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The presentation is based on 
an article we published 

Please refer to this link for 
more details: 

https://link.springer.com/
article/10.1140/epjp/
s13360-024-04960-3 

Article EPJP

https://link.springer.com/article/10.1140/epjp/s13360-024-04960-3
https://link.springer.com/article/10.1140/epjp/s13360-024-04960-3
https://link.springer.com/article/10.1140/epjp/s13360-024-04960-3
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N
E We use the LONGITUDE and 

LATITUDE coordinates as North-
East axes for the calculation of the 
rotation vector around Gingerino 
seen from the individual stations

Rotational component from GNSS stations
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Y

Z

X

We use GEOCENTRIC 
coordinates to get GNSS 
station speeds for Curl 
calculation

Curl z-component seen from GNSS stations
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Results 
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Coherence obtained without subtracting the contribution of 
the tides, clear structures emerge with the 2-point fit, these are 
decreasing for multi-point fit because the statistics decrease 
and the signals obtained go under the noise of the Gingerino 
signal.

Coherence achieved through the resolution of tides 
in Gingerino. In this case, the usual tidal peaks are 
reduced, revealing previously hidden structures with 
periods exceeding 20 days.

Fit of linear velocities
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TCN and correlations

We used synthetic sinusoids with different frequencies and starting phases; we also varied their amplitude and mean 
value, or adding Gaussian noise to avoid overfitting; since the real signal always has the same average frequency, the 

network memorizes without generalizing and loses its robustness. Additionally, the network that achieved the best results 
was the one that output both the frequency and the cleaned sinusoid. This strategy ensures that by reconstructing both the 

clean sinusoid and the frequency, the network learns to better correlate the two pieces of information.
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Spreads without 
smoothing

Standard deviation with smoothingSpreads with smoothing

Testing on signals at different frequencies

We compared this NN with a tool implemented in Labview 
based on FFT. We applied these two methods to recover 
frequency from simulated signal with Gaussian noise and a 
frequency range between 150 Hz and 350 Hz. Across the 
entire range, the NN is twice as accurate as the FFT in 
terms of both the standard deviation of the reconstructed 
frequency signal and the spread.
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Filter

Testing on real-signal 

Smoothing

Spread:   16.2 Hz 
:             4.7 Hz 

Spread:   9.1 Hz 
:             2.7 Hz

σ

σ

Spread:   6.8 Hz 
:             2.0 Hz 

Spread:   3.5 Hz 
:             1.0 Hz

σ

σ

Spread:   2.6 Hz 
:             0.8 Hz 

Spread:   2.0 Hz 
:             0.6 Hz
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FFT

FFT

FFT

Neural Network 

Neural Network 

Neural Network 
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FFT

Neural Network 
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Test on an earthquake signal

Neural Network 

FFT

Filter

By comparison of the NN with the FFT on a real signal we can see that it does not eliminate or depress 
part of the signal but reduces the effects of low-frequency spuris signals (Completely deleted using a 

Filter), thus improving the noise signal ratio.
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The typical disturbances of the reconstructed signal

Typical disturbance due to laser 
dynamics during the mode jump

Contribution of the 
earthquake of Turkey of 

February 6th
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Structure of the NN classifiers

Although GINGERINO already has systems to classify the goodness of the 
signal and currently has a duty cycle of more than 90%, we are building 
NNs that identify disturbances from the laser. To do this we have as input 
the time series containing these disturbances and as output the mask that 
distinguishes between: 0 the good signal and 1 the anomalies. 
It might seem like a classification problem instead it is a regression 
problem, needing a seq2seq translator.

To create the dataset we have identified hours that present the 
various types of disturbances and divided into many pieces 6 
seconds long at 100 Hz, to each of these we have then associated 
the mask that we then want to be returned by the neural network.
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Map from GIGS to GINGERINO

To have enough examples of earthquakes to train a network to recognize them, we create a network 
that generates the earthquakes seen by a Ring Laser Gyroscope (RLG), starting from the earthquakes 
revealed by GIGS. This is possible because we have a GIGS station co-located with GINGERINO. 
This NN is later applied to other stations similar to GIGS to obtain new examples of earthquakes seen 
by an RLG

Map from GIGS 
to GINGERINO
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THANKS 
FOR YOUR ATTENTION
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We have on the left the Gingerino signal in 
which systematic laser corrections and 
terrestrial rotational componete, including 
polar motion and Chandler wobble 
(obtained from IERS measurements) were 
removed.

On the right we have the Gingerino signal, obtained 
starting from the previous one, in which we solved and 
subtracted the tides through the use of the 
GOTIC2_mod program [2].
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Gingerino Signals

10−11

10−12
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The detection of local deformations is a hot topic in geodesy. In our analysis for the first time a 
comparison between these instruments has been performed, we compare the signal from Gingerino 
with the ones from the GNSS stations, homogeneously selected around the position of Gingerino.

The constellation of GNSS stations
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Since we are solely 
considering the 
stations and their 
positions relative to 
Gingerino, a direct 
comparison 
becomes 
challenging.

Coherence across all time periods
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our focus is on identifying a shared peak among all periods, but 
no clear topographical pattern emerges.

Topographical Trend
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 THEY ARE EVALUATED WITH A 
MONTECARLO METHOD, 

BECAUSE THEY ARE OBTAINED WITH THE 
“DISTANCE” FUNCTION OF MATLAB

σr1
, σθ1

ω1 =
|v1 |
|r1 |

sin(α1 − θ1)

σω1
= ( ∂ω1

∂v1 )
2

σ2
v1

+ ( ∂ω1

∂r1 )
2

σ2
r1

+ ( ∂ω1

∂α1 )
2

σ2
α1

+ ( ∂ω1

∂θ1 )
2

σ2
θ1

v1 = v2
E + v2

N

α1 = arctan ( vN

vE )

Using Gingerino position as the pole, the 
rotational component of each individual 
station is derived and then the rotation 

vector associated to the area circumscribed 
by the stations is obtained by performing a 

weighted average.

Rotational component from GNSS stations
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vi = ti +
∂vi

∂xj
xj = ti + eijxj

eij = ϵij + ωij =
(eij + eji)

2
+

(eij − eji)
2

ωz = ( ∂vx

∂y
−

∂vy

∂x )
The z-component of the curl of the area 

circumscribed by the constellation of stations at 
Gingerino position.

Allmendinger, Richard & Reilinger, Robert & Loveless, John. (2007). Strain and Rotation Rates from GPS in Tibet, Anatolia, and the Altiplano. Tectonics. 

Curl z-component seen from GNSS stations
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It is noteworthy that the 
signals obtained, with two 
different methods, share a 
common feature: they 
exhibit identical 
amplitudes, with some 
points even reaching peak 
values, and display 
coinciding trends.

Comparison between the different methods
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To determine the actual 
degree of coherence 
between the two signals, 
we conducted tests using 
the mscohere function 
along with simulated 
white noises. Employing 
a Monte Carlo 
simulation approach.

Baseline for zero coherence: ''mscohere''
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Signal  + 5e−14sin(wt)
We enhanced the angular 
speeds obtained through 
the already mentioned  
methods by introducing a 
simulated signal that 
exhibited spikes over a 
duration of 7 days. This 
simulated signal had a 
variable amplitude, 
reaching up to two orders 
of magnitude lower than 
the actual signal.

 + 9e−14sin(wt) + 7e−14sin(wt)

 + 2e−13sin(wt)  + 4e−13sin(wt)  + 6e−13sin(wt)

Detection of a synthetic signal at a known frequency
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LET'S PUT Z-AXIS LONG . SO , THE ANGLE BETWEEN THE AXIS OF OUR 
SAGNAC RING AND THE EARTH'S AXIS OF ROTATION, MUST BE PUT EQUAL TO 

 :

̂ur β

θ

fzTot = SΩ⊕[cos(θ) + 2bcos(θ)]

PUTTING Z-AXIS LONG  WE HAVE THAT  

(ATTENTION IS DOWNWARDS) :

̂uθ β = γ = θ +
π
2

fxTot = SΩ⊕[−sen(θ) − asen(θ) + bsen(θ)]

a = 2
m
r

= 1.3918082245(20) × 10−9

Earth's rotation

Earth's rotation

Lense-Thirring effect

Lense-Thirring effectdeSitter effect

S is the scale factor of 
our Sagnac ring

b =
GI

c2r3
= 2.301326(700) × 10−10

γ = θ +
π
2

θ =
π
2

− α

fTOT = SΩ⊕[cos(β) − (a − b)sen(θ)sen(β − θ) + 2bcos(θ)cos(β − θ)]
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GINGER sensitivity 
targets: 1 part out of  

 -  of the Earth's 
rotation  
1 part out of   is the 
fundamental physics 
watershed
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Allan deviation
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