

Ginger data analysis: data analysis for seismology, laser optimization

Simone Castellano

Data production and analysis for seismology, Gingerino sensitivity to noise from human activities

Laser characterization, laser interference optimization

The GINGER experiment, under construction in 2024, is based on Ring Laser Gyroscopes, a particular type of interferometers, exploiting the Sagnac effect

Detect -> Earth motions: seismic events, tides, polar motions -> fundamental physics: Lense Thirring effect, extensions of General Relativity.

The working principle: non reciprocity of two counter-propagating light beams inside a closed path rotating with the Earth **Detection scheme** -> beat-note produced by interference of the two counter propagating beams (Sagnac Effect)

INTRODUCTION: GINGER, prototypes, the working principle

*GINGER, Mathematics and Mechanics of Complex Systems Vol. 11 (2023), No. 2, 203–234, DOI: [10.2140/memocs.2023.11.203](https://doi.org/10.2140/memocs.2023.11.203)

Sagnac Effect and Earth based RLG signal

Earth rotation -> the two counter-propagating cavity modes have slightly different frequency

 $\omega_{\rm s} \propto \Omega$, rotation rate which affects the apparatus: $\omega_s =$

where: A is the area of the ring cavity, L is its perimeter, λ the wavelength of the light, and θ is the angle between the area versor of the ring and the orientation of Ω .

Horizontal RLG $\rightarrow \theta =$ co-latitude Maximum Sagnac Signal (axis parallel to Earth rotation axis) $\rightarrow \theta = 0$

The scale factor:

4 *A typical Sagnac frequency of 280.38 Hz is consistent with an Earth rotation angular velocity of ~* 7.2921 ⋅ 10−5 *rad/s, and Ring Laser gyroscope horizontal within ~mrad.*

$$
=\frac{4A}{\lambda L}\Omega cos(\theta),
$$

for GINGERino, which is horizontal within the ~mrad, the conversion factor between Hz and rad/s is:

The GP2 prototype @INFN-Pisa

In this case, we have an RLG at the maximum Sagnac signal, and

 $S = \frac{10^{-9} \text{ A}}{222 \text{ A}} \approx 2.5276 \cdot 10^6 \text{ Hz/(rad/s)},$ $4 \cdot 1.6^2$ $633 \cdot 10^{-9} \cdot 4 \cdot 1.6$ $\sim 2.5276 \cdot 10^6$

A typical Sagnac frequency of 184 Hz is consistent with an Earth rotation angular velocity of

*[~]*7.2921 ⋅ 10−5 *rad/s.*

E.Maccioni et al., High sensitivity tool for geophysical applications: a geometrically locked ring laser gyroscope, Applied Optics Vol. 61, Issue 31, pp. 9256-9261 (2022) https://doi.org/10.1364/AO.469834

Analysis: Backscattering and "null shift"

- $I_{1,2}$ are the DC level of the mono-beam signals
- $\sim \omega_m$ is the measured beat note
- $I_{S1,S2}$ are the amplitudes of the mono-beam signals demodulated at the Sagnac frequency
- ϵ is the phase difference between the 2 mono-beam signals

Where:

 ω_{s0} is the "fast" approximation of ω_{s} : the 1st order term of ω_{s} , obtainable directly from raw data:

$$
\omega_{s0}=\frac{1}{2}\sqrt{\frac{2I_{S1}I_{S2}\omega_{m}^{2}cos(2\epsilon)}{I_{1}I_{2}}+\omega_{m}^{2}+\frac{\omega_{m}}{2}},
$$

Comparison of ω_m (red), ω_{s0} (green), and ω_s (yellow) on a small portion of data.

Turkey event of 2023-2-6, 1:17 UTC. T(0)= '06-Feb-2023 01:00:00'

- *- 100 Hz bandwidth; 100 Hz decimated data*
- *- DAQs: "Centaur" (2 kHz), "PXI" (5 kHz)*
- *- Delay possibly as short as 1 s*
- *- Frequency range: from 10mHz up to 100Hz, in this frequency range* $\omega_{\scriptscriptstyle \rm S0} \simeq \omega_{\scriptscriptstyle \rm S}$
- *- 2023 data were provided for upload on EIDA*
- *- A plugin is soon implemented for real time data production, in collaboration with A.Govoni - Previous years to be analyzed and provided*

 rad/s

 m/s

Data production and analysis for seismology

For seismology analysis, ω_{s0} *is utilized:* around the Sagnac frequency)

- **GIGS + GINGERino becomes a 4C seismic station:** - correspondence between transverse acceleration a_t and ω_z , in this $\boldsymbol{\omega}_{\mathbf{s}}$ represented by $\omega_{\mathbf{s}0}$: $a_t=2c\omega_z$, where c is the phase velocity of **transverse polarized waves —> estimation of phase velocity, back azimuth**
- **- GINGER will be a 6C seismic station (importance of being colocated with GIGS seismometer)**

www.wcee2024.it

4C EARTHQUAKE RECORDINGS AT GRAN SASSO FOR A BETTER COMPREHENSION OF GROUND **MOTION**

D. Famiani¹, G. De Luca², A. Govoni¹, A. Mercuri¹

G. Carelli^{3,4}, S. Castellano^{4,5}, A. D. V. Di Virgilio⁴, E. Maccioni^{3,4}, P. Marsili^{3,4}

Gingerino appears to be sensitive to local environmental background:

Data from November 26th and 27th, GIGS channels Gingerino, decimated down to 5 Hz.

Gingerino data were selected "good", so they are missing in presence of "split modes".

The hypothesis is that laser works in "split mode" because of the vibrations from human activity @LNGS (i.e. Darkside installation road works), in fact this is visible during day time and not i.e. November 26th, which was Sunday.

Gingerino sensitivity to noise from human activity:

Laser characterization and interference optimization (data utilized in this work are from GP2 @ INFN-Pisa)

Data selection: fringe contrast

Factorization of Fringe Contrast: models

Measurements of beams polarization inside and outside the laser cavity

Ring laser optimization

Measurement of cavity non planarity, beams off-axis

Typical disturbances and data quality

very fast spikes, affecting data for a few seconds

disturbances that last for hours, but can be eliminated or reduced by geometry control or software procedures to restore the correct operation

In figure, the **measured beat note frequency** ω_m , expressed in terms of angular velocity; its mean value is subtracted, **disturbance effects** are visible at the **nano-rad/s** level (equivalent to ~ **a few mHz - 10 mHz**).

Data selection

One of the most utilized parameters for data selection is Fringe Contrast:

$$
C = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}
$$

where I_{max} and I_{min} are the local intensity maxima and minima of the beat note signal. **From light interference:**

$$
I_{min} = I_1 + I_2 - 2 \cdot \sqrt{I_1 \cdot I_2} \cdot \eta_{vis}, \qquad I_{max} = I_1 + I_2 + 2 \cdot \sqrt{I_1 \cdot I_2} \cdot \eta_{vis}
$$

Therefore:
$$
C = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{2 \cdot \sqrt{I_1 \cdot I_2}}{I_1 + I_2}.
$$

Where η_{vis} is a "visibility" parameter, which we will factorize as a product of 2 contributions:

 $\eta_{vis} = \eta_{geom} \cdot \eta_{pol},$

η **from geometrical superimposition of two gaussian beams, and from the interaction between 2 polarization states** *geom ηpol*

 \cdot η_{vis}

Example of data selection utilizing Fringe Contrast

Data selection utilizing fringe contrast is shown, on a dataset of ~20 hours.

Below, contrast is shown, it clearly indicates when the laser is creating a good interference signal.

Above, in correspondence of a valid fringe contrast value, the Earth rotation rate value is well reproduced, the standard deviation of the measured rotation rate is an indicator of data quality

Low duty cycle (GP2 is situated in a disturbed environment)

Model for the geometrical term *ηgeom*

If we consider the beams off-axis as the only contribution to Contrast, we have:

$$
\eta_{geom} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}
$$

i.e. the radius where the fields intensity is $1/e^2$ of its on-axis value.

$$
I_{max} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (e^{-[(x+k)^2 + y^2]} + e^{-[(x-k)^2 + y^2]})^2
$$

$$
I_{min} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (e^{-[(x+k)^2 + y^2]} - e^{-[(x-k)^2 + y^2]})^2
$$

$$
\eta_{geom}=e^{-2k^2}
$$

Model for the polarization term *ηpol*

The most general situation that can be encountered in 2 interfering beams' polarization: elliptical polarization states, with some non-zero angle between the two.

Let us derive η_{pol} for such case. **For the circular case we have:**

$$
{l}=|e{L}\cdot e_{L}^{\ast}|=\frac{1}{2}|(e_{x}+ie_{y})\cdot(e_{x}-ie_{y})|=\frac{1}{2}(e_{x}^{2}+e_{y}^{2})=1
$$

If we turn circular into elliptical polarization states, we have:

$$
a e_x + i b e_y) \cdot (a e_x - i b e_y)| = \frac{1}{2}(a^2 e_x^2 + b^2 e_y^2) = \frac{1}{2}(a^2 + b^2) =
$$

Which gives us a normalization condition for the semi axes of the polarization ellipse. If, at last, we introduce a *β* **angle between the 2 polarization ellipses, we obtain:**

$$
i b e_y) \cdot (a e_x^r - i b e_y^r)| = \sqrt{\cos^2(\beta) + a^2 b^2 \cdot \sin^2(\beta)},
$$

with "a" and "b" representing the polarization ellipse semi axes

In case a = 0 or b = 0 we obtain linear polarization states.

 0^0 - 180 0 laser plane

270

Measurement of the mono-beams polarizations

- **- a full reconstruction of the polarization ellipse from the intensity as a function of the polarizer's angle**
- **- By means of a polarizer and a photodiode**
- **- Procedure fully described in:** Ramonika Sengupta, Brijesh Tripathi, and Asha Adhiya, "Explicit Reconstruction of Polarization Ellipse using Rotating Polarizer", arXiv:2211.15244
- **- the resulting intensity polar graph (left) shows a peanut shape with axes ratio 2:1, indicating ellipse axes ratio ~1.4/1**
- **- Major axis is CCW rotated wrt the perpendicular to** the laser plane of an angle $\phi^{'}$ = (44 ± 17) mrad

A dedicated measurement of the GP2 mono-beams polarization states was performed:

GP2 @INFN-Pisa Experimental setup

Measured polarization ellipse outside the cavity —> inferring polarization states circulating inside the cavity

- **- measurement with a dedicated setup on a test mirror, belonging to the same mounted on GP2.**
- **- A linearly polarized He-Ne beam (632.8 nm) is sent on the mirror at 45° angle, and the induced polarization is measured by means of a polarizer.**
- **-** \rightarrow birefringence χ = (11 ± 1) mrad

(Procedure fully described in: H.R. Bilger, G.E. Stedman and P.V. Wells, "Geometrical dependence of polarisation in near-planar ring lasers", OPTICS COMMUNICATIONS (1990) Vol.80, n.2, Pages 133-137)

Measurement of the angular birefringence:

 \rightarrow anisotropy $\delta = 90 \pm 10$ ppm **—> calculation of non-planarity is performed according to the model with** *δ* ≪ *χ*

For the same test mirrors, we measured values of the transmission coefficients T_s and T_p for S and P **polarization states:**

$$
t_s/t_p = (T_s/T_p)^{1/2} = 0.062 \pm 0.002
$$

$$
\alpha \simeq \phi' \cdot \chi \frac{t_s}{t_p} \cdot \sqrt{2} \simeq (4)
$$

$$
\frac{E_p}{E_s} = \tan(\phi) \simeq \phi = \frac{\alpha}{\chi} \frac{1}{\sqrt{2}}
$$

Cavity:

- **- Non-planarity**
- **- Beams polarization inside**

Interference of beams with linear and elliptical polarization states: GP2 @INFN-Pisa comparisons and results.

Experimental setup

Measured beat note signals acquired at 2 different corners of the RLG at the same time:

to different polarization states. Difference in Contrast, in case of interference between beams with elliptic (a/b~1.4, blue) and linear (orange) polarization states.

—> any differences can be ascribed only

0.78 0.76 Ő 0.74 0.72

 0.7

The behavior of contrast may be explained if we look at the model for *ηpol* When we have beams with linear polarization, we can use the $\lambda/2$ plate rotation with a higher sensitivity, in order to maximize η_{pol}

- The ω_m standard deviation (table below) also confirms that, working with linearly **polarized beams, the interference obtained gives better performances. This is a**

- If we look at Contrast and ω_m parameters: **- Contrast has higher mean value and lower std deviation, if we work with linear polarization states in the interfering beams**
- **measurement of the signal-to-noise ratio.**

Measurement of the beams off-axis

Utilizing data from linearly polarized beams ($\eta_{pol} \simeq 1$), we can calculate η_{geom} , **hence the beams off-axis in units of a (model described in slide 15):**

The beam gaussian profile was registered by using a webcam Encore EN-WB-UHD01.

$$
C = \frac{2 \cdot \sqrt{I_1 I_2}}{I_1 + I_2} \cdot \eta_{geom} \longrightarrow a
$$

$$
r = \sigma \sqrt{2} = 0.54 \pm 0.05 \text{ mm},
$$

$$
d = 2 \cdot a \cdot r
$$

Propagating the error on a and r, d = 0.40 ± 0.0.7 mm

New quantities available for diagnostics:

Double beat note signal Since autumn 2022, two beat note signals are acquired by GINGERino, "S1" and "S2".

- The 2 signals are in phase opposition
- The "difference" signal is used to evaluate the Sagnac frequency
- Detected power is doubled
- The signal-to-noise ratio is expected to be enhanced by a factor $\sqrt{2}$
- Common mode disturbances are cancelled

- *First products:* ω_{s01} *,* ω_{s02} *,* ω_{s0S} *(the latter is the difference between the first two, in phase opposition)*
- *The quantity "resto" :* ω_{s01} *-* ω_{s02}
- *- : phase difference between the 2 beat note signals ϵ*1

Diagnostics

Diagnostics: timing precision

- -Interpretation of the residual as due to time jitter, and evaluation of upper limits, for PXI and Centaur
- -data from PXI and Centaur are synchronized with cross-correlation and then subtracted

Simulations:

-**Simulations of time jitter noise** have been produced,

- by **adding a random noise δt to ideal time intervals**
- -By **injecting such noise in an ideal beat note signal**, it was possible to obtain a **linear relationship** between the standard deviation of the ideal *ωm*

disturbed by the time jitter and the standard deviation of the time jitter:

Subtraction of same ω_m signal from PXI and Centaur

Conclusions and perspectives:

Data for seismology from 2016 will be available on EIDA, $\omega_{\scriptscriptstyle \text{S} 0}$ *, 100 Hz*

A plugin will be implemented for real time data on EIDA

of the beams, and improve the quality of the interference

-
-
- We have capability to characterize a RLG: planarity, alignment, polarization state
- **From the availability of a double beat note signal, the implementation of a more**
- *Measuring time precision issues led to the decision of utilizing a Rb clock, that was installed on Gingerino acquisition by Paolo Marsili and will be in*
- *New achievements in hardware and analysis are in view of the upgrade to Ginger*

advanced and stable data selection is in progress

operation in the very next future