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Banyon - pNoton vertex

Given a baryon 9B, the electromagnetic current is
F i% (g?%) anc Fi% (g?%)are the

-
(Pl-‘ ﬂItEM (0) Pf> = ei(py) [y”Fi@(qz) | 120qu F2(g*) | u(p;) Dirac and Pauli form factors
7
F#0) = Qg F5(0) = kg
0 4 is the electric charge 0 4 is the anomalous magnetic moment
Breit frame .
(pr—p)" =q" =(0,9)
Sachs form factors
2
G (q?) = FHq) + 5 Fy Gr0=0s  GuO=0s+xz= s
AM?,

U 1S the total magnetic moment

Gy (q) = F{*(q°) + Fy’



(rocce certinn

Scattering cross section
do  a’E.cos*(0/2) | 1 1
d SOOI 1G22 _ 2 (14 2(1 - 9 tan0/2)) (G)*

dQ "~ 4E3sin%(0/2)

Annihilation cross section

40~ 16E2

do  oa’fE [(1 c0S2(6’)) |GE%|2 1sin2(9)|GE@|2]

Coulomb correction

ap

€ = € is a final state interaction effect
1 —e—mb




Asvmptotic penaviour

The asymptotic form factors behaviour is given in pQCD by
counting rules as q2 — — 00

Helicity conservation Helicity flip
o I*(q?) o Gif(q?) o NG & G -4
® ? gluon propagators distriouting the X
momentum transfer of the virtual photon e |2 gluon propagators] / \/ —(q
B 2 2N—2 _
e G),(q7) ~ (q7) o GZ(g?) ~ (¢)?
Dirac and Pauli Form Factors Sachs Form Factor Ratio
FQ? - (q2)—2
| 2
7= Ggg(q ) constant
B 2\—3
FP o~ () Gi7(q?) =

g ——00



—OrmMm factors IN the tme-like reaion

N the time-like region, Gg’g (g?) and fo (g?) are complex functions

7| P(p)) = (P(p)P(p)| | 0)

Crossing symmetry: <P (P

Optical theorem

m ((B@)Pp)| 7] 0)) ~ ¥ (Pp)P(p)|J#| ) (n ]| 2] 0) =

n

{Im (F%) #0

for g% > 4M?

Where |n) are intermediate states, i.e. |n) = 2x, 3, . ..

Phragmen Lindelof theorem Asymptotic behaviour in the time-like region

tf(z) = f, as z = oo along the straight line L,
and f(z) — f, as z = oo along the straight line L,
and f(z) is regular and bounded in the angle

between the lines, then f; = f, = f;, and
f(z) = f;, in the region between L, and L,

lim G?(g%) = lim Gi4(q*)

q2—>+oo q ——0




Anaiticity of Torm factors

Spacelike region Unphysical region

q2<0 ql%z<qzsq]3hys
eB — e BB — eTe M,
G2(q?), G4 (g% G2 |, |GE(gH

* Sine of the argument measurable in polarized cross section only

Timelike region

2o 2

ete™ o BRB

G£(q?)

p

Gi¥(q?)

arg (GE@/GA‘?)*,




A Form Factors

Theoretical threshold I(A/_\) = (), and the lightest isoscalar hadronic state is

)2 AP

Physical threshold
I 2
qphys i <2MA)

owest center of mass energy to produce a AA couple

® Unphysical and space-like regions have ® -orm factors have nonzero imaginary
N0 data parts for g* > g,

® [he relative phase Is measured through
the weak decay A = pr~, A = pr™

0

o Glfj\(qz) vanishes for g*




DISpersion relations

The form tfactors GﬁM are analytic functions on the qz—complex plane with a cut (qt%, oo) olp
the real axis.

Dispersion relations are based only on unitarity and analyticity =

Dispersion relation for the iImaginary part (q2 < 0): Dispersion relation for the logarithm (q2 < 0):
| [ Im(G(s)) Vit -4 (= In|Ges)
G(g°) = ;J' ﬁdb“ G(QZ) [ | | ds
i 1 9t (S—qrz)\/s—qrt%l
Experimental Inputs Theoretical Inputs
® [ime-like data for form factor's modul ® Analyticity

fromete™ & BRB
® [hreshold values
® [ me-like data for the relative phase from

o BB e Asymptotic behaviour



arg(GP/Gy)
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Data for modulus and phase of G2/ G

Experimental data for the phase

BESIII 2019
BaBar 2019

BESIIl 2024

5 6 7 8 9
q? (GeVZ/c?)

® Sine of the relative phase accessible through
oolarization

\
D

O hints on the determination of the relative

1aSe

Experimental data for the modulus

BESIIl 2019
BaBar 2019
2.5 BESIII 2024
2.0
<®—§1.5
1.0 ,*
0.5
0.0
) 6 7 8 9
q? (GeVZ/c?)
2 o NN o A1 A
2M 1/ q~ s1in(20) | G/ GM| sin (arg(GE / GM))
P, =

g% (1 + cos2(0)) + 4M3 | GAIGyy| sin2(6)



The meaning of the phase

e Consider the complex function R(z) with N
poles {p; j=1and M zeroes {zk}jlyz pand a

Oranch cut (xo, oo)

e Taking the integral over the contour 1, gives the
Cauchy’s argument principle

1 d In (R(z))

dz=M—N

® By taking each contribution iNnto account

] dIn (R(2)) 1
Iim — dZ — — (afg(R(OO)) Il arg(R(x())))
r—o00 2177 r dZ JT

(arg(R(c0)) — arg(R(xy))) = # (M — N)

L evinson's [Theorem




DISpersive Procequra

Ge@®) {G£<O> =0 {R«)) =0

We define the ratio R(g?) = = ,
Gi(q”) GR(ady) = GRghy) | R(@pny) =1

The asymptotic behaviour

GA 2
lim R =29 _ o)
q°—*oo Gi(q?)
Subtracted dispersion relations for real and
maginary part ,
g~ [~ Im(R(s))
R(g?) = R(0) + —J > ds, Vg’ & [qt%, oo)
T %S@—q)

2 * Im(R(s))
G (R(qz)) = q—Pr[ ds, ‘v’q2 = [qtz, oo)
g2 s(s — qz) "

T

'he subtracted dispersion relations ensure the normalization at q2 =0



Parametrization 1or the tform tactors ratio

N

Parametrization through the set of Chebyshev polynomials { Y}(X)} .
J=0

. > CT(x(gY), 495 <q*<q> 2_ g2
Im(R(qz)) — Y(Qz; C, qz%sy) — =0 "JJ th y x(qz) -9 qz chz 1
0, q2 > qz%sy asy — Yt
q* € lq3, g2,1 = x(¢*) € [-1,1]
Theoretical constraints on Y(¢*; C, gz, Theoretical constraints on Re(R(¢?))

R(g2) is real = Y(g2; C,q2,) = 0 ds = 1

2 iy Y(s; Clq2y)
Re (R(qp)) = %Pfj R
. = g ~ 4th
R(gyhy) s real = Y(g,: C.qz,) =0 b

Gasy 4y Y(s; C, qay)

~ 2

R(q* > q3,) is real = Y(¢* > q5,: C. q

U

— 2

Experimental constraints for the time-like region (q2 > qshy)

8 experimental points for the modulus and 7 for the phase from Babar
(2019), BESII (2019) and BESIII (2024)

) =0 Re (Rig2,)) | === |pe ds




The )(2 Aafintion

2(~ 2 .2 2 2 2 2
4 < Ca Qasy> I )(‘R‘ +)(¢ + Tphy)(phys T 7’-asy)(asy T TeurvAcury

2

s | /X2 + Yg) - |R,

= I

X(g*) = Re(R(g*))

i (sm arctan(Y(qk)/X(q,g)) — sm(gbk)>

_ o sin(¢y)
- 2 _ 2 -
Constraint at g« = Qopy —> )(phy (1 - X(qphy)> The values of T, and 7,y are chosen
, SO that the theoretical conditions are

Constraint at q* = gy ——> 12, = (1-Xa2,) exactly verifiec

Dy [ d2Y(s) ’ Ihe dispersion relation solution is an ll-
Oscillation damping =—— y2 = J 7 ds 00sed problem which has to be

4 > regularizec



he parametrization
The theoretical constraints Y (qth, qasy) = (qg qasy) = Y(qasy, C qasy) —
remove three degrees of freedom, allowing to determine three coefficients, 1.e.

The asymptotic threshold S used a a free parameter

f we consider (N + 1) Chebyshev polynomials, we are left with

We used N = 3, so we have four free parameters and
® Tohy = 10* = The real part of the ratio is forced to the unity at g% = qghy
® Tyoy = 0 = No constraint for the real part at g* = qfsy
o 7., = 0.05 = Dumping relevant only for high degree polynomials
T Ty 1S 10O physical information are canceled.
[ Ty 1S 10O the solution have too much noise

Curv



Roql It AlI_el 1I_RQINN

At the thresholds qt% and qfsy the values of the ratio are real, so the relative phases are
iNteger multiples of of & radians.

1 GE (G asy)
Nth,asy = —dig ( T SA

T GG asy)

The ;(2 minimization alongside with the theoretical constraints allows to produce 4
(N, Nasy) possible pairs compatible with the data points.

A Monte Carlo procedure allows to obtain the probability of occurrence of each pair (Vg Nasy).

Nin Nasy %

1 1 329%

0 3 36% Yoin = 21.81
0 4 6%

1 3 24%



\Voaull ana relative phases

(0,4)

6 %

(1,3)

24 %

g’ (GeV?)

g’ (GeV?)



arg(GRIGR)
W N e o e N W

\Voaull ana relative phases

|
0.0{ |

32 %

(=1,1)

arg(Gg/Gy)
° N » o @

36 %

(US)




—inal Congiderationg

The bands represent the one-sigma-error computed with statistical analysis of the Monte
Carlo procedure results.

The dispersive procedure, connecting time-like experimental values and theoretical constraints, allows
to assign different determinations to the phase, and hence to the measured values of the phase. This
gives informations about the space-like benhaviour of the form factors ratio.

AsSsSUMINg NO zeroes for the magnetic form factor, the Levinson's [heorem allows to count
the number of zeroes of the electric form factor, aside from the theoretical one at q2 =0

AG = §(o0) = pla3) = 7 (Nygy = Ny ) 2 7

he most probable value for N,y — Ny, Is 3, hence there are two additional zeroes for Gl{j\(qz)



Final Considerations - Work In progress

N the near future, we would like to increase the statistics of the Monte Carlo procedure, In
order to obtain a more precise evaluation of the possible cases for (N, Nygy)

The dispersive relation for the imaginary can be used to obtain an estimation of the charge
radius of the A baryon

1 dG(q?) dR(q*)

2
) = 5 g = Mg




