Constraining Theories of Gravity by GINGER Experiment

Francesco Bajardi

Scuola Superiore Meridionale

Plan of the presentation

- *Shortcomings of General Relativity*
- *Modified Theories of Gravity*
- *Spherical Symmetry and Weak-Field Limit*

• **Modified gravity models**

- \triangleright Scalar-tensor model
	- ❖ Outcomes
	- v Future perspectives
- \triangleright Horava-Lifshitz model
	- ❖ Outcomes
	- ❖ Future perspectives

- *Future Perspectives*
- *Conclusions*

General Relativity: foundations and predictions

General Relativity

Describe the gravitational interaction through the spacetime curvature

First theory to successfully pass the Solar System Tests

In a static and spherically Symmetric background Schwarzschild Solution $\left(\frac{2GM}{c^2r}\right)c^2dt^2 \left(\frac{2GM}{c^2r}\right)^{-1}dr^2 - r^2d\theta^2 - r^2\mathrm{sen}^2\theta d\phi^2$ ds^2 4

• **Black Holes**

• **Gravitational Waves**

• *Lense Thirring Effect*

This effect predicted by GR can be obtained starting from a Kerr-like metric

General Relativity: shortcomings

Shortcomings of GR

- \triangleright Universe accelerated expansion
- \triangleright Inflation
- \triangleright Galaxy Rotation Curve
- \triangleright Mass-Radius Diagram of some Neuton Stars
- \triangleright Fine-tuning cosmological parameters

Small Scales

- \triangleright Renormalizability
- \triangleright GR cannot be quantized
- \triangleright GR cannot be treated under the same standard of other interactions
- \triangleright Discrepancy between theoretical and experimental value of Λ
- \triangleright Classical spacetime singularities

Large Scales No theory is capable of solving these problems at once so far

Cosmological Level

Needs extra scalar fields to predict inflation

Modified Theories of Gravity

- 3. Contains GR as a particular limit
- 4. Reproduce both late and early time cosmic evolutions

5. Predict the right mass-radius relation of some neutron star without invoking exotic EOS

Motivations:

1. Could account for UV and IR quantum

2. Can fit the galaxy rotation curve

Modified theories of gravity

• Relax some assumptions of GR

Examples of Modified Gravity Potentials

Is it possible to find out probes and test-beds for ETGs?

Ø *Geodesic motions around compact objects e.g- SgrA**

Ø **Lense-Thirring effect**

- Ø *Exact torsion-balance experiments*
- Ø *Microgravity experiments from atomic physics*
- Ø *Violation of Equivalence Principle (effective masses related to further gravitational degrees of freedom)*

Gravity models constrained by GINGER

Both provide Schwarzschild solution as a particular limit

$$
ds^{2} = \left(1 - \frac{2GM}{c^{2}r}\right)c^{2}dt^{2} - \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} - r^{2}d\theta^{2} - r^{2}\text{sen}^{2}\theta d\phi^{2}
$$

Why using GINGER to constrain ETGs?

- **1. GINGER is an Earth-based apparatus**
- **2. GINGER provides a measurement: 'repeateble local here and now'**
- **3. The conditions of the experiment are controllable**
- **4. First direct measurement of a Post Newtonian effects on the Earth surface**
- **5. Experiment based at different latitudes can be compared to improve the precision of measurements and further constrain the models**

Moreover…

- *De Sitter and Lense Thirring precessions are the two main effects of GR (and extensions) on Earth*
- *Due to the non linearity of GR, measurements at different curvature are required*

General Scalar-Tensor Theory

Horava-Lifshitz Theory

One possible **spherically symmetric solution:**

$$
g_{00} = (g_{11})^{-1} = 1 + \omega r^2 - \omega r^2 \sqrt{1 + \frac{4M}{\omega r^3}}
$$

$$
\omega \longrightarrow \text{Constant}
$$

Schwarzschild solution:

$$
4M/\omega r^3~\ll~1
$$

17

Exact spherically symmetric solutions in ETGs are very rare

Weak Field Limit

General description of Weak-Field limit

First case: $f(R, R^{\mu\nu}R_{\mu\nu}, \varphi)$ gravity

Application of the PN limit to $f(R, R^{\mu\nu}R_{\mu\nu}, \varphi)$ gravity

Linearization of the metric tensor

$$
g_{\mu\nu} \sim \begin{pmatrix} 1 + g_{00}^{(2)} + g_{00}^{(4)} + \dots & g_{0i}^{(3)} + \dots \\ g_{0i}^{(3)} + \dots & -\delta_{ij} + g_{ij}^{(2)} + \dots \end{pmatrix} = \begin{pmatrix} 1 + 2\phi + 2\Xi & 2A_i \\ 2A_i & -\delta_{ij} + 2\Psi\delta_{ij} \end{pmatrix}
$$

- *Three potentials arise: two scalar potentials and one vector potential*
- *Φ, Ψ are proportional to the power c−2 (Newtonian limit) while Ai is proportional to c−3 and Ξ to c−4 (post-Newtonian limit)*

$$
ds^{2} = \mathcal{A}(t, r, \theta)dt^{2} + \mathcal{B}(t, r, \theta)dr^{2} + \mathcal{C}(t, r, \theta)d\theta^{2} + \mathcal{D}(t, r, \theta)\sin^{2}\theta d\phi^{2} + \mathcal{E}(t, r, \theta)dt d\phi
$$

\n
$$
g_{00} \equiv \mathcal{A}(t, r, \theta)
$$

\n
$$
g_{0i} = \mathcal{E}(t, r, \theta)
$$

\n
$$
g_{ij}\delta^{ij} = \mathcal{B}(t, r, \theta) + \mathcal{C}(t, r, \theta) + \mathcal{D}(t, r, \theta)
$$

\nKerr spacetime

S. Capozziello, G. Lambiase, M. Sakellariadou and A. Stabile, ``Constraining models of extended gravity using Gravity Probe B and LARES experiments,'' Phys. Rev. D **91** (2015) no.4, 044012

Application of the PN limit to $\overleftrightarrow{f}(R, R^{\mu\nu}R_{\mu\nu}, \phi)$ gravity

By means of the decomposition of the metric
\n
$$
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},
$$
 $|h_{\mu\nu}| \ll 1.$ $h_{0i} \sim \mathcal{O}(2)$
\n $h_{0i} \sim \mathcal{O}(3)$
\n $h_{ij} \sim \mathcal{O}(2),$

The function f, up to the c−4 order, can be developed as:

$$
f(R, R_{\alpha\beta}R^{\alpha\beta}, \phi) = f_R(0, 0, \phi^{(0)})R + \frac{f_{RR}(0, 0, \phi^{(0)})}{2}R^2 + \frac{f_{\phi\phi}(0, 0, \phi^{(0)})}{2}(\phi - \phi^{(0)})^2
$$

$$
+ f_{R\phi}(0, 0, \phi^{(0)})R\phi + f_Y(0, 0, \phi^{(0)})R_{\alpha\beta}R^{\alpha\beta},
$$

S. Capozziello, G. Lambiase, M. Sakellariadou and A. Stabile, ``Constraining models of extended gravity using Gravity Probe B and LARES experiments,'' Phys. Rev. D **91** (2015) no.4, 044012

Application of the PN limit to $f(R, R^{\mu\nu}R_{\mu\nu}, \varphi)$ gravity

Result:

- *Form of the vector potential*
- *Form of the scalar potential*

$$
\mathbf{A}(\mathbf{x}) = \frac{G}{|\mathbf{x}|^2} \left[1 - (1 + m_Y |\mathbf{x}|) e^{-m_Y |\mathbf{x}|} \right] \hat{\mathbf{x}} \times \mathbf{J}
$$

$$
\phi(r) = -\frac{GM}{r} \left[1 + g(\xi, \eta) e^{-m_R \tilde{k}_R r} + [1/3 - g(\xi, \eta)] e^{-m_R \tilde{k}_\phi r} - \frac{4}{3} e^{-m_Y r} \right]
$$

with the definitions:

$$
m_R^2 = -\frac{1}{3f_{RR}(0,0,\phi^{(0)}) + 2f_Y(0,0,\phi^{(0)})}
$$

\n
$$
m_Y^2 = \frac{1}{f_Y(0,0,\phi^{(0)})}
$$

\n
$$
m_\phi^2 = -\frac{f_{\phi\phi}(0,0,\phi^{(0)})}{2\omega(\phi^{(0)})}
$$

\n
$$
g(\xi,\eta) = \frac{1 - \eta^2 + \xi + \sqrt{\eta^4 + (\xi - 1)^2 - 2\eta^2(\xi + 1)}}{6\sqrt{\eta^4 + (\xi - 1)^2 - 2\eta^2(\xi + 1)}}
$$

\n
$$
\xi = \frac{3f_{R\phi}(0,0,\phi^{(0)})^2}{2\omega(\phi^{(0)})}
$$

\n
$$
\tilde{k}_{R,\phi}^2 = \frac{1 - \xi + \eta^2 \pm \sqrt{(1 - \xi + \eta^2)^2 - 4\eta^2}}{2}
$$

Lense-Thirring precession in $f(R, R^{\mu\nu}R_{\mu\nu}, \varphi)$ gravity

$$
\Omega_{LT}^{(EG)} = \frac{1}{2} (\epsilon^{ijk} \partial_i A_k)(\epsilon_{\ell n k} \partial^{\ell} A^k) = \frac{G}{r^3} \sqrt{(\epsilon_{\ell k m} \partial^m \epsilon^{ijk} J_i x_j)^2} = -e^{-m_Y r} (1 + m_Y r + m_Y^2 r^2) \Omega_{LT}^{(GR)}
$$

$$
\mathbf{A}(\mathbf{x}) = \frac{G}{|\mathbf{x}|^2} \left[1 - (1 + m_Y |\mathbf{x}|) e^{-m_Y |\mathbf{x}|} \right] \hat{\mathbf{x}} \times \mathbf{J} \quad Y \equiv R^{\mu \nu} R_{\mu \nu}
$$

$$
\Omega_{LT}^{(GR)} = \frac{r_S}{4Mr^3} J; \quad m_Y^2 = \frac{1}{f_Y (0, 0, \phi^{(0)})}
$$

For $f_Y \rightarrow 0$ *i.e.* $m_Y \rightarrow \infty$, we obtain the same outcome for the gravitational *potential of f(R, ϕ)-theory*

Experimental constraints

Gyroscopic and Lense-Thirring effects…

For the model $f(R,\,R_{\alpha\beta}R^{\alpha\beta},\phi)+\omega(\phi)\phi_{;\alpha}\phi^{;\alpha}$

$$
g_{\mu\nu} \sim \begin{pmatrix} 1 + g_{00}^{(2)} + g_{00}^{(4)} + \dots & g_{0i}^{(3)} + \dots \\ g_{0i}^{(3)} + \dots & -\delta_{ij} + g_{ij}^{(2)} + \dots \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1 + 2\Phi + 2\Xi & 2A_i \\ 2A_i & -\delta_{ij} + 2\Psi \delta_{ij} \end{pmatrix}.
$$

we have

$$
\left\{\n\begin{array}{c}\n\mathbf{A} = \frac{G_N}{r^3} \left[1 - (1 + m_Y r) e^{-m_Y r}\right] \mathbf{r} \times \mathbf{J}.\n\end{array}\n\right.\n\right\}
$$
\n
$$
\begin{array}{c}\n\mathbf{A} = \frac{G_N}{r^3} \left[1 - (1 + m_Y r) e^{-m_Y r}\right] \mathbf{r} \times \mathbf{J}.\n\end{array}
$$
\n
$$
\mathbf{B} = \frac{m_Y^2}{f_Y(0,0,0^{(0)})}
$$
\n
$$
\mathbf{a}_{(EG)} = -e^{-m_Y r} \left(1 + m_Y r + m_Y^2 r^2\right) \Omega_{(GR)}^{LT}\n\end{array}
$$
\n
$$
\mathbf{b}_{(GRA)} = \frac{1}{f_Y(0,0,0^{(0)})}
$$
\n
$$
\mathbf{b}_{(GRA)} = \frac{1}{f_Y(0,0
$$

Fig. 1 $\delta \Omega^{LT}/\Omega^{LT}_{GR}$ as a function of m_Y . Note that GR is recovered in the limit $m_Y\to\infty$

Future perpsectives in the context of the scalar-tensor model

Considering the definition of the circular velocity $v_c(r) = \sqrt{r \frac{\partial \Phi(r)}{\partial r}}$

GINGER can be used to constrain the effective potentials of modified theories of gravity and, consequently, the corresponding action

with $f_R(0)$ being the first derivative of $f(R)$ with respect to the scalar curvature R, evaluated in $R = 0$

- The analysis can yield a validity range for α and λ . Once the effective potential is constrained, the gravitational model is selected
- Free parameter values can be compared with those selected by other experiments

Constraints on f(R) gravity potential provided by other experiments

- α : Dimensionless strength parameter
- λ : Length scale or range

…to be compared with future GINGER outcomes

GINGER results: the case of Horava-Lifshitz Gravity

Horava-Lifshitz Theory

One possible **spherically symmetric solution:**

$$
g_{00} = (g_{11})^{-1} = 1 + \omega r^2 - \omega r^2 \sqrt{1 + \frac{4M}{\omega r^3}}
$$

$$
\omega \longrightarrow \text{Constant}
$$

Schwarzschild solution:

$$
4M/\omega r^3~\ll~1
$$

Application of PN limit to *Horava-Lifshitz Gravity*

$$
S = \int d^3x dt \sqrt{-g} \left\{ \frac{2}{\kappa^2} \left(K_{ij} K^{ij} - \lambda K^2 \right) - \frac{\kappa^2}{2w^4} \left(\nabla_i R_{jk} \nabla^i R^{jk} - \nabla_i R_{jk} \nabla^j R^{ik} - \frac{1}{8} \nabla_i R \nabla^i R \right) \right\}
$$

$$
K_{ij} = \frac{1}{2N} \left(\dot{g}_{ij} - \nabla_i N_j - \nabla_j N_i \right) \qquad K^2 = g_{ij} K^{ij}
$$

Linearization of the metric tensor

$$
g_{\mu\nu} \sim \begin{pmatrix} 1 + g_{00}^{(2)} + g_{00}^{(4)} + \dots & g_{0i}^{(3)} + \dots \\ g_{0i}^{(3)} + \dots & -\delta_{ij} + g_{ij}^{(2)} + \dots \end{pmatrix}
$$

With similar computations as the previous case, the ratio between the Horava-Lifshitz and General Relativity Gyroscopic precession is

$$
\frac{\Omega_{HL}^G}{\Omega_{GR}^G} = \frac{1}{3} \left(1 + 2 \frac{G}{G_N} a_1 - 2 \frac{a_2}{a_1} \right)
$$
\nwith\n
$$
\Omega_{HL}^G \longrightarrow \text{Gyroscopic precession}
$$

 $G \longrightarrow$ effective gravitational constant

Importance of constraining a_1 , a_2

It has been shown that, in order for the matter coupling to be consistent with solar system tests, the gauge field and the Newtonian potential must be coupled to matter in a specific way, but there are no indication on how to obtain the precise prescription from the action principle. Recently such a prescription has been generalised and a scalar-tensor extension of the theory has been developed to allow the needed coupling to emerge in the IR without spoiling the power-counting renormalizability of the theory.

 $\frac{\Omega_{HL}^G}{\Omega_{SD}^G} = \frac{1}{3} \left(1 + 2 \frac{G}{G_N} a_1 - 2 \frac{a_2}{a_1} \right)$

Vector

Matter action

$$
S_M = \int dt d^3x \tilde{N} \sqrt{\tilde{g}} \,\, \mathcal{L}_M \,\, (\tilde{N}, \tilde{N}_i, \tilde{g}_{ij}; \psi_n)
$$

 a_1, a_2 are then related to the potentials and can be constrained by GINGER measure as...?

Terrestial experiment: GINGER

GINGER measures the difference in frequence of light of two beams circulating in a laser cavity in opposite directions. This translates into a time difference between the right-handed beam propagation time and the left-handed one

$$
\delta \tau = -2 \sqrt{g_{00}} \oint \frac{g_{0i}}{g_{00}} \, ds^i \; \bigg|
$$

The difference in time can be linked to the Sagnac frequence $\Omega_{\rm S}$, measured by GINGER

Perimeter
\n
$$
c\delta\tau = N(\lambda_{+} - \lambda_{-}) = Nc\left(\frac{f_{-} - f_{+}}{f^{2}}\right) = \frac{P\lambda}{c}\delta f \equiv \frac{P\lambda}{c}\Omega_{S}
$$
\nWavelength difference
\n
\n
$$
\text{Wavelength difference}
$$
\n
$$
\text{Splitting in terms of frequency} \text{ because } \lambda_{+} = 0 \text{ and } \lambda_{-} = 0 \text{ and
$$

GIGNER in Horava-Lifshitz Gravity

Horava-Lifshitz vs General Relativity

$$
G = G_N
$$

\n
$$
\Omega_S = \frac{4A}{P\lambda} \Omega_E \quad \left[\cos(\theta + \alpha) - \frac{G_N M}{c^2 R} \sin \alpha \sin \theta \right]
$$

\n
$$
- \frac{G I_E}{c^2 R^3} (2 \cos \theta \cos \alpha + \sin \theta \sin \alpha) \right]
$$

\n
$$
G = G_N
$$

\n
$$
G = G_N
$$

\n
$$
\Omega_S = \frac{4A}{P\lambda} \Omega_E \quad \left[\cos(\theta + \alpha) - \left(1 + \frac{G}{G_N} a_1 - \frac{a_2}{a_1} \right) \frac{GM}{c^2 R} \sin \alpha \sin \theta \right]
$$

\n
$$
- \frac{G I_E}{c^2 R^3} (2 \cos \theta \cos \alpha + \sin \theta \sin \alpha) \right]
$$

Advantages to use GINGER

- The actual precision of GINGERINO is 1/1000 in the geodesic term, 1/100 in the LT term
- GINGER experiment should overcome such uncertainty providing a precision of 1/1000 in the LT term
- The presence of two rings yields a dynamic measure of the angle α

$$
\Omega_S = \frac{4A}{P\lambda} \Omega_E \left[\cos(\theta + \alpha) - \left(1 + \frac{G}{G_N} a_1 - \frac{a_2}{a_1} \right) \frac{GM}{c^2 R} \sin \alpha \sin \theta - \frac{GI_E}{c^2 R^3} \left(2 \cos \theta \cos \alpha + \sin \theta \sin \alpha \right) \right]
$$

Geodesic Term
LT Term

While the measure of the LT term can constrain the value of G, from the • *measure of the geodesic term we can get the value of* a_1 *and* a_2

Notice that:

37 • The precision of GINGERINO is 10^{-15} rad/s, which corresponds to a precision of $1.4\cdot 10^{-11}$ *with respect to the dominant term.*

Outcomes

It is possible to find relations among a_1 , a_2 and the gyroscopic precession in Horava gravity:

Using

General relation among a_1 , a_2 and the *gyroscopic precession in Horava gravity:*

Future perpsectives in the context of the Horava-Lifshitz model

Conclusions

Conclusions

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad |h_{\mu\nu}| \ll 1.$

- *In the context of ETGs, we have studied the linearized field equations in the limit of weak gravitational fields and small velocities generated by rotating gravitational sources, aimed at constraining the free parameters, which can be seen as effective masses (or lengths).*
- *The precession of spin of a gyroscope orbiting around a rotating gravitational source can be studied.*
- *Gravitational field gives rise, according to GR predictions, to geodesic and Lense-Thirring processions, the latter being strictly related to the off-diagonal terms of the metric tensor generated by the rotation of the source (Kerr metric)*
- *The gravitational field generated by the Earth can be tested by Gravity Probe B and LARES satellites. These experiments tested the geodesic and Lense-Thirring spin precessions with high precision.*
- *The corrections on the precession induced by scalar, tensor and curvature corrections can be measured and confronted with data.*
- *GINGER can put constraints on modified gravity models*
- *Being an earth-based experiment, it exhibits several advantages*
- *So far, GINGER data has been used to constrain scalar-tensor models and Horava-Lifshitz model*
- *In future works, we aim to:*
	- Ø *Consider other modified/extended theories of gravity*
	- Ø *Use measurements on the gyroscopic effect to constrain potentials coming from GR alternatives*

Conclusions

