr

d ln (R(z))
dz

dz =
1
π (arg(R(∞)) − arg(R(x0)))

(arg(R(∞)) − arg(R(x0))) = π (M − N)
Levinson’s Theorem



Dispersive Procedure
We define the ratio R(q2) =

GΛ
E (q2)

GΛ
M(q2)

⇒ {
GΛ

E (0) = 0
GΛ

E (q2
phy) = GΛ

E (q2
phy)

⇒ {
R(0) = 0
R(q2

phy) = 1

The asymptotic behaviour
lim

q2→±∞
R(q2) =

GΛ
E (q2)

GΛ
M(q2)

= 𝒪(1)

Subtracted dispersion relations for real and 
imaginary part

R(q2) = R(0) +
q2

π ∫
∞

q2
th

Im(R(s))
s(s − q2)

ds, ∀q2 ∈ [q2
th, ∞)

Re (R(q2)) =
q2

π
Pr∫

∞

q2
th

Im(R(s))
s(s − q2)

ds, ∀q2 ∈ [q2
th, ∞)

The subtracted dispersion relations ensure the normalization at q2 = 0



Parametrization for the form factors ratio
Parametrization through the set of Chebyshev polynomials .{Tj(x)}

N

j=0

Im(R(q2)) ≡ Y (q2; ⃗C , q2
asy) =

∑N
j=0 CjTj(x(q2)), q2

th < q2 < q2
asy

0, q2 ≥ q2
asy

x(q2) = 2
q2 − q2

th

q2
asy − q2

th
− 1

q2 ∈ [q2
th, q2

asy] ⇒ x(q2) ∈ [−1,1]

Theoretical constraints on  Y(q2; ⃗C , q2
asy)

R(q2
th) is real ⇒ Y(q2

th; ⃗C , q2
asy) = 0

R(q2
phy) is real ⇒ Y(q2

phy; ⃗C , q2
asy) = 0

R(q2 ≥ q2
asy) is real ⇒ Y(q2 ≥ q2

asy; ⃗C , q2
asy) = 0

Theoretical constraints on  Re(R(q2))

Re (R(q2
th)) =

q2
th

π
Pr∫

q2
asy

q2
th

Y(s; ⃗C , q2
asy)

s(s − q2
th)

ds = 1

Re (R(q2
asy)) =

q2
asy

π
Pr∫

q2
asy

q2
th

Y(s; ⃗C , q2
asy)

s(s − q2
asy)

ds = 1

Experimental constraints for the time-like region (q2 > q2
phy)

8 experimental points for the modulus and 7 for the phase from Babar 
(2019), BESIII (2019) and BESIII (2024)



The  definitionχ2

χ2 ( ⃗C , q2
asy) = χ2

R
+ χ2

ϕ + τphy χ2
phys + τasy χ2

asy + τcurv χ2
curv

χ2
R

=
8

∑
j=1

X2(q2
j ) + Y2(q2

j ) − Rj

δ Rj

2

X(q2) ≡ Re(R(q2))

χ2
ϕ =

7

∑
j=1 (

sin (arctan(Y(q2
k )/X(q2

k )) − sin(ϕk)
δ sin(ϕk) )

2

Constraint at  q2 = q2
phy χ2

phy = (1 − X(q2
phy))

2

Constraint at  q2 = q2
asy χ2

asy = (1 − X2(q2
asy))

2

The values of  and  are chosen 
so that the theoretical conditions are 
exactly verified 

τphys τasy

Oscillation damping χ2
curv = ∫

q2
asy

q2
th

( d2Y(s)
ds2 )

2

ds
The dispersion relation solution is an ill-
posed problem which has to be 
regularized 



The parametrization
The theoretical constraints  
remove three degrees of freedom, allowing to determine three coefficients, i.e. .

Y(q2
th; ⃗C , q2

asy) = Y(q2
phy; ⃗C , q2

asy) = Y(q2
asy; ⃗C , q2

asy) = 0
C0, C1, C2

The asymptotic threshold  is used a a free parameterq2
asy

If we consider  Chebyshev polynomials, we are left with  free coefficients.(N + 1) (N − 2)

We used , so we have four free parameters  and .N = 5 C3, C4, C5 q2
asy

• The real part of the ratio is forced to the unity at  

• No constraint for the real part at  

• Dumping relevant only for high degree polynomials

τphy = 104 ⇒ q2 = q2
phy

τasy = 0 ⇒ q2 = q2
asy

τcurv = 0.05 ⇒

If  is too large physical information are canceled.τcurv

If  is too small the solution have too much noiseτcurv



Results discussion
At the thresholds  and  the values of the ratio are real, so the relative phases are 
integer multiples of of  radians.

q2
th q2

asy
π

Nth,asy =
1
π

arg (
GΛ

E (q2
th,asy)

GΛ
M(q2

th,asy) ) ∈ ℤ

The  minimization alongside with the theoretical constraints allows to produce 4 
 possible pairs compatible with the data points.

χ2

(Nth, Nasy)

A Monte Carlo procedure allows to obtain the probability of occurrence of each pair .(Nth, Nasy)

-1 1 32%
0 3 36%
0 4 6%
1 3 24%

Nth Nasy %

χ2
min = 21.81



Moduli and relative phases

(1,3) (0,4)24 % 6 %



Moduli and relative phases

(−1,1) (0,3)32 % 36 %



Final Considerations
The bands represent the one-sigma-error computed with statistical analysis of the Monte 
Carlo procedure results.

The dispersive procedure, connecting time-like experimental values and theoretical constraints, allows 
to assign different determinations to the phase, and hence to the measured values of the phase. This 
gives informations about the space-like behaviour of the form factors ratio.

Assuming no zeroes for the magnetic form factor, the Levinson’s Theorem allows to count 
the number of zeroes of the electric form factor, aside from the theoretical one at q2 = 0

Δϕ = ϕ(∞) − ϕ(q2
th) = π (Nasy − Nth) ≥ π

The most probable value for  is 3, hence there are two additional zeroes for Nasy − Nth GΛ
E (q2)



Final Considerations - Work in progress
In the near future, we would like to increase the statistics of the Monte Carlo procedure, in 
order to obtain a more precise evaluation of the possible cases for (Nth, Nasy)

The dispersive relation for the imaginary can be used to obtain an estimation of the charge 
radius of the  baryonΛ

⟨rE⟩2 =
1
6

dGE(q2)
dq2

q2=0

= 6μ
dR(q2)

dq2
q2=0


