TIMEPIX4 – nuova sigla

G.Collazuol INFN Padova CdS 2024/7/5

Acronym: TIMEPIX4 Project duration: 3 years (2025, 2026, 2027) Research area: Interdisciplinary / Detectors Principal Investigator: Massimiliano Fiorini (INFN Sezione di Ferrara) Participating Units: Ferrara, Laboratori Nazionali del Sud, Napoli, Padova, Pisa, Trieste

Ambito:: DRD4 - WG1 (Gaseous) / WP2 (Vacuum Based)

Aims: exploiting TIMEPIX4 chip => to develop detector systems beyond State-of-the-Art

Applications:

- Ultra-fast, high granularity MCP based photon detector => HEP
- X-ray, gamma ray and particle imaging w/ semiconductors => Medical Physics
- Photons detection and Tracking and w/ gas detectors => Padova proposal

Gruppo Padova-Trieste (gas/photon detectors) Staff: G.Collazuol, S.Levorato, F.Tessarotto (INFN-TS) Post-Doc: D.D'Ago, D.Henaff Dottorandi: M.Feltre, M.Mattiazzi

Hybrid vacuum photon detector - MCP / TIMEPIX4

JINST 13 C12005 2018

 Entrance window + photocathode

TIMEPIX4

- Microchannel plate stack
- Timepix4 ASIC as pixelated anode
 - Electron cloud (pixels cluster)
 - 55μm× 55μm pitch
 - 0.23 M pixels measuring arrival time and duration of input signals
 - □ 7 cm² active area
 - □ Up to 2.5 Ghits/s
 - Local signal processing

INFN access to TIMEPIX4 – MEDIPIX collaboration

- Timepix4 ASIC in 65 nm CMOS (TSMC) silicon pixel technology
 - Developed and produced by the Medipix4 Collaboration for hybrid pixel detectors
- Charge sensitive amplifier, single threshold discriminator and TDC based on Voltage Controlled Oscillator
 - 4-side buttable (TSV)
 - Data-driven and frame-based read-out

JINST 17 C01044 2022

Tecl	nnology		CMOS 65 nm
Pixe	el Size		55 μm × 55 μm
Pixe	el arrangement		4-side buttable 512×448 (0.23 Mpixels)
Sen	sitive area		6.94 cm ² (2.82 cm × 2.46 cm)
Read-out Modes		Mode	TOT and TOA
ad- lod	Data driven	Event Packet	64-bit
Ne N		Max rate	358 Mhits/cm ² /s
TDC bin size			195 ps
Rea	dout bandwidt	h	$\leq 163.84 \text{ Gbps} (16 \times @10.24 \text{ Gbps})$
Equ	ivalent noise c	harge	50-70 e-
Targ	get global mini	mum threshold	<500 e-

Padova Interests & contribution

Aim

study of both Optical and Charge readouts with internal multiplication based on resistive and capacitive micro-pattern gas detectors (MPGD)

Target sensitivity spectrum of the optical readout => VUV and DUV light Target sensitivity for primary charge readout => single electron

Methods

- Coupling MicroMegas resistive embedded Anode (Resistive layer, eg DLC) with TIMEPIX4
- Couping nano-diamond / DLC photo-cathodes to ERAM

Applications

- detailed gas detector studies
- Micro-imaging detectors (tracks & x-rays)
- new robust x-ray & VUV & DUV gas-based detector

Charge readout – MicroMegas w/ resistive foil

Resistive layer enables Charge spreading

- \rightarrow space resolution below 500 μm with larger pads
- → less FEE channels (lower cost)
- → improved resolution at small drift distance (where transverse diffusion cannot help)

Resistive layer prevents charge build-up and hides sparks

- \rightarrow enables operation at higher gain
- \rightarrow no need for spark protection circuits for ASICs
 - \rightarrow compact FEE \rightarrow max active volume

Resistive layer encapsulated and properly insulated from GND

- → Mesh at ground and Resistive layer at +HV
- \rightarrow improved field homogeneity \rightarrow reduced track distortions
- \rightarrow better shielding from mesh and DLC \rightarrow potentially better S/N

→ ERAMs used for the new TPC of T2K ERAMs are built at CERN MPGD Lab

ERAM response – Signal formation model

TIMEPIX4

ERAM detector response – Signal formation How does the signal look ? point deposition for example

Charge deposited punctually Signal amplitude (ADC) Electronics response Waveform sum on a pad (X ray) 2000 leading pad Wf 1st neighbour Wf 2st neighbour Wf 1500 3rd neighbour Wf 1000 500 ADC signal : max 4096 counts Time window of 511 time bins Time bin (typ.): 40 ns (25 MHz sampling) Peaking time (typ.): 412 ns 160 180 200 220 240 260 time bins (40ns) Leading pad: highest and earliest signal

⇒ current induced on pads from by avalanche, ie ions signal (as electrons' signal is too fast)

Adjacent pads: lower and later signals ⇒ current induced by potential field adjustments after electrons are collected by on DLC (current induction by "charge spread on resistive layer")

Reconstructing x-rays

Qpad(t) = Solution of 2D Teq. for diffusion of initial Qe deposited charge (point-like, delta-pulse initial conditions)

$$Q_{pad}(t) = \frac{Q_e}{4} \times \left[erf(\frac{x_{\mathsf{high}} - x_0}{\sqrt{2}\sigma(t)}) - erf(\frac{x_{\mathsf{low}} - x_0}{\sqrt{2}\sigma(t)}) \right] \times \left[erf(\frac{y_{\mathsf{high}} - y_0}{\sqrt{2}\sigma(t)}) - erf(\frac{y_{\mathsf{low}} - y_0}{\sqrt{2}\sigma(t)}) \right]$$

 $\sigma(t) = \sqrt{\frac{2t}{RC}}$ > Obtained from Telegrapher's equation for charge diffusion.

Integrating charge density function over area of 1 readout pad.

Parameterized by 5 variables:

 $x_0 >$ Initial charge position

• t_o: Time of charge deposition in leading pad

- RC : Describes charge spreading
- Q_e: Total charge deposited in an event

 $x_{_{H}}, x_{_{L}}$: Upper and lower bound of a pad in x-direction $y_{_{H}}, y_{_{L}}$: Upper and lower bound of a pad in y-direction

TIMEPIX4

Coupling ERAMs + TIMEPIX4 chip = ERAPIX

Applications

 very fine grained tracker and X ray detector

Key points addressed (simulation and measurements) by TIMEPIX4

- Choice of Diamond-Like-Carbon (DLC) resistivity and thickness of insulator layer (between pads and DLC) R x C => charge spread velocity
- 2. Geometry and dimension of grid/mesh with respect to pad Geometry in order to avoid Moire`- like effect

➔ Build prototype

Progress on coupling MPGDbased PDs with nanodiamond photocathodes

Fulvio Tessarotto

On behalf of the nanodiamond-THGEM group (Trieste-Bari-CERN)

Motivation for the R&D H-ND: production and spray coating Photoemission measurements THGEMs with nanodiamond coating Measurements in different gas mixtures Aging studies Conclusions

Edinburgh, 16/09/2022, 11th International Workshop on Ring Imaging Cherenkov – RICH2022 Fulvio Tessarotto

otto

8

Coupling H-ND cathode + ERAMs + TIMEPIX4 chip

Applications

- very fine grained photo-det
- VUV-DUV imaging

Key points addressed (simulation and measurements) by TIMEPIX4

- 1. behavior of the hydrog. nano-diamond photo-cathode withT2K gas
- 2. study HV configuration and detector geometry for optimizing photoelectron collection and drift
- ➔ Build prototype

TIMEPIX4 – WP2 timeline and milestones

WorkPackag	e 2 (WP2) - Development of new gas detectors based on Timepix4		20	25			20)26			20	027		Responsible
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	(partecipants)
	2.1 - Designing and building ERAPIX prototype													PD
TASKS	2.2 - Characterizing ERAPIX prototype													PD (FE)
TASKS	2.3 - Studying new nano-diamond based photo-cathodes													PD
	2.4 - Building and Characterizing the PHERAPIX													PD (FE)
	2.1.1 - Preliminary simulation studies (eg DLC resistivity)													PD
	2.1.2 - define and test procedure for gluing the DLC layers	Q1 Q2 Q3 APIX prototype Image: Constraint of the protocype Image: Constraint of the protocype ond based photo-cathodes Image: Constraint of the protocype Image: Constraint of the protocype ond based photo-cathodes Image: Constraint of the protocype Image: Constraint of the protocype ond based photo-cathodes Image: Constraint of the protocype Image: Constraint of the protocype ond collection and drift Image: Constraint of the protocype Image: Constraint of the protocype											PD	
	2.1.3 - define and test mesh and multiplication gap geometries													PD
	2.2.1 - DLC Gluing quality assessment													PD
MILESTONES	2.2.2 - ERAPIX response characterization													PD (FE)
	2.3.1 - asses behaviour of nano-diamond photo-cathode with T2K gas													PD
	2.3.2 - optimizing photo-electron collection and drift													PD
	2.4.1 - assembling and characterizing photo-detector prototype													PD (FE)

Resources @ INFN Padova

FTE Padova 2024/7 => 100%

- G.Collazuol 10 %
- S.Levorato 5 %
- F.Tessarotto 5 %
- D.Henaff 20 %
- D.D'Ago 30%
- M.Feltre 30%

Preventivi 2025

- Consumo per circa 15kEuro
- Missioni (CERN) per 4kEuro

Richieste 2025 in Sezione PD

 Servizio Elettronica programmazione FPGA TimePix4

programmazione FPGA TimePix4 (collaborazione con INFN FE) ~ 3m.p. (overlap – con richiesta ADA-5D)

TIMEPIX4

- Servizi Tecnici ed Elettronici
- Servizio Progettazione Meccanica
- Servizio Officina Meccanica

ASPIDES 2025 Dtz5 => Nuova sigla 2026

G.Collazuol INFN Padova CdS 2024/6/27

Acronym: ASPIDES - A CMOS SPAD and Digital SiPM Platform for High Energy Physics Project duration: 3 years (2025, 2026, 2027) Research area: rivelatori ed elettronica Principal Investigator: Lodovico Ratti (Universita` e INFN Sezione di Pavia) Participating Units: Pavia(PV), Bari (BA), Bologna (BO), Milano (MI), Napoli (NA), Padova (PD), Torino (TO), Trento (TIFPA)

Ambito: DRD4 - WG1 (dSiPM) / WP1 CMOS SPAD

Aims: development technology platform for the design, production and commissioning of digital silicon photomultipliers (dSiPMs) => detectors with single-photon sensitivity and embedded functionalities

Applications:

- scintillation and Cherenkov light detection in dual-readout calorimetry
- RICH detectors and large area neutrino detectors => involvement Padova

Gruppo Padova-Trieste (silicon/gas/photon detectors) Staff: G.Collazuol, S.Levorato, F.Tessarotto (INFN-TS), R.Stroili, L.Silvestrin Post-Doc: D.D'Ago, D.Henaff Dottorandi: M.Feltre, M.Mattiazzi

Target technology

• 110 nm CMOS image sensor process

Main features

- Noise mitigation
 - Optimization for ultra-low noise spad cell
 - Single SPAD control (on/off)
 - threshold adjustment capabilities for noise rejection (output validation)

Photons counting

- fully digital output, obtained through a completely digital processing chain
- or through analog, Q/V or I/V transformation and final A/D conversion
- asynchronous counting with wide (1e3) dynamic range of simultaneous photons

Timing features

- time of arrival of the first photon
- photon pulse duration (width)
 w/ 100ps resolution
- ... additional features available to measure accurately shape of photon pulse evolution)

Possible floorplan and readout architecture

Ultra-low noise SPAD design through field shaping and charge focusing.

The technology offers SPADs with a DCR of around 100 kHz/mm2, a PDP close to 50% at I=450 nm and excess voltage of 6 V and a sufficient integration density to pack all the needed functions in the available area without unacceptably degrading the sensor PDE

auenchina

ASPIDES

Ultra-low noise SPAD design through field shaping and charge focusing.

Active mode: transistors to **Quench** and **Reset** Sense the voltage at the diode terminal G.Collazuol - NDIP20 - 2022/7/5 • Use transistors to actively discharge / recharge the diode \rightarrow controlled amount of charge \rightarrow reduced after-pulsing and cross-talk \rightarrow controlled (fast) recovery \rightarrow reduced dead-time T.Frach at LIGHT 2011 Flexibility: programmable timing possible, disabling of faulty cells (90% DCR from 10% cells) · Electronics area not active (unless 3D integ.): higher cost & lower fill factor readout 6T SRAM Also electronics exposed to radiation • Low parasitics \rightarrow fast digital signals (gate delays of ~30ps, rise/fall times ~90ps) Cell electronics area: 120µm² 25 transistors including 6T SRAM Separation of photon number. **Active/Passive Quenching** • time of arrival and ~6% of total cell area position information and Active Reset Modified 0.18µm 5M CMOS right at the detection element Foundry: NXP Nijmegen might potentially enable SPAD arrays -Vbias Vex new detector concepts - "digital" SiPM V - reduced Fill Factor already "digital" signal quenching Vex - electronics exposed to radiation digital pulse → additional radiation weakness active recharge recharge feedback passive

12

Figure 1. Block diagram of a dSiPM as proposed in the ASPIDES experiment.

Photon counting might be performed through a parallel counter

based on adder trees, usually employed in digital multipliers to perform the sum of partial products (digital compressors as they reduce n bits into [log2n] bits)

Possible alternative is mixed analog and digital approach

based on I/V or Q/V conversion, followed by an ADC (current steering circuit integrated in each individual micro-cell to summing node when the micro-cell is hit and a transresistance amplifier or a charge preamplifier provides a measurement of the overall signal)

> The time of arrival of the first photon will be measured by means of a time to digital converter (TDC) triggered by the first hit microcell through an OR-tree (or by a transition of one of the bits at the parallel counter output).

Figure 4. Number of full adders needed for a parallel comparator (left) and normalized delay between the input and the output of a parallel counter (right) bith as a function of the number N of inputs.

Figure 3. Modular structure for a dSiPM in dual-readout calorimetry.

Block diagram of a 12-bit ring-oscillator-based TDC

Project Deliverables

- A prototype chip, including structures such as mini-SiPMs with O(1000) micro-cells with different pitch and single electronic blocks (e.g., TDC/QTC) for characterization purposes
- A final demonstrator, with full scale SiPMs and optimized fill factor for dual-readout calorimetry

Involvement in Padova

- 1) Characterization
- Investigation of radiation tolerance both to ionization and displacement damage
- Study device operation in cryogenic conditions or high pressure and different radiators
- PDE to light from 200nm to 1000nm

2) Applications

- Fucussed / Imaging Cherenkov applications
- Optical Readout for High Pressure TPC (H2 / CO2 / Ar + CF4)

(High Pressure TPC => Padova in DRD1)

ASPIDES

ASPIDES timleine

			Q1-25	5		Q2-25		Q3-25			Q4-25			1	Q1-26			Q2-26			Q3-26		6	C	Q4-26			Q1-27	,		Q2-27			Q3-2	·	¢	Q4-27	7			
	Task	М1	M2	МЗ	M4	M5	M6	M7	M8	м9	M10	M11	M12	M13	8 M14	4 M1	.5 M:	16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32	М33	M34	M35	6 МЗ			
WP1: ASIC design and verification	T1.1 - Specifications								Ť			Ì																													
	T1.2 - Prototype design & production																																								
	T1.3 - Demonstrator design & production		,									,																													
	Milestones	Spe	cificati	ons dra	afted					Proto	Prototype submission												Demor																		
	Deliverables	Sp	ecifica	tion sh	eet									Prototype chip													De	monst	rator o	hip											
WP2: Testing, data	T2.1 - Setup for test chip																																								
acquisition and integration	T2.2 - Test chip characterization																																								
	T2.3 - Setup for prototype chip																																								
	T2.4 - Prototype chip characterization																																								
	T2.5 - Setup for demonstrator characterization																																								
	T2.6 - Lab characterization of demonstrator																																								
	T2.7 - Module integration																																								
	T2.8 - Test of the deonstrator on beam					,												Ţ												,	,							Ļ			
	Milestones			Setup	for te	st chip	ready	, , , , , , , , , , , , , , , , , , , ,							Setup for prototype chip ready						dy								Setup for demonstrator ready							Module i					
	Deliverables	Setup for test chip													Set	up for	r prot	prototype chip									Setup for demonstrator								De	emons m	istrato nodul				
WP3: Radiation	T3.1 - Procedure for radiation and cryo testing													1	Γ	Τ	Τ																								
tolerance and cryogenic operation	T3.2 - Radiation and cryo characterization of test chip																																								
, , ,	T3.3 - Cryo testing of prototype chip																																								
	T3.4 - Cryo testing of demonstrator				,	,								Ļ											,													Ļ			
	Milestones		Proc				n tolera afted	ance			Radiation and crygo char of test chip a comp											Cryc		nic tests of prototype ch completed												onstrate compl					
	Deliverables	and cryo tests drafted Document describing characterization procedure												test re									eport on test results											Repo	ort on t	est re	esults				
WP4: Sensor	T4.1 - Rad effects and crio operation modeling													1			Ť				Ì																	Г			
characterization, simulation and	T4.2 - Test of single micro-cells from test chip																																					Γ			
modeling	T4.3 - Test of single micro-cells from prototype chip													Ļ											,													Ļ			
	Milestones										Test			lls fro		m test chip						Test			from p		ype									Nodel for radiation damage					
	Deliverables														-											-									del for		tion da	lamag			

Resources @ INFN Padova

FTE Padova 2024/7 => 40% ! Nel 2026 finito ADA_5D potremo superare 1 FTE

- G.Collazuol 10 %
- S.Levorato 5 %
- F.Tessarotto 5 %
- D.Henaff 10 %
- R.Strolili 10%
- L.Silvestrin (10%)

Preventivi 2025

- Consumo per circa 10kEuro
- Missioni (Italia) per 4kEuro

Richieste 2025 in Sezione PD – non ci sono richieste per il 2025

- Servizio Elettronica
- Servizi Tecnici ed Elettronici
- Servizio Progettazione Meccanica
- Servizio Officina Meccanica parts for a small volume prototype high pressure TPC – 1 m.p.

Additional material