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The LARASE and SaToR-G experiments

The LAser RAnged Satellites Experiment (LARASE, 2013-2019) and Satellite Tests of Relativistic
Gravity (SaToR-G, started on 2020) are two experiments devoted to measurements of the
gravitational interaction in the Weak-Field and Slow-Motion (WFSM) limit of General
Relativity (GR) by means of laser tracking to geodetic passive satellites orbiting around the
Earth. The two experiments were and are funded by the Italian National Institute for
Nuclear Physics (INFN-CSN2).

In particular, SaToR-G aims to test gravitation beyond the predictions of Einstein’s Theory of GR
searching for effects foreseen by alternative theories of gravitation (ATG) and possibly connected
with ‘’new physics’’.

SaToR-G builds on the improved dynamical model of the two LAGEOS and LARES satellites achieved
within the previous project LARASE.

The improvements concern the modeling of both gravitational and non-gravitational perturbations.



The LARASE and SaToR-G experiments

From the analysis of satellite orbits it is possible to obtain a series of measurements of gravitational
effects with consequent constraints on different theories of gravitation. The main measures include:

1. Relativistic precessions
2. Constraints on long-range interactions
3. Nonlinearity of the gravitational interaction
4. Local Lorentz Invariance
5. Equivalence Principle
6. …

From these measurements it is possible to obtain constraints on the parametrized post-Newtonian
(PPN) parameters and their combinations.

The ultimate goal is to provide precise and accurate measures, in the sense of a robust and reliable
evaluation of systematic errors, in order to obtain significant constraints for the different theories.



The LARASE and SaToR-G experiments

Weak Equivalence Principle (WEP)
• two different bodies fall with the same acceleration: Universality of the Free Fall (UFF)

• the inertial mass is proportional to the gravitational (passive) mass

• the trajectory of a freely falling “test” body is independent of its internal structure and composition

• in every local and non-rotating falling frame, the trajectory of a freely falling test body is a straight line, in
agreement with special relativity

Einstein Equivalence Principle (EEP)
• WEP

• Local Lorentz Invariance (LLI)
❑ The outcome of any local non-gravitational experiment is independent of the velocity of the freely-falling reference frame in

which it is performed

• Local Position Invariance (LPI)
❑ The outcome of any local non-gravitational experiment is independent of where and when in the universe it is performed

Clifford M. Will, Theory and Experiment in Gravitational Physics. Cambridge University Press, Ed. 1981 and Ed. 2018



The LARASE and SaToR-G experiments

Metric theories
• GR is a metric theory of gravitation and all metric theories obey the EEP

• Indeed, the experimental results supporting the EEP supports the conclusion that the only
theories of gravity that have a hope of being viable are metric theories, or possibly theories that
are metric apart from very weak or short-range non-metric couplings (as in string theory):

1. there exist a symmetric metric
2. tests masses follow geodesics of the metric
3. in Local Lorentz Frames, the non-gravitational laws of physics are those of Special

Relativity
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The LARASE and SaToR-G experiments

The parametrized post-Newtonian (PPN) formalism
• Post-Newtonian formalism or PPN formalism details the parameters in which different

metric theories of gravity, under WFSM conditions, can differ from Newtonian gravity.

Nordtvedt, K. Equivalence Principle for Massive Bodies. II. Theory. Phys. Rev. 1968, 169, 1017–1025
Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post-Newtonian Hydrodynamics, and the Nordtvedt Effect. Astrophys. J. 1971, 163, 611–628
Will, C.M.; Nordtvedt, K. Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972, 177, 757–774

Consequently, the natural theoretical framework to test gravitation will be that of the Parameterized
Post-Newtonian (PPN) formalism.

However, we also try to apply, as far as possible, the approach suggested by R. H. Dicke more than 50
years ago, usually referred to as the Dicke framework:

• this is a fairly general framework that allows us to conceive experiments not connected, a priori, with
a given physical theory and also provides a way to analyze the results of an experiment under
primary hypotheses.

Dicke, R.H. The Theoretical Significance of Experimental Relativity; Blackie and Son Ltd.: London/Glasgow, UK, 1964



The LARASE and SaToR-G experiments
The parametrized post-Newtonian (PPN) formalism

• One way to test a theory of gravitation is by studying its post-Newtonian limit
• Post-Newtonian formalism or PPN formalism details the parameters in which

different metric theories of gravity, under WFSM conditions, can differ from
Newtonian gravity

Metric

Stress-Energy Tensor

Metric 
Potentials

C.M. Will Living Rev. Relativity, 17, (2014), 4



The LARASE and SaToR-G experiments

In 1971, Thorne and Will remarked that:

• “ . . . It is important for the future that experimenters concentrate not only on
measuring the PPN parameters. They should also perform new experiments within
the Dicke framework to strengthen—or destroy—the foundation it lays for the PPN
framework . . . ”

D. Lucchesi, L. Anselmo, M. Bassan, et al., Testing Gravitational Theories in the Field of the Earth with the SaToR-G 
Experiment. Universe 7, 192, https://doi.org/10.3390/universe7060192, 2021

Thorne, K.S.; Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. I. Foundations. Astrophys. J. 1971, 163, 595

We analyzed these aspects in more detail in 2021 in the paper introducing the SaToR-G experiment:



The LARASE and SaToR-G experiments

Gravity theories different from GR provide additional fields beside the metric tensor g, that act as
“new” gravitational fields:

• Scalar

• Vector

• Tensor

The role of these gravitational fields is to “mediate” how the matter and the non-gravitational fields
generate the gravitational fields and produce the metric.

In Metric theories different from GR
• spacetime geometry tells mass-energy how to move as in GR

• but mass-energy tells spacetime geometry how to curve in a
different way from GR

• the metric alone acts back on the mass in agreement with EEP
as in GR.



The predictions of GR on the orbits of geodetic satellites, which play the role of test
masses, will be compared with those of ATG both metric and non-metric in their
essence.

LARES (ASI, 2012)LAGEOS (NASA, 1976) LAGEOS II (ASI/NASA, 1992)

The LARASE and SaToR-G experiments



The geodetic satellites are tracked with very high accuracy
through the powerful Satellite Laser Ranging (SLR) technique.

The SLR represents a very impressive and powerful technique to
determine the round–trip time between Earth–bound laser
Stations and orbiting passive (and not passive) satellites.

The time series of range measurements are then a record of the
motions of both the end points: the Satellite and the Station.

Thanks to the accurate modelling of both gravitational and
non–gravitational perturbations on the orbit of these satellites
⎯ less than 1 cm in range accuracy ⎯ we are able to
determine their Keplerian elements with about the same
accuracy.

The precision of the measurement depends mainly from the laser pulse width, about
110−10 s ⎯ 310−11 s

SLR, POD and Models
Matera (ASI-CGS)



SLR, POD and Models

ilrs.gsfc.nasa.gov

The ILRS (International Laser Ranging Service) supports laser ranging measurements to geodetic,
remote sensing, navigation, and experimental satellites equipped with retroreflector arrays as well
as to reflectors on the Moon.



SLR, POD and Models
Precise Orbit Determination (POD) has the goal of accurately determining the position and velocity
vectors of an orbiting satellite.

To achieve this objective, precise observations of the satellite's motion and a dynamic model of the
orbit as accurate as possible are necessary.

With these two ingredients it is possible to
compute the observable to be minimized in a
least squares process.

In the case of SLR, this observable is a quadratic
function of the range residuals R:

ℛ𝑖 = 𝑂𝑖 − 𝐶𝑖



SLR, POD and Models
Currently, we are using the following software in our POD:

• GEODYN II (NASA/GSFC)
• SATAN (NSGF, UK) in collaboration with “Observatorio de YEBES” (Spain) (under test)
• Bernese (Univ. Berna, CH)

1. From a least squares fit of the tracking data by means of
an appropriate dynamic model, the estimate of the state
vector of the satellite over 7-day arcs is obtained.

2. Then from an appropriate comparison between the state
vector estimated at the beginning of each arc with the
state vector estimated at the beginning of the previous
arc but propagated at the same epoch, the residuals in
the orbital elements are obtained: Δ Ԧ𝑥𝑟𝑒𝑠 = Ԧ𝑥𝑒𝑠𝑡 − Ԧ𝑥𝑝𝑟𝑜

D. Lucchesi, G. Balmino, The LAGEOS satellites orbital residuals
determination and the Lense–Thirring effect measurement. Plan. and
Space Science, doi:10.1016/j.pss.2006.03.001 , 2006



SLR, POD and Models
POD and Models for  the two LAGEOS and LARES satellites

GEODYN II s/w
❑ Arc length, 7 days
❑ General Relativity: not modeled
❑ Empirical accelerations, CR, …: not estimated
❑ Non-gravitational perturbations: internal and external
❑ Gravity field: from GRACE and GRACE-FO solutions
❑ State-vector adjusted to best fit the tracking data
❑ …



SLR, POD and Models

1. Gravitational perturbations (GPs)
2. Non-gravitational perturbations (NGPs).

The dynamic model aims to reconstruct the position and velocity of the satellite taking into account
three main aspects:

1. gravitational perturbations
2. non-gravitational perturbations
3. reference systems.

We will focus on the first two points:
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In particular we are interested in knowing the effects of these perturbations on some orbital elements,
those characterized by secular effects produced by GR, as:

• Argument of pericenter, 𝝎
• Right ascension of the ascending node, 𝜴
• Mean anomaly, M



SLR, POD and Models

The GR model for the accelerations

with: 

Huang et al., Celest. Mech. & Dyn. Astron. 48, 1990

Where, capital letters refer to position, velocity,
acceleration and mass in the barycentric
reference frame, while small letters refer to the
same quantities in the non–inertial geocentric
reference system (E=Earth, S=Sun)

Einstein or Schwarzschild component 

De Sitter (or geodetic) component 

Lense–Thirring component 

Relativistic perturbations 
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SLR, POD and Models

The Earth’s potential development in spherical harmonics
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SLR, POD and Models

For instance, the Einstein-Thirring-Lense precession is very small compared to
the classical precession of the orbit due to the deviation from the spherical
symmetry for the distribution of the Earth's mass, or even compared to the
same relativistic Schwarzschild precession produced by the mass of the
primary (≈ 3350 mas/yr for LAGEOS)
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The even zonal harmonics ҧ𝐶ℓ0 are responsible of a secular effect



SLR, POD and Models

From GRACE Temporal Solutions 
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SLR, POD and Models

From GRACE Temporal Solutions 
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SLR, POD and Models
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Systematic 
error

∆ഥ𝑪ℓ,𝟎  ⇒ ∆ ሶ𝛀𝑳𝑻
𝒔𝒚𝒔

 𝒂𝒏𝒅 ∆ ሶ𝝎𝑳𝑻
𝒔𝒚𝒔

∆ ҧ𝐶10,0

ҧ𝐶10,0

From GRACE Temporal Solutions 

March 14, 2012

ሶ𝜔𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑐 = −
3

4
𝑛

𝑅⨁

𝑎

2 1 − 5𝑐𝑜𝑠2𝑖

1 − 𝑒2 2
ቄ− 5 ҧ𝐶2,0 + ⋯

ሶ𝜔𝑆𝑐ℎ𝑤 =
3 𝐺𝑀⨁

Τ3 2

𝑐2 𝑎 Τ5 2 1 − 𝑒2
= 3352.58 Τ𝑚𝑎𝑠 𝑦𝑟

𝑉 𝑟, 𝜑, 𝜆 = −
𝐺𝑀⨁

𝑟
1 + 

ℓ=2

∞



𝓂=0

ℓ
𝑅⨁

𝑟

ℓ

𝑃ℓ𝓂 sin 𝜑 ҧ𝐶ℓ𝓂 cos 𝓂𝜆 + ҧ𝑆ℓ𝓂 sin 𝓂𝜆

ሶΩ𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑐
= −

3

2
𝑛

𝑅⨁

𝑎

2 cos 𝑖

1 − 𝑒2 2
ቄ− 5 ҧ𝐶2,0 + ⋯

ሶΩ𝐿𝑇 =
2𝐺

𝑐2𝑎3

𝐽⨁

1 − 𝑒2 Τ3 2



SLR, POD and Models
In recent years, as part of the previous experiment LARASE, we have developed several models to
take into account some perturbations of non-gravitational origin acting on the LAGEOS, LAGEOS II
and LARES satellites:

• Spin model
• General model for thermal thrust forces due to the Sun and the Earth (to be published)
• Neutral drag model

M. Visco, D. Lucchesi, Review and critical analysis of mass and moments of inertia of the LAGEOS and LAGEOS II satellites for the 
LARASE program. Adv. in Space Res. 57, 044034 doi:10.1016/j.asr.2016.02.006, 2016
M. Visco, D. Lucchesi, Comprehensive model for the spin evolution of the LAGEOS and LARES satellites. Phys. Rev. D 98, 044034 
doi:10.1103/PhysRevD.98.044034, 2018
Pardini, C.; Anselmo, L.; Lucchesi, D.M.; Peron, R., On the secular decay of the LARES semi-major axis. Acta Astronautica 2017,
140, 469–477. doi:10.1016/j.actaastro.2017.09.012



SLR, POD and Models

LAGEOS

• The two LAGEOS have almost the same oblateness of about
0.04

• LARES is practically spherical in shape, even if an oblateness
as small as 0.002 is however possible

M. Visco, D. Lucchesi, Review and critical analysis of mass and moments of inertia of the LAGEOS and LAGEOS II satellites for the LARASE 
program. Adv. in Space Res. 57, 044034 doi:10.1016/j.asr.2016.02.006, 2016



SLR, POD and Models

Documents on LAGEOS
• NASA, 1975. LAGEOS Phase B Technical Report, NASA Technical Memorandum X-64915. Technical Report TMX-

64915. Marshall Space Flight Center. Marshall Space Flight Center, Alabama 35812. February 1975
• Siry, J.W., 1975. The LAGEOS system. Technical Report TM-X-73072. NASA
• LAGEOS Press Kit, 1976. NASA (1976) Project LAGEOS Press Kit release 76/67. Technical Report 76/67. NASA. 

National Aeronautics and Space Administration, Washington, DC
• Fitzmaurice, M.W., Minott, P.O., Abshire, J.B., Rowe, H.E., 1977. Prelaunch Testing of the Laser Geodynamic

Satellite. Technical Report TP-1062. NASA
• Wong, C., 1978. Watching the Earth move from space. Sky Telesc., 198–202

Documents on LAGEOS II
• Cogo, F., 1988. Weight discrepancy analysis between LAGEOS 1 and LAGEOS 2 satellites. Technical Report LG-TN-

AI-035. Aeritalia
• Fontana, F., 1989. Physical properties of LAGEOS II satellite. Technical Report LG-TN-AI-037. Aeritalia
• Fontana, F., 1990. Physical properties of LAGEOS II satellite. Technical Report LG-TN-AI-037. Aeritalia
• Minott, P.O., Zagwodzki, T.W., Varghese, T., Seldon, M., 1993. Prelaunch Optical Characterization of the Laser

Geodynamic Satellite (LAGEOS 2). Technical Report 3400. NASA Technical Paper 3400. National Aeronautics and
Space Administration, Washington, DC

M. Visco, D. Lucchesi, Review and critical analysis of mass and moments of inertia of the LAGEOS and LAGEOS II satellites for the LARASE 
program. Adv. in Space Res. 57, 044034 doi:10.1016/j.asr.2016.02.006, 2016



SLR, POD and Models

Spin Orientation: , 
LArase Satellites Spin mOdel Solutions (LASSOS)

LASSOS Spin Model: results for LAGEOS II

Andrés de la Fuente, J.I., 
2007. Enhanced 
Modelling of LAGEOS 
Non-Gravitational 
Perturbations (Ph.D. 
thesis). Delft University 
Press. Sieca Repro, 
Turbineweg 20, 2627 BP 
Delft, The Netherlands.
Kucharski, D., Lim, H.C., 
Kirchner, G., Hwang, J.Y., 
2013. Spin parameters of 
LAGEOS-1 and LAGEOS-2 
spectrally determined 
from Satellite Laser 
Ranging data. Adv. Space 
Res. 52, 1332–1338.

Blue = LASSOS model for the rapid-spin 
Red = LASSOS general model



SLR, POD and Models

LArase Satellites Spin mOdel Solutions (LASSOS)

LASSOS Spin Model: results for LAGEOS II

Andrés de la Fuente, J.I., 
2007. Enhanced 
Modelling of LAGEOS 
Non-Gravitational 
Perturbations (Ph.D. 
thesis). Delft University 
Press. Sieca Repro, 
Turbineweg 20, 2627 BP 
Delft, The Netherlands.
Kucharski, D., Lim, H.C., 
Kirchner, G., Hwang, J.Y., 
2013. Spin parameters of 
LAGEOS-1 and LAGEOS-2 
spectrally determined 
from Satellite Laser 
Ranging data. Adv. Space 
Res. 52, 1332–1338.

Blue = LASSOS model for the rapid-spin 
Red = LASSOS general model

Rotational Period: P



Local Lorentz Invariance

LLI states that the outcome of any local (in space and time) non-gravitational experiment is independent of the velocity
of the freely-falling reference frame in which the experiment is performed.

Modern unification theories suggest that the gravitational long-range interaction between macroscopic bodies may be

mediated, not only by the metric tensor field g of GR but also by other fields, as scalar, vector, or tensor fields.

More generally, besides GR, any metrically coupled tensor-scalar theory of gravitation does not predict any violation of
local boost invariance. This is for example the case of the Brans-Dicke theory of gravitation which predicts the existence
of a scalar field .

However, in the case of theories that contain vector fields or other tensor fields, in addition to the metric tensor g, one

expects that the global distribution of matter in the Universe to select a preferred rest frame for the local gravitational

interaction.

In this case the physical laws could be different from a moving observer with respect to a stationary one, as well as

from the orientation...

Local Lorentz Invariance (LLI) represents a pillar of the Standard Model (SM) of particles and fields as well as of Einstein’s 
theory of General Relativity (GR).



From the phenomenological point of view, and in the framework of the Parametrized-Post Newtonian (PPN) formalism
[1,2,3], valid in the weak-field and slow-motion (WFSM) limit of GR, the Preferred Frame Effects (PFE) are described by
the parameters α1, α2 and α3, all equal to zero in GR and in tensor-scalar theories of gravity.

In particular, in the case of the interaction of N ideal test masses, the Lagrangian depends on the two parameters α1 and
α2, that, if different from zero, will provide non-boost invariant terms depending on the velocities (𝒗𝑎

0) of the test masses
with respect to some gravitationally preferred rest frame [4]:

In theories of gravity with LLI holds, while in theories with or with       LLI is violated.  ቊ
𝒈𝝁𝝂

𝝓 ቊ
𝒈𝝁𝝂

𝑲𝝁
ቊ

𝒈𝝁𝝂

𝑪𝝁𝝂

1. Nordtvedt, K. Equivalence Principle for Massive Bodies. II. Theory. Phys. Rev. 1968, 169, 1017–1025
2. Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post-Newtonian Hydrodynamics, and the Nordtvedt Effect. Astrophys. J. 1971, 163, 611–628
3. Will, C.M.; Nordtvedt, K. Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972,
177, 757–774
4. Damour, T.; Esposito-Farese. G. Testing for preferred-frame effects in gravity with artificial Earth satellites. Phy. Rev. D 1994, 49, 4, 1693-1706

ℒ𝑁 = ℒ𝛽,𝛾,𝜂 + ℒ𝛼1
+ ℒ𝛼2

ℒ𝛼1
= −

𝛼1

4𝑐2


𝑎≠𝑏

𝐺𝑚𝑎𝑚𝑏

𝑟𝑎𝑏
𝒗𝑎

0 ∙ 𝒗𝑏
0
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ℒ𝑁 = ℒ𝛽,𝛾,𝜂 + ℒ𝛼1
+ ℒ𝛼2

Local Lorentz Invariance is a key ingredient of the Equivalence Principle.  

Einstein Equivalence Principle (EEP)
valid in GR and in all metric theories of gravity:

1. WEP
2. LLI
3. LPI

Strong Equivalence Principle (SEP)
valid in GR:

1. GWEP
2. LLI
3. LPI

GWEP = Gravitational Weak Equivalence Principle. It means that WEP is valid for self-gravitating bodies as well as for
test bodies.

𝐺𝑎𝑏 = G 1 + 𝜂
𝐸𝑎

𝑔𝑟𝑎𝑣

𝑚𝑎𝑐2
+

𝐸𝑏
𝑔𝑟𝑎𝑣

𝑚𝑏𝑐2

𝜂 = 4𝛽 − 𝛾 − 3 − 𝛼1 + 2
3𝛼2 𝛽 = 𝛾 = 1 in GRNordtvedt effect

𝛼1 = 𝛼2 = 0

Local Lorentz Invariance



LLI and, consequently, PFE, are well tested in the context of high-energy physics experiments but are much more difficult
to test in the context of gravitation, both in the weak-field regime and in the strong- or quasi-strong-field regime.

Local Lorentz Invariance



In 1994, Damour and Esposito-
Farese have shown that the
orbits of some artificial satellites
have the potential to provide
improvements in the limit of the
1 parameter down to the 10−6

level, thanks to the appearance
of small divisors which enhance
the corresponding PFE.

Local Lorentz Invariance



In our analysis:

• we concentrated upon the yearly oscillation of the longitude (𝜔 + 𝑀) of the LAGEOS II satellite
• as gravitationally preferred rest frame we consider that of the cosmic background radiation
• w represents the speed of the Sun with respect to this reference frame with orientation given by the

following ecliptic coordinates (𝜆𝑃𝐹 , 𝛽𝑃𝐹):

ℒ𝛼1
= −

𝛼1

4𝑐2


𝑎≠𝑏

𝐺𝑚𝑎𝑚𝑏

𝑟𝑎𝑏
𝒗𝑎

0 ∙ 𝒗𝑏
0

ℒ𝛼1
= −

𝛼1

2𝑐2

𝐺𝑀⨁𝑚𝑠

𝑟⨁𝑠
𝒗⨁ + 𝒘 ∙ 𝒗𝑠 + 𝒗⨁ + 𝒘

𝒗𝑠
0 = 𝒗𝑠 + 𝒗⨁ + 𝒘

𝑤 = 368 ± 2
𝑘𝑚

𝑠
ቊ

𝜆𝑃𝐹 = 171°. 55
𝛽𝑃𝐹 = −11°. 13
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From Lagrange’s perturbative equations we are able to extract the perturbative effect of a possible PFE on the rate of the
argument of pericenter and on the rate of the mean anomaly of the satellite.

ሶ𝝎 + ሶ𝑴
𝜶𝟏

= −𝜶𝟏𝟐𝒏
𝒘𝒗⨁

𝒄𝟐
𝒄𝒐𝒔 𝜷𝑷𝑭 𝒔𝒊𝒏 𝒏⨁𝒕 − 𝝀𝑷𝑭 + ⋯

𝑑𝜔

𝑑𝑡
=

1 − 𝑒2

𝑛𝑎2𝑒

𝜕𝑅

𝜕𝑒
−

cot 𝑖

𝑛𝑎2 1 − 𝑒2

𝜕𝑅

𝜕𝑖

𝑑𝑀

𝑑𝑡
= −

2

𝑛𝑎

𝜕𝑅

𝜕𝑎
−

1 − 𝑒2

𝑛𝑎2𝑒

𝜕𝑅

𝜕𝑒

We finally obtain:

𝑛 =
𝐺𝑀⨁

𝑎3

R  represents the perturbing funtion
𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑀  are the keplerian elements

𝑛 represents the satellite mean motion:

If PFEs exist, the quantity ሶ𝜔 + ሶ𝑀
𝛼1

must be present in the residuals of the two elements obtained from the

satellite POD.
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POD of the LAGEOS II satellite

• GEODYN II s/w
❑ Timespan of 10311 days (about 28.3 years)
❑ Arc length: 7 days
❑ General Relativity: not modeled
❑ Empirical accelerations, CR, …: not estimated
❑ Non-gravitational perturbations: internal and external
❑ Gravity field: from GRACE solutions
❑ State-vector adjusted to best fit the tracking data
❑ …

Local Lorentz Invariance



Procedure in the time domain to extract the constraint in the PPN parameter 1.

ሶ𝝎 + ሶ𝑴
𝜶𝟏

= −𝜶𝟏𝟐𝒏
𝒘𝒗⨁

𝒄𝟐
𝒄𝒐𝒔 𝜷𝑷𝑭 𝒔𝒊𝒏 𝒏⨁𝒕 − 𝝀𝑷𝑭 + ⋯ = 𝜶𝟏𝑲 sin 𝒏⨁𝒕 − 𝝀𝑷𝑭 + ⋯

1. From the POD we estimated the satellite state-vector for each arc
2. From the state-vectors we obtain the residuals in the rate of the orbital elements: ሶ𝜔 and ሶ𝑀
3. From these residuals we build our gravitational observable: ሶ𝜔 + ሶ𝑀
4. We remove from the observable the predictions of the unmodeled relativistic precessions of GR
5. We Pass-Band filter this new (corrected) observable around the yearly frequency
6. We apply a Lock-in to these data at the expected frequency (the annual one) for the effect described by

the 1 parameter and linked to the existence of the PFE due to the cosmic background radiation
7. We calculate the mean from this last operation and from this mean, suitably renormalized, we extract

the value of the PPN parameter 1.

𝑲 = −𝟐𝒏
𝒘𝒗⨁

𝒄𝟐 𝒄𝒐𝒔 𝜷𝑷𝑭
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Residuals in the two observables after the POD Relativistic precessions in the two observables

Local Lorentz Invariance

𝑑𝜔

𝑑𝑡
=

1 − 𝑒2

𝑛𝑎2𝑒

𝜕𝑅

𝜕𝑒
−

cot 𝑖

𝑛𝑎2 1 − 𝑒2

𝜕𝑅

𝜕𝑖

𝑑𝑀

𝑑𝑡
= −

2

𝑛𝑎

𝜕𝑅

𝜕𝑎
−

1 − 𝑒2

𝑛𝑎2𝑒

𝜕𝑅

𝜕𝑒



Residuals in the observable ሶ𝜔 + ሶ𝑀 FFT of the Residuals in the observable

365.25 d
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Residuals in the observable after Pass-Band filtering FFT of the Residuals in the observable
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Lock-in analysis

𝐬𝐢𝐧 𝒏⨁𝒕 − 𝝀𝑷𝑭 ∙ ሶ𝜔 + ሶ𝑀
𝒓𝒆𝒔

= 𝛼1 K 𝒔𝒊𝒏 𝒏⨁𝒕 − 𝝀𝑷𝑭
𝟐 + ⋯

sin 𝛼 sin 𝛽 =
1

2
cos 𝛼 − 𝛽 − cos 𝛼 + 𝛽

sin 𝛼 sin 𝛼 =
1

2
1 − cos 2𝛼

sin 𝛼 cos 𝛽 =
1

2
sin 𝛼 − 𝛽 + sin 𝛼 + 𝛽

If α=β, as in our case, a part of the signal goes in continuous (DC) and a part at twice the annual frequency.

ሶ𝝎 + ሶ𝑴
𝜶𝟏

= 𝜶𝟏𝑲 sin 𝒏⨁𝒕 − 𝝀𝑷𝑭 + ⋯ 𝑲 = −𝟐𝒏
𝒘𝒗⨁

𝒄𝟐 𝒄𝒐𝒔 𝜷𝑷𝑭

Lock-in analysis, in this case more properly a homodyne analysis (phase sensitive detection), is mathematically
based on Werner's trigonometric formulas:

Local Lorentz Invariance



Lock-in analysis

 182.63 d

𝜶𝟏 = ሶ𝝎 + ሶ𝑴
𝒓𝒆𝒔

𝟐

𝑲
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𝛼1 = +1.57 × 10−6

Preliminary result for the PPN parameter 1 and constraints to alternative theories of
gravitation:

1. This result represents the first constraint in 1 in the field of the Earth based on a pure gravitational experiment.
2. The result obtained, although preliminary, confirms the validity of the LLI for gravity and strongly constrains possible

PFEs and, consequently, vector-tensor theories of gravity, at least in the WFSM limit of GR: Einstein-Æther theory.

Local Lorentz Invariance



𝛼1 = +1.57 × 10−6

Preliminary result for the PPN parameter 1 and constraints to alternative theories of
gravitation:

1. This result represents the first constraint in 1 in the field of the Earth based on a pure gravitational experiment.
2. The result obtained, although preliminary, confirms the validity of the LLI for gravity and strongly constrains possible

PFEs and, consequently, vector-tensor theories of gravity, at least in the WFSM limit of GR: Einstein-Æther theory.
3. We have also performed a sensitivity analysis on the value of the PPN parameter α1 by constructing a distribution of

its values as the Lock-in frequency and signal phase vary randomly on a sample of 10^5 values each. We
consequently obtained a two-parameter distribution of 1 for evaluating the possible violation signal of GR.

𝛼1 = 1.4 × 10−7 rms (𝛼1) = 𝜎 𝛼1 ≅ 6.850 × 10−5

median (𝛼1)= 1.5 × 10−7

max(𝛼1)= +1.1283 × 10−4

min(𝛼1)= −1.1283 × 10−4

Results from the sensitivity analysis:

Local Lorentz Invariance



Sensitivity analysis:
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Preliminary error budget for the systematic errors:

1. Gravitational field (quadrupole)

2. Solid tides

3. Ocean tides

4. Non-Gravitational Perturbations:

𝛿𝛼1 ≅ 1.6 × 10−5

𝛿𝛼1 < 9 × 10−10

Very preliminary evaluation of the measure on the constraint to the parameter α1:

𝛼1 = +1.6 × 10−6 ± 7 × 10−5

𝛿𝛼1 ≲ 2 × 10−7
𝛿𝛼1 ≅ 1.6 × 10−5

From the measure From the distribution

𝛿𝛼1 ≅ 0

Local Lorentz Invariance



𝛼1 = +1.6 × 10−6 ± 7 × 10−5 With SLR data from LAGEOS II longitude, 2023

𝛼1 = −7 × 10−5 ± 9 × 10−5 With LLR data from the oscillations of the Earth-Moon distance, 2008

ො𝛼1 = −4 × 10−6 ± 4 × 10−5 From binary Pulsar data, 2012

L. Shao, N. Wex, New tests of Local Lorentz invariance of gravity with small-eccentricity binary pulsars. Class. Quantum Grav. 29, 
2012.

Müller J, Williams J G and Turyshev S G, 2008. Lunar laser ranging contributions to relativity and geodesy. Lasers, Clocks
and Drag-Free Control: Exploration of Relativistic Gravity in Space (Astrophysics and Space Science Library vol 349) ed H 
Dittus, C Lammerzahl and S G Turyshev p 457.
J. Müller, K. Nordtvedt, D. Vokrouhlický, Improved constraint on the α1 PPN parameter from lunar motion. Phys. Rev. D, 
Vol. 54, No 10, 1996.

Comparison with the literature:
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Conclusions
• Local Lorentz Invariance represents one of the cornerstones of both the standard model (SM) of field and

particle physics and the standard model of gravitation, i.e. of GR. In a sense, LLI represents our current deepest
understanding of the nature of space and time. So, why test LLI?

• A strong motivation in our work is to search for the possible existence (or at least evidence) of new physics
beyond GR. We mentioned the possible existence of additional fields that come into play in mediating the
gravitational interaction and that could couple to matter in such a way, in some cases, that they violate Lorentz
invariance.

• Therefore, in this work we have presented and discussed a test of LLI, and its possible violation, in the
gravitational sector by exploiting the possible existence of PFE.

𝛼1 = +1.6 × 10−6 ± 7 × 10−5

• The result we have obtained further constrains the possible existence of a preferred frame for local gravitational
physics and, consequently, that of theories of gravitation described, in addition to the metric tensor of GR, by
the presence of additional fields of tensor and/or vector nature, such as for example the case of Einstein-aether
theory, i.e. of vector-tensor theories of gravitation.

• Consequently, this new result represents a first constraint on LLI through a weak-field gravity experiment with a
satellite orbiting the Earth.
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