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General Relativity:
foundations and predictions



General Relativity

Describe the gravitational interaction
through the spacetime curvature

v

First theory to successfully pass
the Solar System Tests

In a static and spherically
Symmetric background

Schwarzschild | Solution
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* Black Holes
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* lense Thirring Effect

This effect predicted by GR can be obtained starting from a Kerr-like metric

ds® = A(t,r,0)dt> + B(t,r,0)dr> + C(t,r,0)d0*> +~ D(t,r,0)sin? 0dd? + E(t,r,0)dt do
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General Relativity:
shortcomings



Shortcomings of GR

Large Scales No theory is capable of solving
these problems at once so far

Universe accelerated expansion

Inflation

Galaxy Rotation Curve

Mass-Radius Diagram of some Neuton Stars
Fine-tuning cosmological parameters
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Small Scales

» Renormalizability

» GR cannot be quantized

» GR cannot be treated under the same
standard of other interactions

» Discrepancy between theoretical
and experimental value of A

» Classical spacetime singularities




Cosmological Level
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Modified Theories of Gravity

Classification Motivations:

* Extended action > f(R) 1. Could account for UV and IR quantum

* Coupling To Scalar fields—> ¢ * R corrections —
* Modified Action » f(T) E
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3. Contains GR as a particular limit . .
: . . 2. Can fit the galaxy rotation curve
4. Reproduce both late and early time cosmic evolutions

Velocity
(km s-1)

20,000 30,000 40,000

. Distance (light years)

5. Predict the right mass-radius relation of some
neutron star without invoking exotic EOS




Modified theories of gravity

* Relax some assumptions of GR

» Equivalence principle /\ » Second-order field equations
S = / V=gF(¢,R,FR,R" R, R""R,,,.) z2€Z
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Examples of Modified Gravity Potentials

Modified Gravity Model

Corrected potential

Yukawa parameters

f(R)
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Is it possible to find out probes and
test-beds for ETGs?

» Geodesic motions around compact objects e.g- SgrA*

> Lense-Thirring effect e —)

» Exact torsion-balance experiments
» Microgravity experiments from atomic physics

» Violation of Equivalence Principle (effective masses related to further
gravitational degrees of freedom)
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Gravity models constrained by GINGER

Horava-Lifshits Gravity
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S = /d“‘;r dt \/—g {,_2 (K;; K7 — AK?)

I'{-z

2w

\_

~N

~ 57 (ViRjkV'iRj" — ViR VIR* — %vmv*ﬁ) }
2/

ds* = N?dt* — g;; (dz* + N'dt) (da? + N7dt)

L

Kij = (gi; — ViN; — V;N;) K2 — ginzij

2N
\_

~N

J

General Scalar-Tensor Gravity
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Why using GINGER to constrain ETGs?

GINGER is an Earth-based apparatus

GINGER provides a measurement: ‘repeateble local here and now’

The conditions of the experiment are controllable

First direct measurement of a Post Newtonian effects on the Earth surface

i dwWiNRE

Experiment based at different latitudes can be compared to improve the
precision of measurements and further constrain the models

Moreover...

» De Sitter and Lense Thirring precessions are the two main effects of GR (and
extensions) on Earth
* Due to the non linearity of GR, measurements at different curvature are required
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General Scalar-Tensor Theory

S= [ V1S (R Rap B, 0) +w(6)VadV ] d'a

Field equations l
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l Klein-Gordon equation
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Explain late and early time evolution without DM and DE
[ Properties: <

Fit the experimental observations at the astrophysical level




Horava-Lifshitz Theory

Theory of quantum gravity capable of
solving the small-scale shortcomings of GR

Properties: ] — Lorentz-Invariance emerges at large distances

Saccessfully passes the Solar System Tests

— -1__ W 2 wrl
One possible spherically | 900 = (911) = 1+w 7
symmetric solution:

W » Constant

Schwarzschild solution: | 4M/wr? <« 1 17




However.....

Exact spherically symmetric solutions in ETGs are very rare

Weak Field Limit



General description of Weak-Field limit

Often exact solutions in ETGs cannot be found analytically

Motivations:

units, @ is dimensionless).

The typical values of the Newtonian gravitational potentipl
® are larger than 107 in the Solar System (in geometrize

Scheme:
Linearization of the metric tensor R, — %Rg“,, = 87GT,,
L (2) 4) 3
N 1—‘—_(1(()0 —|—g(()0—|-... g((,i)—l—... ;
0i ] ij Qv = M + hl“" |h,“,| < 1.
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19




First case: f (R, R*"R,,,, @) gravity



Application of the PN limit to
f(R,R"R,,, @) gravity

Linearization of the metric tensor

3) - (2) 94 Y
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* Three potentials arise: two scalar potentials and one vector potential

@, Ware proportional to the power c? (Newtonian limit) while A; is proportional to ¢ and = to c™*
(post-Newtonian limit)

ds® = A(t,r,0)dt> + B(t,r,0)dr*> + C(t,r,0)d6* + D(t,r,0) sin’® 0dd* + E(t,r,0)dt do

goo = Al(t,r,0)
go; = E(t,r,0) Kerr spacetime
9;;6" = B(t,r,0) + C(t,r,0) + D(t,r,0)

S. Capozziello, G. Lambiase, M. Sakellariadou and A. Stabile, ""Constraining models of extended gravity using Gravity, Probe
B and LARES experiments," Phys. Rev. D 91 (2015) no.4, 044012



Application of the PN limit to
f(R,R"R,,, @) gravity

By means of the decomposition of the metric hoo ~ O(2)
g/ll-’ = n[.ll/ + h;wa |h’l“’| << ]-- > hO'I, ~ 0(3)
hij ~  0(2),

The function f, up to the c™* order, can be developed as:
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S. Capozziello, G. Lambiase, M. Sakellariadou and A. Stabile, ""Constraining models of extended gravity using Gravity, Probe
B and LARES experiments," Phys. Rev. D 91 (2015) no.4, 044012



Application of the PN limit to
f(R,R"R,,, @) gravity

Result:
 Form of the vector potential » |Ax) = le| 1 — (1 + my|x|) e"™¥ !x!] = J
; v éﬂ[ —mpkpr
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Lense-Thirring precession in
f(R,R"R,, @) gravity
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For fy — 0 i.e. my — ©, we obtain the same outcome for the gravitational

potential of f(R, ¢)-theory
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Experimental constraints
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Gyroscopic and Lense-Thirring effects... N (1 + g g+ g+ )
g

3 2
ISR S+ g+

| (1420425 24,
For the model f(R, RosR*”,¢) + w(¢)¢.o ¢ - 2A; —8i + 206 )

we have
Gn o

A= 1—(1+ YTl x J. 2 _ 1
r3 [ ( TTLYT')E ]I‘ myz = Fy (0,0,609)

ey = —e ™" (L+myr +myr?) g, Y = RapgR™

The analysis provides
Gravity Probe B LARES
my > 7.1-10°m ™! my >1.2-10"%m!
v

GINGER

my > 1.88-107%m™!

but this precision can be further improved
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5.x10~7 1.x1076 1.5x1076 my (™)
Fig. 1 60%T /2L7T, as a function of my. Note that GR is
recovered in the limit my — oo
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Future perpsectives in the context of the scalar-tensor model

0P(r)
" or

GINGER can be used to constrain the effective potentials of modified theories of gravity and, consequently, the corresponding action

Considering the definition of the circular velocity vc(r) =

Modified Gravity Model | Corrected potential | Yukawa parameters
¢(7‘) — _ka‘x\-! [1 + ae—m"r]
T 2 _ _ _fr(0)
f(R) Gy MR = T §frr(0)
A=—rxlJ
. . Co1 = § F 7=
B(r) = — M (1 4 pel~r/10) 4 ¢rel~/1)) © 67 2y/sa3+6a
. o
f(R,0R) = R+ ayR? + a; ROR GN
A=—FrxJ -
T l(),l = \/—3(1() + gaé + 60.1

with fz(0) being the first derivative of f (R) with respect to the scalar curvature R, evaluatedin R = 0

* The analysis can yield a validity range for a and A. Once the effective potential is constrained, the gravitational model is selected
* Free parameter values can be compared with those selected by other experiments
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Constraints on f(R) gravity potential provided by other experiments

* A: Length scale or range

* a: Dimensionless strength parameter
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...to be compared with future GINGER outcomes



GINGER results: the case of
Horava-Lifshitz Gravity
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Horava-Lifshitz Theory

Theory of quantum gravity capable of
solving the small-scale shortcomings of GR

Properties: ] — Lorentz-Invariance emerges at large distances

Saccessfully passes the Solar System Tests

— -1__ W 2 wrl
One possible spherically | 900 = (911) = 1+w 7
symmetric solution:

W » Constant

Schwarzschild solution: | 4M/wr? <« 1 31




Application of PN limit to
Horava-Lifshitz Gravity

K2
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Linearization of the metric tensor
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Horava-Lifshitz and General Relativity Gyroscopic precession is —

<
<

1 .
=31+ a4, a, constants to be constrained

l With similar computations as the previous case, the ratio between the
(1

_922
01> with

0% —— Gyroscopic precession

G — * effective gravitational constant
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Importance of constraining a¢, a,

It has been shown that, in order for the matter
coupling to be consistent with solar system tests,
the gauge field and the Newtonian potential must
be coupled to matter in a specific way, but there are
no indication on how to obtain the precise
prescription from the action principle. Recently
such a prescription has been generalised and a
scalar-tensor extension of the theory has been
developed to allow the needed coupling to emerge

Matter action

Sy = / P eNA/G Lo (N, Ny, i )

Lapse function

/

in the IR without spoiling the power-counting N = (1 — ala)Na . Scalar Potential
lizability of the theory. \7i i | N A0
renormalizability of the theory Nt = N4+ Ng ijﬁb,
Gij = (1—a20)%gs,
Vector

a,,a, are then related to the potentials and can be constrained by GINGER measure as.>}



Terrestial experiment: GINGER

GINGER measures the difference in frequence of light of two beams circulating in a laser cavity in
opposite directions. This translates into a time difference between the right-handed beam
propagation time and the left-handed one

=9 /—gO ngz dS

The difference in time can be linked to the Sagnac frequence 25, measured by GINGER

Perimeter Laser wavelength

N p

_ - P\
CdT:N()\_}.—)\_):NC(ff—2f+) 75f=795

Wavelength difference

Splitting in terms of frequence
between the two beams
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GIGNER in Horava-Lifshitz Gravity

. 2c2,/ P
0T = —24/900 f goi ds' ¢ (s = — J00  f 90 ds’
900 PA 900

In Horava-Lifshitz [ gravity, it is

4A G as

Qs == Qg [cos(9—|—a)_(1+_a1__) GM | GIg

sin asin @ —

c2R c2R3

(2 cosf cos a + sinf sin )

- P Gn a

Sagnac term

Lense-Thirring term
e A > Area encircled by the light beams
. a » Angle between the local radial direction and the normal to the plane of the array-laser ring
- 0 » Colatitude of the laboratory
e Qg » Rotation rate of the Earth as measured in the local reference frame
e I » Momentum of Inertia
e P » Perimeter 35
e A » Laser wavelength




Horava-Lifshitz vs General Relativity

G = GN
General Relativity |
4A GNM . .
QSZEQE [cos(0—|—a)— 2R sin asin 6 o
|
_gfgb; (2c0s9cosa—+—sin9sina)] o

2"

G =Gy Horava-Lifshitz Gravity

v

Qg = %QE [cos(ﬁ—}—a) — (1-}— %al — Z—i) fz_Msinasinﬁ
GlEg

c2R3

(2 cos 6 cos a + sin 0 sin «) ]
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Advantages to use GINGER

* The actual precision of GINGERINO is 1/1000 in the geodesic term, 1/100 in the LT term

* GINGER experiment should overcome such uncertainty providing a precision of 1/1000 in
the LT term

* The presence of two rings yields a dynamic measure of the angle a

4A
Qg = Bx Qg [cos(ﬂ +a) — (1 — C?—N a; — Z—f) 2R sin asin § — 2R3 (2 cosf cos o —|—sin9sina)}
Geodesic Term LT Term
Notice that:

o While the measure of the LT term can constrain the value of G, from the
measure of the geodesic term we can get the value of a, and a,

« The precision of GINGERINO is 10~1° rad/s, which corresponds to a precision of 1.4 - 1011
with respect to the dominant term.




Outcomes

It is possible to find relations among a,, a, and the gyroscopic precession in Horava gravity:

Using
QFor — 26g _ 12 GHLa _ %2 4
‘QgR 3\ Gn ! a
we find
and >
Qrbr — 26| |GaL _1
26k |Gy ’
GuL
Gn 0.999

0.999Gy < Gy < 1.001 Gy,

For instance, setting

a1(0.999a; — 0.99985) < a2 < a1(0.999a; — 1.00015)
if a1 <0,

a1 (0.999a1 - 1.00015) <az <a (0.999@1 - 0.99985)
if a1 > 0.

GHL

= 1.001

a1(1.001a; — 0.99985) < a2 < a1(1.001a; — 1.00015)
if a1 <0

a1(1.001a; — 1.00015) < as < ay(1.001a; — 0.99985)
if a1 > 0.
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General relation among a, a, and the
gyroscopic precession in Horava gravity:

1.5

805/0%, as a function of a; and a,, with
Gy /Gy fixed to 1.001

0.9998
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S. Capozziello, et al. “"Constraining Theories of Gravity by GINGER
experiment,” Eur. Phys. J. Plus 136 (2021) no.4, 394

Graphical representation of the equation

Qfor — 26r| _|2 GHLal—“—?—1 <1074
Q6r 3\ GN %

used to constrain the free parameters.
Red dot denotes the values of free
parameters for which GR is recovered.




Future perpsectives in the context
of the Horava-Lifshitz model

The parameters can be further constrained by | Sothat
investigating the Lense-Thirring contribution
44 G aa\GM . . GIg
Qg = X Qg [cos(@—l— ) — (1 - Eal — a) 2 sin acsin 6 — 2R3

GINGER measure

The corresponding
model can be selected

(2 cosf cos a + sinf sin )
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Conclusions



Conclusions 4, -1, +he, |ho|<1.

In the context of ETGs, we have studied the linearized field equations in the limit of weak
gravitational fields and small velocities generated by rotating gravitational sources, atmed
at constraining the free parameters, which can be seen as effective masses (or lengths).

The precession of spin of a gyroscope orbiting around a rotating gravitational source can be
studied.

Gravitational field gives rise, according to GR predictions, to geodesic and Lense-Thirring
processions, the latter being strictly related to the off-diagonal terms of the metric tensor
generated by the rotation of the source (Kerr metric)

The gravitational field generated by the Earth can be tested by Gravity Probe B and LARES
satellites. These experiments tested the geodesic and Lense-Thirring spin precessions with
high precision.

The corrections on the precession induced by scalar, tensor and curvature corrections can
be measured and confronted with data.
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GINGER can put constraints on modified gravity
models

Being an earth-based experiment, it exhibits
several advantages

So far, GINGER data has been used to constrain
scalar-tensor models and Horava-Lifshitz model

In future works, we aim to:

» Consider other modified/extended theories of gravity

» Use measurements on the gyroscopic effect to constrain potentials coming from GR
alternatives
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Conclusions

In f (R, R*R,,,, @) gravity, GP-B and LARES satellites provide

— .

my > 7.3 x 10-Tm-1 my > 1.2 x 10 °m™!

Perspective: constraint on m,, by GINGER

Perspective: constraints on a;, a, by GINGER

In Horava-Lifshitz gravity, the weak-field limit provide

sin @ sin «v

1AQ G )\ GM
coT CE [C05(9+a)_ (1+G_Nal—a_?> ?R
I
_ Gle (2cos @ cosar + sinOsina)]

2R3
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