

Trinification from a "realistic" $\mathrm{E}_{6}\mbox{ GUT}\mbox{ model}$

Vasja Susič

Laboratori Nazionali di Frascati (LNF), INFN PRIN 2022K4B58X

Seminar at Roma Tre, 2024-10-25

In collaboration with K. S. Babu, Borut Bajc Based on 2305.16398 and 2403.20278.

Outline

(1) Introduction and motivation:

Build a "realistic" E_6 GUT model that has $SU(3)^3$ (trinification) or $SU(6) \times SU(2)$ symmetry at an intermediate breaking stage.

- (2) Model building considerations
 - (2.1) Introducing the group E_{6}
 - (2.2) How to get trinification as an intermediate symmetry
- (3) Spontaneous symmetry breaking via $\boldsymbol{650}$ of E_{6}
- (4) A realistic model: $\mathbf{650} \oplus \mathbf{27} \oplus \mathbf{351'}$
 - (4.1) Symmetry breaking patterns
 - (4.2) Yukawa sector
 - (4.3) Unification analysis
 - (4.4) Proton decay

(5) Conclusions

1 / 20 Vasja Susič (LNF, INFN) Trinification from a "realistic" E₆ GUT model

(1) Introduction and motivation

2 / 20 Vasja Susič (LNF, INFN) Trinification from a "realistic" E₆ GUT model

Introduction — Standard Model

Standard Model (SM) is well established at accessible energies

2 / 20

Introduction — Standard Model

 Standard Model (SM) is well established at accessible energies

Gauge group:

 $\mathrm{SU}(3)_C\times\mathrm{SU}(2)_L\times\mathrm{U}(1)_Y$

Field content:

fermions: $3 \times (Q \oplus u^c \oplus d^c \oplus L \oplus e^c)$ scalars: *H*

$$\begin{array}{ll} Q \sim ({\bf 3},{\bf 2},+\frac{1}{6}), & L \sim ({\bf 1},{\bf 2},-\frac{1}{2}), \\ u^c \sim ({\bf \bar{3}},{\bf 1},-\frac{2}{3}), & e^c \sim ({\bf 1},{\bf 1},+1), \\ d^c \sim ({\bf \bar{3}},{\bf 1},+\frac{1}{3}), & H \sim ({\bf 1},{\bf 2},+\frac{1}{2}). \end{array}$$

Parameters: (19)

g,
$$\{y, \theta, \delta\}$$
, $\{\mu^2, \lambda\}$, θ_{QCD}

Introduction — unification of gauge couplings \rightarrow GUT?

- Going beyond SM: puzzles
 - (a) ν masses and mixings
 - (b) dark matter (DM)
 - (c) baryon asymmetry in universe
 - (d) $\theta_{QCD} \approx 0$
 - (e) ...

Introduction — unification of gauge couplings \rightarrow GUT?

- Going beyond SM: puzzles
 - (a) ν masses and mixings
 - (b) dark matter (DM)
 - (c) baryon asymmetry in universe (d) $\theta_{QCD} \approx 0$ (e) ...
- Curious observation: unification of SM gauge couplings at high E?

\rightarrow Grand Unified Theories

(above puzzles can be addressed also in **GUT** framework)

Introduction — unification of gauge couplings \rightarrow GUT?

- Going beyond SM: puzzles
 - (a) ν masses and mixings
 - (b) dark matter (DM)
 - (c) baryon asymmetry in universe (d) $\theta_{QCD} \approx 0$ (e) ...
- Curious observation: unification of SM gauge couplings at high E?

ightarrow Grand Unified Theories

(above puzzles can be addressed also in **GUT** framework)

Unification window for *M_U*:
 > 10¹⁵ GeV (proton decay)
 < 2.4 · 10¹⁸ GeV (Planck scale)

Non-trivial feature: M_U compatible with window!

20 Vasja Susič (LNF, INFN) Trinification from a "realistic" E₆ GUT model

- **GUT**: Yang-Mills theory with a unified group *G*:
 - (1) G is simple
 - (2) $G \supset \mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$
 - (3) G has complex representations (since SM is chiral)

GUT: Yang-Mills theory with a unified group *G*:

- (1) G is simple
- (2) $G \supset \mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$
- (3) G has complex representations (since SM is chiral)
- Classification of simple finite-dimensional Lie algebras:

root system	name	comment	$\mathbb{C} ext{-irreps}?$
$\begin{array}{c} A_n \\ B_n \\ C_n \\ D_n \\ E_6, E_7, E_8, F_4, G_2 \end{array}$	$\begin{array}{c} \mathrm{SU}(n+1)\\ \mathrm{SO}(2n+1)\\ \mathrm{Sp}(2n)\\ \mathrm{SO}(2n) \end{array}$	rotations in \mathbb{C}^{n+1} rotations in \mathbb{R}^{2n+1} rotations in \mathbb{H}^n rotations in \mathbb{R}^{2n} exceptional	all <i>n</i> / / odd <i>n</i> E ₆

GUT: Yang-Mills theory with a unified group *G*:

- (1) G is simple
- (2) $G \supset \mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$
- (3) G has complex representations (since SM is chiral)
- Classification of simple finite-dimensional Lie algebras:

root system	name	comment	$\mathbb{C} ext{-irreps}?$
A _n	SU(n+1)	rotations in \mathbb{C}^{n+1}	all <i>n</i>
B _n	SO(2n+1)	rotations in \mathbb{R}^{2n+1}	/
C _n	Sp(2 <i>n</i>)	rotations in \mathbb{H}^n	/
D _n	SO(2n)	rotations in \mathbb{R}^{2n}	odd <i>n</i>
$\mathrm{E}_6,\mathrm{E}_7,\mathrm{E}_8,\mathrm{F}_4,\mathrm{G}_2$		exceptional	E_{6}

Satisfying requirements:

(a) SU(n),
$$n \ge 5$$

(b) SO($4n + 2$), $n \ge 2$
(c) E₆

GUT: Yang-Mills theory with a unified group *G*:

- (1) G is simple
- (2) $G \supset \mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$
- (3) G has complex representations (since SM is chiral)
- Classification of simple finite-dimensional Lie algebras:

root system	name	comment	$\mathbb{C} ext{-irreps}?$
$\begin{array}{c} A_n \\ B_n \\ C_n \\ D_n \\ E_6, E_7, E_8, F_4, G_2 \end{array}$	$\begin{array}{c} \mathrm{SU}(n+1)\\ \mathrm{SO}(2n+1)\\ \mathrm{Sp}(2n)\\ \mathrm{SO}(2n) \end{array}$	rotations in \mathbb{C}^{n+1} rotations in \mathbb{R}^{2n+1} rotations in \mathbb{H}^n rotations in \mathbb{R}^{2n} exceptional	all <i>n</i> / / odd <i>n</i> E ₆

Satisfying requirements:

(a) SU(*n*),
$$n \ge 5$$

(b) SO(4*n* + 2), $n \ge 2$
(c) E₆

Minimal choices for G:

 $\textit{G}_{\mathsf{SM}} \subset \mathrm{SU}(5) \subset \mathrm{SO}(10) \subset \mathrm{E}_6$

 Breaking can occur in multiple stages (phase transitions):

$$G \rightarrow H_1 \rightarrow H_2 \rightarrow \cdots \rightarrow G_{SM}$$

 Breaking can occur in multiple stages (phase transitions):

$$\textbf{G} \rightarrow \textbf{H}_1 \rightarrow \textbf{H}_2 \rightarrow \cdots \rightarrow \textbf{G}_{SM}$$

Intermediate stage routes: (1) SU(5): no H $G_{\rm SM} \subset {\rm SU}(5)$ maximal

 Breaking can occur in multiple stages (phase transitions):

$$\textbf{G} \rightarrow \textbf{H}_1 \rightarrow \textbf{H}_2 \rightarrow \cdots \rightarrow \textbf{G}_{SM}$$

- Intermediate stage routes:
 - (1) SU(5): no H $G_{SM} \subset SU(5)$ maximal (2) SO(10): SU(5) × U(1) G_{422} (Pati-Salam)

 Breaking can occur in multiple stages (phase transitions):

$$G \rightarrow H_1 \rightarrow H_2 \rightarrow \cdots \rightarrow G_{SM}$$

- Intermediate stage routes:
 - (1) SU(5): no H $G_{SM} \subset SU(5)$ maximal (2) SO(10): SU(5) × U(1) G_{422} (Pati-Salam) (3) E₆: SU(3) × SU(3) × SU(3) SO(10) × U(1) SU(6) × SU(2)

 Breaking can occur in multiple stages (phase transitions):

$$\textbf{G} \rightarrow \textbf{H}_1 \rightarrow \textbf{H}_2 \rightarrow \cdots \rightarrow \textbf{G}_{\text{SM}}$$

- Intermediate stage routes:
 - (1) SU(5): no H $G_{SM} \subset SU(5)$ maximal (2) SO(10): SU(5) × U(1) G_{422} (Pati-Salam) (3) E₆: SU(3) × SU(3) × SU(3) SO(10) × U(1) SU(6) × SU(2)

Motivation for this talk:

Build a realistic $\mathrm{E}_{6}\mbox{ GUT}$ model that can break through trinification

5 / 20

(2) Model building considerations

6 / 20 Vasja Susič (LNF, INFN) Trinification from a "realistic" E₆ GUT model

Model building — E_6 group

SO(10) ⊂ SU(5) E₆ С

Model building — E_6 group

	0-0-0-0				0-0-0-0-0
	SU(5)	С	SO(10)	С	E_6
rank	4		5		6
dimension	24		45		78
fund. irrep	5		10		27

Model building — E_6 group

	0-0-0-0				
	SU(5)	C	SO(10)	C	E_6
rank	4		5		6
dimension	24		45		78
fund. irrep	5		10		27

Intuition: E_6 acts on \mathbb{C}^{27} , but much smaller than SU(27)

6 / 20

Model building — E_6 group

	0-0-0-0	<u> </u>	
	SU(5)	⊂ SO(10) ⊂	E E ₆
rank	4	5	6
dimension	24	45	78
fund. irrep	5	10	27

Intuition: E_6 acts on \mathbb{C}^{27} , but much smaller than $\mathrm{SU}(27)$

■ Irreducible representations of E₆ (some complex):

1, **27**^{*i*}, **78**^{*i*}_{*j*}, **351**^{*(ij)*}, **351**^{*((ij)*}, **650**^{*i*}_{*j*}, **1728**^{*ij*}_{*k*}, **2430**^{*ij*}_{*kl*}, ...

Model building — E_6 group

	0-0-0-0	<u> </u>	0-0-0-0-0
	SU(5)	⊂ SO(10) ⊂	E ₆
rank	4	5	6
dimension	24	45	78
fund. irrep	5	10	27

- Intuition: E_6 acts on \mathbb{C}^{27} , but much smaller than SU(27)
- Irreducible representations of E₆ (some complex):
 - **1**, **27**^{*i*}, **78**^{*i*}_{*j*}, **351**^{*(ij)*}, **351**^{*(ij)*}, **650**^{*i*}_{*j*}, **1728**^{*ij*}_{*k*}, **2430**^{*ij*}_{*kl*}, ...
- Invariant tensors: d_{ijk}, d^{ijk} (completely symmetric), δⁱ_j. (Used also in irrep constraints, e.g. **351**^{ij}d_{ijk} = 0.)

Vasja Susič (LNF, INFN) Trinification from a "realistic" E_6 GUT model

7 / 20

Model building — decomposing the fundamental of E_{6}

• Matter unification in a fermionic **27**:

Model building — decomposing the fundamental of E_{6}

Matter unification in a fermionic 27:

■ Fermion exotics in E₆: (heavy)

(a) right-handed neutrinos:(b) vector-like *d*-quarks:(c) vector-like *L*-leptons:

$$egin{aligned} &
u^c, {\it n} \sim (1,1,0) \ & d' \oplus d'^c \sim (3,1,-rac{1}{3}) \oplus (ar{3},1,+rac{1}{3}) \ & L' \oplus L'^c \sim (1,2,-rac{1}{2}) \oplus (1,2,+rac{1}{2}) \end{aligned}$$

7 / 20

Model building — how to get trinification from E_6 ?

- Trinification is a maximal subgroup of E₆.
- Which scalar representation **R** can break to $SU(3)^3$?

8 / 20

Model building — how to get trinification from E_6 ?

- Trinification is a maximal subgroup of E₆.
- Which scalar representation **R** can break to $SU(3)^3$?
 - (1) \mathbf{R} must have a trinification singlet (framed):
 - 27, 78, 351, 351['], 650, 1728, 2430

Model building — how to get trinification from E_6 ?

Trinification is a maximal subgroup of E₆.

Vasia Susič (LNF, INFN)

• Which scalar representation **R** can break to $SU(3)^3$?

(1) **R** must have a trinification singlet (framed):

27, **78**, **351**, **351**', **650**, **1728**, **2430**.

(3) Symmetry breaking via ${\bf 650}$ of ${\rm E}_6$

9 / 20 Vasja Susič (LNF, INFN) Trinification from a "realistic" E₆ GUT model

Breaking E_6 via **650** — preliminary considerations

• We study breaking via a real scalar **650** [2305.16398]:

$$E_6 \xrightarrow{\langle 650 \rangle} H$$
 (1)

(1)

Breaking E_6 via $\boldsymbol{650}$ — preliminary considerations

• We study breaking via a real scalar **650** [2305.16398]:

$$\mathrm{E}_{\mathbf{6}} \xrightarrow{\langle \mathbf{650} \rangle} H$$

Preliminary considerations: what can H be?

(1)

Breaking E_6 via **650** — preliminary considerations

- We study breaking via a real scalar **650** [2305.16398]:
 - $\mathrm{E}_{6} \xrightarrow{\langle \mathbf{650} \rangle} H$
- Preliminary considerations: what can H be?
- \rightarrow Michel's conjecture:
 - a single irrep ${\bf R}$ can only break to maximal little groups of ${\bf R}$

(1)

Breaking E_6 via **650** — preliminary considerations

- We study breaking via a real scalar **650** [2305.16398]:
 - $\mathrm{E}_{6} \xrightarrow{\langle \mathbf{650} \rangle} H$
- Preliminary considerations: what can H be?
 - \rightarrow *Michel's conjecture*: a single irrep **R** can only break to **maximal little groups** of **R**
 - $\rightarrow\,$ Maximal groups of ${\rm E_6:}$ (not the same as in Michel, but helps)

$1_{H}\in650,\;G_{SM}\subset H$	$1_{H} \in 650$	1 _{<i>H</i>} ∉ 650
${ m SU}(3) imes { m SU}(3) imes { m SU}(3)$	${\rm G}_2 \times {\rm SU}(3)$	Sp(8)
${ m SU(6)} imes { m SU(2)}$	F_4	G_2
${ m SO(10)} imes { m U(1)}$		SU(3)

9 / 20

(1)

Breaking E_6 via $\boldsymbol{650}$ — preliminary considerations

- We study breaking via a real scalar **650** [2305.16398]:
 - $\mathrm{E}_{6} \xrightarrow{\langle \mathbf{650} \rangle} H$
- Preliminary considerations: what can H be?
 - \rightarrow Michel's conjecture: a single irrep R can only break to maximal little groups of R
 - $\rightarrow\,$ Maximal groups of $\mathrm{E}_{6}:$ (not the same as in Michel, but helps)

$1_{H} \in 650, \; \textit{G}_{SM} \subset \textit{H}$	$1_{H} \in 650$	1 _{<i>H</i>} ∉ 650
${ m SU}(3) imes { m SU}(3) imes { m SU}(3)$	$\mathrm{G}_2 \times \mathrm{SU}(3)$	Sp(8)
${ m SU(6)} imes { m SU(2)}$	F_4	G_2
${ m SO(10)} imes { m U(1)}$		SU(3)

- \rightarrow Considered candidates: 1st and 2nd column, 650 has H-singlet(s)
- $\rightarrow~$ Limitation: we don't look one level deeper for little groups of 3rd column

Breaking E_6 via $\boldsymbol{650}$ — scalar potential and finding solutions

• Scalar potential with $650 \equiv X$: $(D^{ij}_{kl} := d^{ijm}d_{klm})$

$$V(\mathbf{X}) = -M^{2} \cdot \operatorname{Tr}(\mathbf{X}^{2}) + m_{1} \cdot \operatorname{Tr}(\mathbf{X}^{3}) + m_{2} \cdot X^{i}{}_{l} X^{j}{}_{m} X^{k}{}_{n} d^{lmn} d_{ijk}$$
(2)
+ $\lambda_{1} \cdot (\operatorname{Tr}(\mathbf{X}^{2}))^{2} + \lambda_{2} \cdot \operatorname{Tr}(\mathbf{X}^{4}) + \lambda_{3} \cdot (\mathbf{X}^{2})^{k}{}_{i} (\mathbf{X}^{2})^{l}{}_{j} D^{ij}{}_{kl}$
+ $\lambda_{4} \cdot X^{i}{}_{i'} X^{j}{}_{j'} X^{k}{}_{k'} X^{l}{}_{l'} D^{i'j'}{}_{kl} D^{k'l'}{}_{ij} + \lambda_{5} \cdot X^{i}{}_{l} X^{j}{}_{m} (\mathbf{X}^{2})^{k}{}_{n} d^{lmn} d_{ijk}.$

10 / 20

• Scalar potential with $650 \equiv X$: $(D^{ij}_{kl} := d^{ijm}d_{klm})$

Ministero

$$\begin{aligned} \mathcal{V}(\mathbf{X}) &= -M^2 \cdot \operatorname{Tr}(\mathbf{X}^2) \\ &+ m_1 \cdot \operatorname{Tr}(\mathbf{X}^3) + m_2 \cdot X^i{}_{l} X^j{}_{m} X^k{}_{n} d^{lmn} d_{ijk} \end{aligned} \tag{2} \\ &+ \lambda_1 \cdot (\operatorname{Tr}(\mathbf{X}^2))^2 + \lambda_2 \cdot \operatorname{Tr}(\mathbf{X}^4) + \lambda_3 \cdot (\mathbf{X}^2)^k{}_{i} (\mathbf{X}^2)^l{}_{j} D^{ij}{}_{kl} \\ &+ \lambda_4 \cdot X^i{}_{i'} X^j{}_{j'} X^k{}_{k'} X^l{}_{l'} D^{i'j'}{}_{kl} D^{k'l'}{}_{ij} + \lambda_5 \cdot X^i{}_{l} X^j{}_{m} (\mathbf{X}^2)^k{}_{n} d^{lmn} d_{ijk}. \end{aligned}$$

Italia**domani**

• Singlet ansatz: take only $\mathbf{1}_H$ -directions in \mathbb{R}^{650}

- ightarrow self-consistent ansatz
- ightarrow need to solve only $\partial_{1_{\rm H}}V = 0$, other directions automatic
- \rightarrow compute **all** masses with $\partial_i \partial_j V$
- → For local minimum: masses positive or would-be Goldstones

INFN

Trinification has two singlets in 650:

Trinification has two singlets in 650:

$$\rightarrow V(s,a) = -\frac{1}{2}M^2(s^2 + a^2) - \frac{1}{2}m s(s^2 - 3a^2) + \frac{1}{4}\lambda (s^2 + a^2)^2$$

 \rightarrow *m* and λ : lin. combinations of *m_i* and λ_i

Trinification has two singlets in 650:

$$\rightarrow V(s,a) = -\frac{1}{2}M^2(s^2 + a^2) - \frac{1}{3}m s(s^2 - 3a^2) + \frac{1}{4}\lambda (s^2 + a^2)^2$$

 \rightarrow *m* and λ : lin. combinations of *m_i* and λ_i

- \rightarrow 3-fold rotational symmetry
- → 3 degenerate minima: preserve LR, CL or CR parity in $SU(3)_C \times SU(3)_L \times SU(3)_R$

Trinification has two singlets in 650:

$$\rightarrow V(s,a) = -\frac{1}{2}M^2(s^2 + a^2) - \frac{1}{3}m\,s(s^2 - 3a^2) + \frac{1}{4}\lambda\,(s^2 + a^2)^2$$

 \rightarrow *m* and λ : lin. combinations of *m_i* and λ_i

- \rightarrow 3-fold rotational symmetry
- → 3 degenerate minima: preserve LR, CL or CR parity in $SU(3)_C \times SU(3)_L \times SU(3)_R$
- Cases with one *H*-singlet:

Trinification has two singlets in 650:

$$\rightarrow V(s,a) = -\frac{1}{2}M^2(s^2 + a^2) - \frac{1}{3}m s(s^2 - 3a^2) + \frac{1}{4}\lambda (s^2 + a^2)^2$$

 \rightarrow *m* and λ : lin. combinations of *m_i* and λ_i

- \rightarrow 3-fold rotational symmetry
- → 3 degenerate minima: preserve LR, CL or CR parity in $SU(3)_C \times SU(3)_L \times SU(3)_R$
- Cases with one *H*-singlet:

 $ightarrow\,$ In $V({f X})$ we can take ${f X}= imes {f 1}_H$

Trinification has two singlets in 650:

$$\rightarrow V(s,a) = -\frac{1}{2}M^2(s^2 + a^2) - \frac{1}{3}m\,s(s^2 - 3a^2) + \frac{1}{4}\lambda\,(s^2 + a^2)^2$$

 \rightarrow *m* and λ : lin. combinations of *m_i* and λ_i

- \rightarrow 3-fold rotational symmetry
- → 3 degenerate minima: preserve LR, CL or CR parity in $SU(3)_C \times SU(3)_L \times SU(3)_R$
- Cases with one *H*-singlet:
- $\rightarrow \text{ In } V(\mathbf{X}) \text{ we can take } \mathbf{X} = x \mathbf{1}_{H}$ $\rightarrow V(x) = -\frac{1}{2}M^{2}x^{2} \frac{1}{3}m_{H}x^{3} + \frac{1}{4}\lambda_{H}x^{4}$ $\rightarrow m_{H} = \sum \alpha_{i}m_{i}, \ \lambda_{H} = \sum \beta_{i}\lambda_{i} \text{ are } H \text{-dependent}$

Trinification has two singlets in 650:

$$\rightarrow V(s,a) = -\frac{1}{2}M^2(s^2 + a^2) - \frac{1}{3}m\,s(s^2 - 3a^2) + \frac{1}{4}\lambda\,(s^2 + a^2)^2$$

 \rightarrow *m* and λ : lin. combinations of *m_i* and λ_i

- \rightarrow 3-fold rotational symmetry
- → 3 degenerate minima: preserve LR, CL or CR parity in $SU(3)_C \times SU(3)_L \times SU(3)_R$
- Cases with one H-singlet:
- $\rightarrow \text{ In } V(\mathbf{X}) \text{ we can take } \mathbf{X} = x \mathbf{1}_H$ $\rightarrow V(x) = -\frac{1}{2}M^2 x^2 \frac{1}{3}m_H x^3 + \frac{1}{4}\lambda_H x^4$
 - $\rightarrow m_H = \sum \alpha_i m_i, \ \lambda_H = \sum \beta_i \lambda_i$ are H-dependent
 - → Minimize V(x) analytically (easy): we get solutions for SU(6) × SU(2), SO(10) × U(1), F₄, G₂ × SU(3).

INFN

(3)

(4) Realistic E_6 model: $650 \oplus 27 \oplus 351'$

12 / 20 Vasja Susič (LNF, INFN) Trinification from a "realistic" E_6 GUT model

Field content:	
[2403.20278]	fer
L J	~ ~ ~

fermions:	3 × 27 _F
scalars:	$\textbf{650} \oplus \textbf{27} \oplus \textbf{351}'$

- Field content:fermions: $3 \times 27_F$ [2403.20278]scalars: $650 \oplus 27 \oplus 351'$
- Symmetry breaking in 2 steps:

(4)

${\sf Realistic} \ {\rm E}_6 \ {\sf model} - {\sf setup}$

- Field content: [2403.20278] fermions: $3 \times 27_F$ scalars: $650 \oplus 27 \oplus 351'$
- Symmetry breaking in 2 steps:

Renormalizable Yukawa sector: 2 symmetric matrices

 $\mathcal{L}_{Y} = 27_{F} \, 27_{F} \, 27_{F} \, 27_{F} \, 351'^{*}$

(4)

Realistic E_6 model — setup

- Field content: [2403.20278] fermions: $3 \times 27_F$ scalars: $650 \oplus 27 \oplus 351'$
- Symmetry breaking in 2 steps:

Renormalizable Yukawa sector: 2 symmetric matrices

 $\mathcal{L}_{Y} = 27_{F} \, 27_{F} \, 27_{F} \, 27_{F} \, 351'^{*}$

• Choice of scalars: $\mathbf{27} \otimes \mathbf{27} = \mathbf{27}_s \oplus \mathbf{351'}_s \oplus \mathbf{351}_a$

Realistic E_6 model — setup

- Field content: [2403.20278] fermions: $3 \times 27_F$ scalars: $650 \oplus 27 \oplus 351'$
- Symmetry breaking in 2 steps:

Renormalizable Yukawa sector: 2 symmetric matrices

 $\mathcal{L}_{Y} = 27_{F} \, 27_{F} \, 27_{F} \, 27_{F} \, 351'^{*}$

(4)

- Choice of scalars: $\mathbf{27} \otimes \mathbf{27} = \mathbf{27}_s \oplus \mathbf{351'}_s \oplus \mathbf{351}_a$
- Realistic, analog of the SO(10) case: $16_F 16_F 16_F 16_F \overline{126}$

Realistic E_6 model — symmetry breaking and SM embeddings

• Breaking pattern to SM: $E_6 \xrightarrow{\langle 650 \rangle} H \xrightarrow{\langle 27,351' \rangle} G_{SM}$

Realistic E_{6} model — symmetry breaking and SM embeddings

- Breaking pattern to SM: $E_6 \xrightarrow{\langle 650 \rangle} H \xrightarrow{\langle 27,351' \rangle} G_{SM}$
- Considerations for intermediate *H*-vacua:
 - (a) SM group can be **embedded** differently into intermediate symmetry
 - (b) Unification cannot happen yet at intermediate scale (bottom-up RGE)

Realistic E_{6} model — symmetry breaking and SM embeddings

- Breaking pattern to SM: $E_6 \xrightarrow{\langle 650 \rangle} H \xrightarrow{\langle 27,351' \rangle} G_{SM}$
- Considerations for intermediate *H*-vacua:

(a) SM group can be **embedded** differently into intermediate symmetry

(b) Unification cannot happen yet at intermediate scale (bottom-up RGE)

■ Viable *H*-vacua leading to *G*_{SM}:

name	intermediate symmetry	viable?
trinification	${ m SU}(3)_C imes { m SU}(3)_L imes { m SU}(3)_R$	✓✓✓ (LR,CL,CR)
standard flipped LR-flipped	$\begin{array}{l} {\rm SU(6)}_{\textit{CL}} \times {\rm SU(2)}_{\textit{R}} \\ {\rm SU(6)}_{\textit{CL}} \times {\rm SU(2)}_{\textit{R}'} \\ {\rm SU(6)}_{\textit{CR}} \times {\rm SU(2)}_{\textit{L}} \end{array}$	$\frac{}{-}$ unifies in SU(6)
standard flipped	$egin{array}{l} { m SO(10)} imes { m U(1)} \ { m SO(10)'} imes { m U(1)'} \end{array}$	— unifies in SO(10)

 ${\sf Realistic} \ {\sf E}_6 \ {\sf model} - {\sf Yukawa} \ {\sf sector}$

• Yukawa sector Lagrangian:

 $\mathcal{L} \supset \mathbf{Y}_{27} \ \mathbf{27}_{F}{}^{i} \ \mathbf{27}_{F}{}^{j} \ \mathbf{27}^{k} \ d_{ijk} + \mathbf{Y}_{351'} \ \mathbf{27}_{F}{}^{i} \ \mathbf{27}_{F}{}^{j} \ \mathbf{351'}{}^{*}{}_{ij} + h.c.$ (5)

 ${\sf Realistic} \ {\sf E}_6 \ {\sf model} - {\sf Yukawa} \ {\sf sector}$

• Yukawa sector Lagrangian:

 $\mathcal{L} \supset \mathbf{Y}_{27} \ \mathbf{27}_{F}{}^{i} \ \mathbf{27}_{F}{}^{j} \ \mathbf{27}^{k} \ d_{ijk} + \mathbf{Y}_{351'} \ \mathbf{27}_{F}{}^{i} \ \mathbf{27}_{F}{}^{j} \ \mathbf{351'}{}^{*}{}_{ij} + h.c.$ (5)

 \blacksquare Y_{27} and $Y_{351'}$ are symmetric $\mathbb{C}^{3\times 3}.$ Family indices suppressed.

Realistic E_6 model — Yukawa sector

• Yukawa sector Lagrangian:

 $\mathcal{L} \supset \mathbf{Y}_{27} \ \mathbf{27}_{F}{}^{i} \ \mathbf{27}_{F}{}^{j} \ \mathbf{27}^{k} \ d_{ijk} + \mathbf{Y}_{351'} \ \mathbf{27}_{F}{}^{i} \ \mathbf{27}_{F}{}^{j} \ \mathbf{351'}{}^{*}{}_{ij} + h.c.$ (5)

 \blacksquare \textbf{Y}_{27} and $\textbf{Y}_{351'}$ are symmetric $\mathbb{C}^{3\times3}.$ Family indices suppressed.

Explicit fermion mass matrices 'ude' (with EW and *M*_I-scale VEVs)

$$\mathcal{L}_{ude} = (u)^{T} \left(-\mathbf{Y}_{27} \mathbf{v}_{7}^{*} + \frac{1}{\sqrt{15}} \mathbf{Y}_{351'} \mathbf{v}_{8}^{*} \right) (u^{c}),$$

$$+ \begin{pmatrix} d^{c} \\ d^{\prime c} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{27} \mathbf{v}_{1}^{*} - \frac{1}{\sqrt{15}} \mathbf{Y}_{351'} \mathbf{v}_{2}^{*} & \mathbf{Y}_{27} \mathbf{V}_{1} + \frac{1}{\sqrt{15}} \mathbf{Y}_{351'} \mathbf{W}_{1}^{*} \\ -\mathbf{Y}_{27} \mathbf{v}_{4}^{*} + \frac{1}{\sqrt{15}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} & -\mathbf{Y}_{27} \mathbf{V}_{2} + \frac{1}{\sqrt{15}} \mathbf{Y}_{351'} \mathbf{W}_{2}^{*} \end{pmatrix} \begin{pmatrix} d \\ d^{\prime} \end{pmatrix}$$

$$+ \begin{pmatrix} e \\ e^{\prime} \end{pmatrix}^{T} \begin{pmatrix} -\mathbf{Y}_{27} \mathbf{v}_{1}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{2}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{3}^{*} & \mathbf{Y}_{27} \mathbf{V}_{1} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{1}^{*} \\ \mathbf{Y}_{27} \mathbf{v}_{4}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} & -\mathbf{Y}_{27} \mathbf{V}_{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{2}^{*} \end{pmatrix} \begin{pmatrix} e^{c} \\ e^{c'} \end{pmatrix}$$

Realistic E_6 model — Yukawa sector

Yukawa sector Lagrangian:

 $\mathcal{L} \supset \mathbf{Y}_{27} \ \mathbf{27}_{F}{}^{i} \ \mathbf{27}_{F}{}^{j} \ \mathbf{27}^{k} \ d_{ijk} + \mathbf{Y}_{351'} \ \mathbf{27}_{F}{}^{i} \ \mathbf{27}_{F}{}^{j} \ \mathbf{351'}{}^{*}{}_{ij} + h.c.$ (5)

 \blacksquare \textbf{Y}_{27} and $\textbf{Y}_{351'}$ are symmetric $\mathbb{C}^{3\times3}.$ Family indices suppressed.

Explicit fermion mass matrices 'ude' (with EW and *M*_I-scale VEVs)

$$\mathcal{L}_{ude} = (u)^{T} \left(-\mathbf{Y}_{27}\mathbf{v}_{7}^{*} + \frac{1}{\sqrt{15}}\mathbf{Y}_{351'}\mathbf{v}_{8}^{*} \right) (u^{c}),$$

$$+ \begin{pmatrix} d^{c} \\ d^{\prime c} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{27}\mathbf{v}_{1}^{*} - \frac{1}{\sqrt{15}}\mathbf{Y}_{351'}\mathbf{v}_{2}^{*} & \mathbf{Y}_{27}V_{1} + \frac{1}{\sqrt{15}}\mathbf{Y}_{351'}W_{1}^{*} \\ -\mathbf{Y}_{27}\mathbf{v}_{4}^{*} + \frac{1}{\sqrt{15}}\mathbf{Y}_{351'}\mathbf{v}_{5}^{*} & -\mathbf{Y}_{27}V_{2} + \frac{1}{\sqrt{15}}\mathbf{Y}_{351'}W_{2}^{*} \end{pmatrix} \begin{pmatrix} d \\ d^{\prime} \end{pmatrix}$$

$$+ \begin{pmatrix} e \\ e^{\prime} \end{pmatrix}^{T} \begin{pmatrix} -\mathbf{Y}_{27}\mathbf{v}_{1}^{*} - \frac{1}{2}\sqrt{\frac{3}{5}}\mathbf{Y}_{351'}\mathbf{v}_{2}^{*} + \frac{1}{2}\mathbf{Y}_{351'}\mathbf{v}_{3}^{*} & \mathbf{Y}_{27}V_{1} - \frac{1}{2}\sqrt{\frac{3}{5}}\mathbf{Y}_{351'}W_{1}^{*} \\ \mathbf{Y}_{27}\mathbf{v}_{4}^{*} + \frac{1}{2}\sqrt{\frac{3}{5}}\mathbf{Y}_{351'}\mathbf{v}_{5}^{*} + \frac{1}{2}\mathbf{Y}_{351'}\mathbf{v}_{6}^{*} & -\mathbf{Y}_{27}V_{2} - \frac{1}{2}\sqrt{\frac{3}{5}}\mathbf{Y}_{351'}W_{2}^{*} \end{pmatrix} \begin{pmatrix} e^{c} \\ e^{c} \end{pmatrix}$$

• Exotics at M_I , SM fermions at EW. Mixing: (d^c, d'^c) and (e, e').

Vasja Susič (LNF, INFN) Trinification from a "realistic" E_6 GUT model

Explicit fermion mass matrices for neutrinos

$$\begin{aligned} \mathcal{L}_{\nu} &= \tag{7} \\ \begin{pmatrix} \nu \\ \nu' \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{27} v_{7} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} v_{8} - \frac{1}{2} \mathbf{Y}_{351'} v_{9} & -\frac{1}{\sqrt{2}} \mathbf{Y}_{351'} v_{11} & \mathbf{Y}_{27} v_{1} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} W_{1}^{*} \\ & -\frac{1}{\sqrt{2}} \mathbf{Y}_{351'} v_{10} & -\mathbf{Y}_{27} v_{7} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} v_{9} - \mathbf{Y}_{27} \mathbf{V}_{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} W_{2}^{*} \end{pmatrix} \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix} \\ & + \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{351'} W_{3}^{*} & \frac{1}{\sqrt{2}} \mathbf{Y}_{351'} W_{4}^{*} & -\mathbf{Y}_{27} v_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} v_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} v_{6}^{*} \\ & -\frac{1}{\sqrt{2}} \mathbf{Y}_{351'} W_{4}^{*} & \mathbf{Y}_{351'} W_{6}^{*} & \mathbf{Y}_{27} v_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} v_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} v_{6}^{*} \\ & -\mathbf{Y}_{27} v_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} v_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} v_{6}^{*} & \mathbf{Y}_{27} v_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} v_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} v_{6}^{*} \\ & n \end{pmatrix} \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix} \end{aligned}$$

Explicit fermion mass matrices for neutrinos

$$\begin{aligned} \mathcal{L}_{\nu} &= \tag{7} \\ \begin{pmatrix} \nu \\ \nu' \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{27} \mathbf{v}_{7} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{8} - \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{9} & -\frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{v}_{11} & \mathbf{Y}_{27} \mathbf{V}_{1} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{1}^{*} \\ & -\frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{v}_{10} & -\mathbf{Y}_{27} \mathbf{v}_{7} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{9} - \mathbf{Y}_{27} \mathbf{V}_{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{2}^{*} \end{pmatrix} \begin{pmatrix} \nu^{c} \\ n \\ \nu^{c} \end{pmatrix} \\ &+ \begin{pmatrix} \nu^{c} \\ n \\ \nu^{c} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{351'} \mathbf{W}_{3}^{*} & \frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{W}_{4}^{*} & -\mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \\ & \frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{W}_{4}^{*} & \mathbf{Y}_{351'} \mathbf{W}_{6}^{*} & \mathbf{Y}_{27} \mathbf{v}_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \\ & n \\ \nu^{c} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \nu^{c} \\ n \\ \nu^{c} \end{pmatrix} \end{aligned}$$

Neutrino spectrum:

Explicit fermion mass matrices for neutrinos

$$\mathcal{L}_{\nu} = (7)$$

$$\begin{pmatrix} \nu \\ \nu' \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{27} \mathbf{v}_{1} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{0} - \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{1} & \mathbf{Y}_{27} \mathbf{Y}_{1} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{1}^{*} \\ - \frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{v}_{10} & -\mathbf{Y}_{27} \mathbf{v}_{7} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{9} - \mathbf{Y}_{27} \mathbf{V}_{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{2}^{*} \end{pmatrix} \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix}$$

$$+ \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{251'} \mathbf{W}_{3}^{*} & \frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{W}_{4}^{*} & -\mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \\ - \mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \mathbf{Y}_{27} \mathbf{v}_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} \\ - \mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \mathbf{Y}_{27} \mathbf{v}_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} \\ - \mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \mathbf{Y}_{27} \mathbf{v}_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} \\ 0 \end{pmatrix} \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix}$$

- Neutrino spectrum:
 - ightarrow Heavy vector-like neutrino pair at M_l : $(\alpha
 u + \beta
 u') \oplus
 u'^c$

Explicit fermion mass matrices for neutrinos

$$\mathcal{L}_{\nu} = (7)$$

$$\begin{pmatrix} \nu \\ \nu' \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{27} \mathbf{v}_{1} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{0} - \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{1} & \mathbf{Y}_{27} \mathbf{Y}_{1} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{1}^{*} \\ -\frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{v}_{10} & -\mathbf{Y}_{27} \mathbf{v}_{7} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{0} - \mathbf{Y}_{27} \mathbf{v}_{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{2}^{*} \end{pmatrix} \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix}$$

$$+ \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{351'} \mathbf{W}_{3}^{*} & \frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{W}_{3}^{*} & -\mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \\ - \mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} & \mathbf{Y}_{27} \mathbf{v}_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \\ n \\ \nu^{C} \end{pmatrix} \begin{pmatrix} \nu^{C} \\ n \\ - \mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} + \mathbf{Y}_{27} \mathbf{v}_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{2}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \\ n \\ \nu^{C} \end{pmatrix}$$

- Neutrino spectrum:
- ightarrow Heavy vector-like neutrino pair at M_l : $(\alpha
 u + \beta
 u') \oplus
 u'^c$
- $\rightarrow~{\rm Dirac}$ terms between $\{\nu,\nu'\}$ and $\{\nu^c,n\}$

Majorana terms for $\{\nu^c, n\}$

Explicit fermion mass matrices for neutrinos

$$\begin{aligned} \mathcal{L}_{\nu} &= \tag{7} \\ \begin{pmatrix} \nu \\ \nu' \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{27} \mathbf{v}_{1} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{6} - \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{9} & -\frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{v}_{11} & \mathbf{Y}_{27} \mathbf{V}_{1} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{1}^{*} \\ -\frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{V}_{10} & -\mathbf{Y}_{27} \mathbf{v}_{7} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{9} - \mathbf{Y}_{27} \mathbf{V}_{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{W}_{2}^{*} \end{pmatrix} \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix} \\ &+ \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{Y}_{351'} \mathbf{W}_{3}^{*} & \frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{W}_{4}^{*} & -\mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \\ & \frac{1}{\sqrt{2}} \mathbf{Y}_{351'} \mathbf{W}_{4}^{*} & \mathbf{Y}_{351'} \mathbf{W}_{5}^{*} & \mathbf{Y}_{27} \mathbf{v}_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} \\ & n \\ (\nu^{C}) \\ & -\mathbf{Y}_{27} \mathbf{v}_{4}^{*} - \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{6}^{*} \mathbf{Y}_{27} \mathbf{v}_{1}^{*} + \frac{1}{2} \sqrt{\frac{3}{5}} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} + \frac{1}{2} \mathbf{Y}_{351'} \mathbf{v}_{5}^{*} \\ & n \\ (\nu^{C}) \end{pmatrix} \end{pmatrix} \begin{pmatrix} \nu^{C} \\ n \\ \nu^{C} \end{pmatrix} \end{aligned}$$

- Neutrino spectrum:
- ightarrow Heavy vector-like neutrino pair at M_l : $(\alpha
 u + \beta
 u') \oplus
 u'^c$
- → Dirac terms between $\{\nu, \nu'\}$ and $\{\nu^c, n\}$ Majorana terms for $\{\nu^c, n\}$

$$\rightarrow$$
 Seesaw type I: $(-\beta^*\nu + \alpha^*\nu')$ at EW^2/M_I

 $\{\nu^c, n\}$ at M_I

Simplification of mass matrices:

if breaking at M_I preserves spinorial parity ψ (choice of vacuum)

Simplification of mass matrices:

if breaking at $\textit{M}_{\textit{I}}$ preserves **spinorial parity** ψ (choice of vacuum)

(a) vanishing spinorial VEVs (in 16 or 144 of ${\rm SO}(10) \subset {\rm E}_6)$:

$$V_1 = W_{1,4} = v_{4,5,6,10,11} = 0.$$
(8)

Simplification of mass matrices:

if breaking at $\textit{M}_{\textit{I}}$ preserves **spinorial parity** ψ (choice of vacuum)

(a) vanishing spinorial VEVs (in 16 or 144 of ${\rm SO}(10) \subset {\rm E}_6)$:

$$V_1 = W_{1,4} = v_{4,5,6,10,11} = 0.$$
 (8)

(b) no $(16_F, 10_F)$ mixing in SO(10) language

Simplification of mass matrices:

if breaking at $\textit{M}_{\textit{I}}$ preserves **spinorial parity** ψ (choice of vacuum)

(a) vanishing spinorial VEVs (in 16 or 144 of $\mathrm{SO}(10) \subset \mathrm{E}_6)$:

$$V_1 = W_{1,4} = v_{4,5,6,10,11} = 0.$$
(8)

(b) no $(16_F, 10_F)$ mixing in SO(10) language (c) Can give a DM candidate: lightest ψ -odd (1, 2, +1/2) scalar

Realistic E_6 model — spinorial parity

Simplification of mass matrices:

if breaking at $\textit{M}_{\textit{I}}$ preserves **spinorial parity** ψ (choice of vacuum)

(a) vanishing spinorial VEVs (in 16 or 144 of $\mathrm{SO}(10) \subset \mathrm{E}_6)$:

$$V_1 = W_{1,4} = v_{4,5,6,10,11} = 0.$$
(8)

(b) no $(\mathbf{16}_F, \mathbf{10}_F)$ mixing in SO(10) language

- (c) Can give a DM candidate: lightest ψ -odd (1,2,+1/2) scalar
- Simplified mass matrices for SM fermions: (1,1)-blocks

$$\mathbf{m}_{u} = -\mathbf{Y}_{27}\mathbf{v}_{7} + \frac{1}{\sqrt{15}}\mathbf{Y}_{351'}\mathbf{v}_{8},\tag{9}$$

$$\mathbf{m}_{d} = \mathbf{Y}_{27} \, \mathbf{v}_{1}^{*} - \frac{1}{\sqrt{15}} \mathbf{Y}_{351'} \, \mathbf{v}_{2}^{*}, \tag{10}$$

$$\mathbf{m}_{e} = -\mathbf{Y}_{27}\mathbf{v}_{1}^{*} - \frac{1}{2}\mathbf{Y}_{351'}(\sqrt{3/5}\,\mathbf{v}_{2}^{*} - \mathbf{v}_{3}^{*}),\tag{11}$$

$$\mathbf{m}_{\nu} = -\left(\mathbf{Y}_{27}\mathbf{v}_{7} + \frac{1}{2}\mathbf{Y}_{351'}(\sqrt{3/5}\,\mathbf{v}_{8} - \mathbf{v}_{9})\right)\left(\mathbf{Y}_{351'}\mathbf{W}_{3}^{*}\right)^{-1}\left(\mathbf{Y}_{27}\mathbf{v}_{7} + \frac{1}{2}\mathbf{Y}_{351'}(\sqrt{3/5}\,\mathbf{v}_{8} - \mathbf{v}_{9})\right)^{T}, \quad (12)$$

Realistic E_6 model — spinorial parity

Simplification of mass matrices:

if breaking at $\textit{M}_{\textit{I}}$ preserves **spinorial parity** ψ (choice of vacuum)

(a) vanishing spinorial VEVs (in 16 or 144 of $\mathrm{SO}(10) \subset \mathrm{E}_6)$:

$$V_1 = W_{1,4} = v_{4,5,6,10,11} = 0.$$
(8)

(b) no $(16_F, 10_F)$ mixing in SO(10) language

- (c) Can give a DM candidate: lightest ψ -odd (1,2,+1/2) scalar
- Simplified mass matrices for SM fermions: (1,1)-blocks

$$\mathbf{m}_{u} = -\mathbf{Y}_{27}\mathbf{v}_{7} + \frac{1}{\sqrt{15}}\mathbf{Y}_{351'}\mathbf{v}_{8},\tag{9}$$

$$\mathbf{m}_{d} = \mathbf{Y}_{27} \, \mathbf{v}_{1}^{*} - \frac{1}{\sqrt{15}} \mathbf{Y}_{351'} \, \mathbf{v}_{2}^{*}, \tag{10}$$

$$\mathbf{m}_{e} = -\mathbf{Y}_{27}\mathbf{v}_{1}^{*} - \frac{1}{2}\mathbf{Y}_{351'} \left(\sqrt{3/5} \, \mathbf{v}_{2}^{*} - \mathbf{v}_{3}^{*}\right),\tag{11}$$

$$\mathbf{m}_{\nu} = -\left(\mathbf{Y}_{27}\mathbf{v}_7 + \frac{1}{2}\mathbf{Y}_{351'}(\sqrt{3/5}\,\mathbf{v}_8 - \mathbf{v}_9)\right)\left(\mathbf{Y}_{351'}\mathbf{W}_3^*\right)^{-1}\left(\mathbf{Y}_{27}\mathbf{v}_7 + \frac{1}{2}\mathbf{Y}_{351'}(\sqrt{3/5}\,\mathbf{v}_8 - \mathbf{v}_9)\right)^T, \quad (12)$$

• Works! Analogous to SO(10) fit with $10 \oplus 126$ [Ohlsson'19].

16 / 20 Vasja Susič (LNF, INFN) Trinification from a "realistic" E₆ GUT model

${\sf Realistic} \ {\rm E}_6 \ {\sf model} - {\sf unification} \ {\sf analysis}$

• EFT for each viable *H*-vacuum (RGE: $\mu \in [M_I, M_U]$)

${\sf Realistic} \ {\rm E}_6 \ {\sf model} \ - {\sf unification} \ {\sf analysis}$

- EFT for each viable *H*-vacuum (RGE: $\mu \in [M_I, M_U]$)
 - (1) assume extended survival hypothesis (ESH):
 - \rightarrow scalars at intermediate scale only those needed for 2nd stage symmetry breaking or SM Higgs (or both)

${\sf Realistic} \ {\rm E}_6 \ {\sf model} \ - {\sf unification} \ {\sf analysis}$

- EFT for each viable *H*-vacuum (RGE: $\mu \in [M_I, M_U]$)
 - (1) assume extended survival hypothesis (ESH):
 - \rightarrow scalars at intermediate scale only those needed for 2nd stage symmetry breaking or SM Higgs (or both)
 - (2) assume spinorial parity \mathbb{Z}_2^{ψ}

${\sf Realistic} \ {\rm E}_6 \ {\sf model} \ - {\sf unification} \ {\sf analysis}$

- EFT for each viable *H*-vacuum (RGE: $\mu \in [M_I, M_U]$)
 - (1) assume extended survival hypothesis (ESH):
 - → scalars at intermediate scale only those needed for 2nd stage symmetry breaking or SM Higgs (or both)
 (2) assume spinorial parity Z^ψ₂
- After careful considerations... the effective models are:

vacuum	scalars with $ESH + \mathbb{Z}_2^\psi$	vacuum	scalars with $ESH + \mathbb{Z}_2^\psi$
$3_C 3_L 3_R \rtimes LR$	$2\times(1,\overline{\textbf{3}},\textbf{3})+(\textbf{1},\overline{\textbf{6}},\textbf{6})$	6 _{CL} 2 _R	$(15,1) + (\overline{21},3) + (\overline{6},2) + (84,2)$
$3_C 3_L 3_R \rtimes CL$	$2 \times (1, \overline{3}, 3) + (1, \overline{6}, 6)$	6 _{CR} 2 _L	$(15,1) + (\overline{105'},1) + (\overline{6},2) + (84,2)$
	$+2 \times (3, 1, 3) + (6, 1, 6)$	10' 1'	(16, +1) + (126, +2) + (10, -2)
$3_C 3_L 3_R \rtimes CR$	$2 \times (1,3,3) + (1,6,6)$		
	$+2 \times (\mathbf{J}, \mathbf{J}, \mathbf{I}) + (\mathbf{U}, \mathbf{U}, \mathbf{I})$		

${\sf Realistic} \ {\rm E}_6 \ {\sf model} - {\sf unification} \ {\sf results}$

■ Unification: bottom-up via 2-loop RGE

Realistic E_{6} model — unification results

- Unification: bottom-up via 2-loop RGE
 - $\rightarrow\,$ intermediate symmetry determines intermediate scale
 - $\rightarrow~$ limited threshold effects

${\sf Realistic} \ {\rm E}_6 \ {\sf model} - {\sf unification} \ {\sf results}$

- Unification: bottom-up via 2-loop RGE
 - $\rightarrow\,$ intermediate symmetry determines intermediate scale
 - \rightarrow limited threshold effects

${\sf Realistic} \ {\rm E}_6 \ {\sf model} - {\sf unification} \ {\sf results}$

- Unification: bottom-up via 2-loop RGE
 - \rightarrow intermediate symmetry determines intermediate scale
 - \rightarrow limited threshold effects

Vasja Susič (LNF, INFN)

18 / 20

Trinification from a "realistic" E₆ GUT model

Proton decay in the E_{6} model

■ Gauge mediators of proton decay in E₆: *X*, *X'*, *X''*

label	$3_{C}2_{L}1_{Y}$	${\rm SU}(5)$	SO(10)	${\rm E_6}$
X	(3, 2, -5/6)	24	45	78
X'	(3, 2, +1/6)	10	45	78
Χ″	(3, 2, +1/6)	10	16	78

Proton decay in the E_{6} model

- Gauge mediators of proton decay in E₆: *X*, *X'*, *X''*
- Spinorial parity Z₂^ψ:
 → X" is irrelevant for *p*-decay

label	$3_{C}2_{L}1_{Y}$	SU(5)	SO(10)	Е 6
Х	(3, 2, -5/6)	24	45	78
X'	(3, 2, +1/6)	10	45	78
Χ″	(3, 2, +1/6)	10	16	78

19 / 20

Proton decay in the E_{6} model

- Gauge mediators of proton decay in E₆: *X*, *X*′, *X*″
- Spinorial parity Z₂^ψ:
 → X" is irrelevant for *p*-decay

label	$3_{C}2_{L}1_{Y}$	SU(5)	SO(10)	E_{6}
Х	(3, 2, -5/6)	24	45	78
X'	(3, 2, +1/6)	10	45	78
Χ″	(3, 2, +1/6)	10	16	78

Expected *p*-decay lifetime: 1-, 2-, $3-\sigma$ intervals

Proton decay in the E_{6} model

- Gauge mediators of proton decay in E₆: *X*, *X*′, *X*″
- Spinorial parity Z₂^ψ:
 → X" is irrelevant for *p*-decay

label	$3_{C}2_{L}1_{Y}$	SU(5)	SO(10)	${\rm E}_{6}$
Х	(3, 2, -5/6)	24	45	78
X'	(3, 2, +1/6)	10	45	78
Χ″	(3, 2, +1/6)	10	16	78

Expected *p*-decay lifetime: 1-, 2-, $3-\sigma$ intervals

19 / 20

Proton decay in the E_6 model

- Gauge mediators of proton decay in E₆: *X*, *X*′, *X*″
- Spinorial parity Z₂^ψ:
 → X" is irrelevant for *p*-decay

label	$3_{C}2_{L}1_{Y}$	SU(5)	SO(10)	Е 6
X	(3, 2, -5/6)	24	45	78
X'	(3, 2, +1/6)	10	45	78
Χ″	(3, 2, +1/6)	10	16	78

Expected *p*-decay lifetime: 1-, 2-, 3- σ intervals

- In all 3 viable unification scenarios: M_X = M_{X'} = M_{GUT}
- Vary scalar spectrum by 1 order of magnitude around matching scale(s) for threshold effects

Proton decay in the E_6 model

- Gauge mediators of proton decay in E₆: X. X'. X''
- Spinorial parity \mathbb{Z}_2^{ψ} : $\rightarrow X''$ is irrelevant for *p*-decay

label	$3_{C}2_{L}1_{Y}$	SU(5)	SO(10)	Е 6
X	(3, 2, -5/6)	24	45	78
X'	(3, 2, +1/6)	10	45	78
Χ″	(3, 2, +1/6)	10	16	78

Expected *p*-decay lifetime: 1-, 2-, $3-\sigma$ intervals

- In all 3 viable unification scenarios: $M_X = M_{X'} = M_{GUT}$
- Vary scalar spectrum by 1 order of magnitude around matching scale(s) for threshold effects
- Large uncertainties in τ_{p^+} $(M_{GUT} \text{ varies with spectrum})$

Vasia Susič (LNF, INFN)

(5) Conclusions

20 / 20 Vasja Susič (LNF, INFN) Trinification from a "realistic" E_6 GUT model

- (1) E_6 is an interesting candidate for GUT
 - $\rightarrow\,$ novel possibilities for intermediate symmetry
 - $\rightarrow\,$ requires scalar irrep 650 for these to be accessible

- (1) E_6 is an interesting candidate for GUT
 - $\rightarrow\,$ novel possibilities for intermediate symmetry
 - $\rightarrow\,$ requires scalar irrep 650 for these to be accessible
- (2) Realistic model constructed (symmetry breaking, Yukawa sector): fermions: $3 \times 27_F$ scalars: $650 \oplus 27 \oplus 351'$

- (1) E_6 is an interesting candidate for GUT
 - $\rightarrow\,$ novel possibilities for intermediate symmetry
 - $\rightarrow\,$ requires scalar irrep 650 for these to be accessible
- (2) Realistic model constructed (symmetry breaking, Yukawa sector): fermions: $3 \times 27_F$ scalars: $650 \oplus 27 \oplus 351'$
- (3) 3 vacua of novel symmetries
 compatible with unification and proton decay: (assuming extended survival hypothesis and spinorial parity)

- (1) E_6 is an interesting candidate for GUT
 - $\rightarrow\,$ novel possibilities for intermediate symmetry
 - $\rightarrow\,$ requires scalar irrep 650 for these to be accessible
- (2) Realistic model constructed (symmetry breaking, Yukawa sector): fermions: $3 \times 27_F$ scalars: $650 \oplus 27 \oplus 351'$
- (3) 3 vacua of novel symmetries
 compatible with unification and proton decay: (assuming extended survival hypothesis and spinorial parity)

(a)
$$\mathrm{SU}(3)_{\mathcal{C}} \times \mathrm{SU}(3)_{\mathcal{L}} \times \mathrm{SU}(3)_{\mathcal{R}} \rtimes \mathbb{Z}_2^{\mathcal{LR}}$$

(b)
$$\operatorname{SU}(3)_C \times \operatorname{SU}(3)_L \times \operatorname{SU}(3)_R \rtimes \mathbb{Z}_2^{CR}$$

(c) $SU(6)_{CR} \times SU(2)_L$

- (1) E_6 is an interesting candidate for GUT
 - $\rightarrow\,$ novel possibilities for intermediate symmetry
 - $\rightarrow\,$ requires scalar irrep 650 for these to be accessible
- (2) Realistic model constructed (symmetry breaking, Yukawa sector): fermions: $3 \times 27_F$ scalars: $650 \oplus 27 \oplus 351'$
- (3) 3 vacua of novel symmetries

compatible with unification and proton decay: (assuming extended survival hypothesis and spinorial parity)

(a)
$$\mathrm{SU}(3)_C \times \mathrm{SU}(3)_L \times \mathrm{SU}(3)_R \rtimes \mathbb{Z}_2^{LR}$$

(b)
$$\operatorname{SU}(3)_C \times \operatorname{SU}(3)_L \times \operatorname{SU}(3)_R \rtimes \mathbb{Z}_2^{CR}$$

(c) $SU(6)_{CR} \times SU(2)_L$

Thank you for your attention!

0 Vasja Susič (LNF, INFN) Trinification from a "realistic" E₆ GUT model