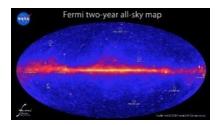


The "OREO" ORiEnted calOrimeter project

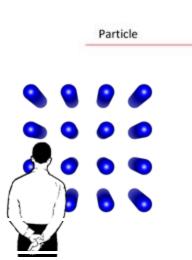
Amorphous or randomly oriented crystal

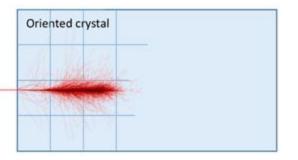
OREO goal: realization of an ultra-compact ultra-fast oriented crystal-based Electromagnetic Calorimeter

INFN Units: FE, LNL, MiB National Coordinator: Laura Bandiera bandiera@fe.infn.it


>Application in:

Particle Physics

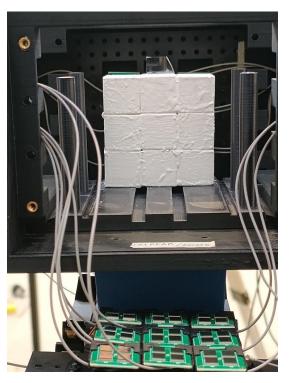

Forward-geometry in accelerator-based experiments

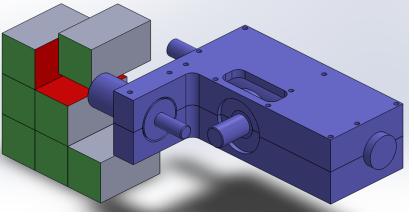

> Astroparticle Physics

Ultra-compact space-borne telescope for VHE gamma rays detection (interest from Fermi-LAT and ASI community)

L. Bandiera et al., Front. Phys. 2023 11:1254020. doi: 10.3389/fphy.2023.1254020

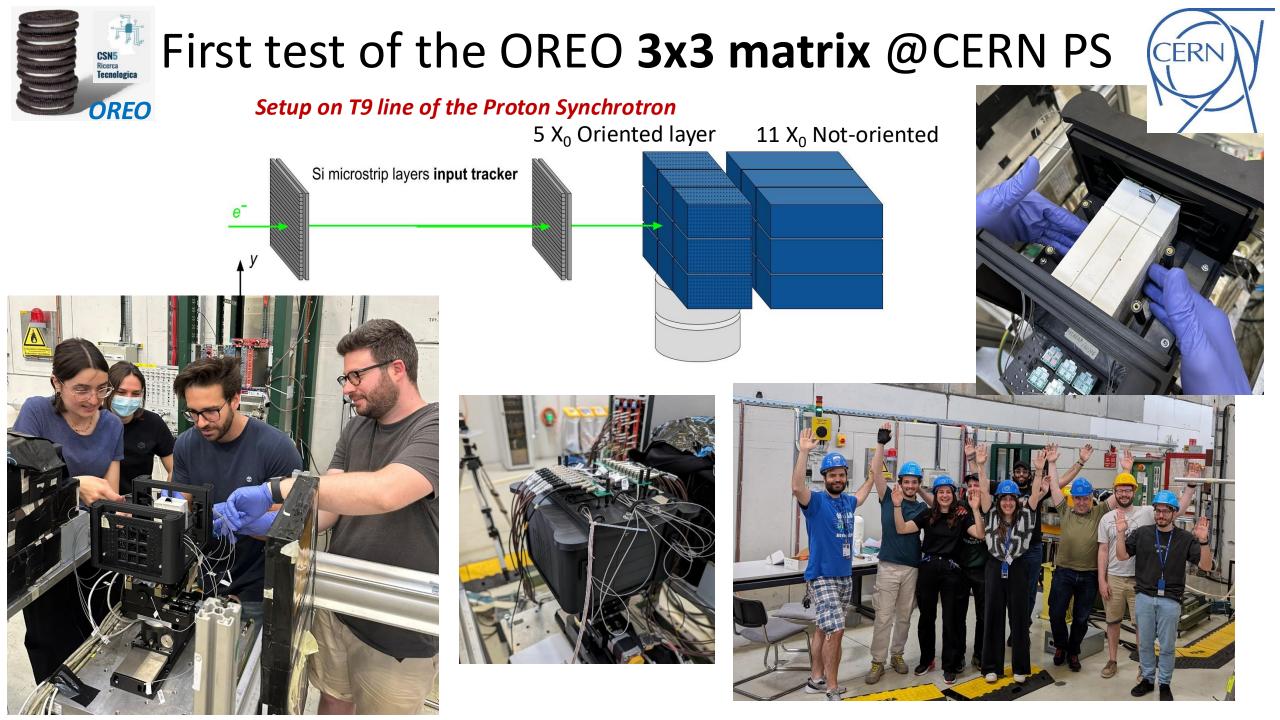
Included in AIDAINNOVA WP8 task 3.1 Crystal Calorimeters

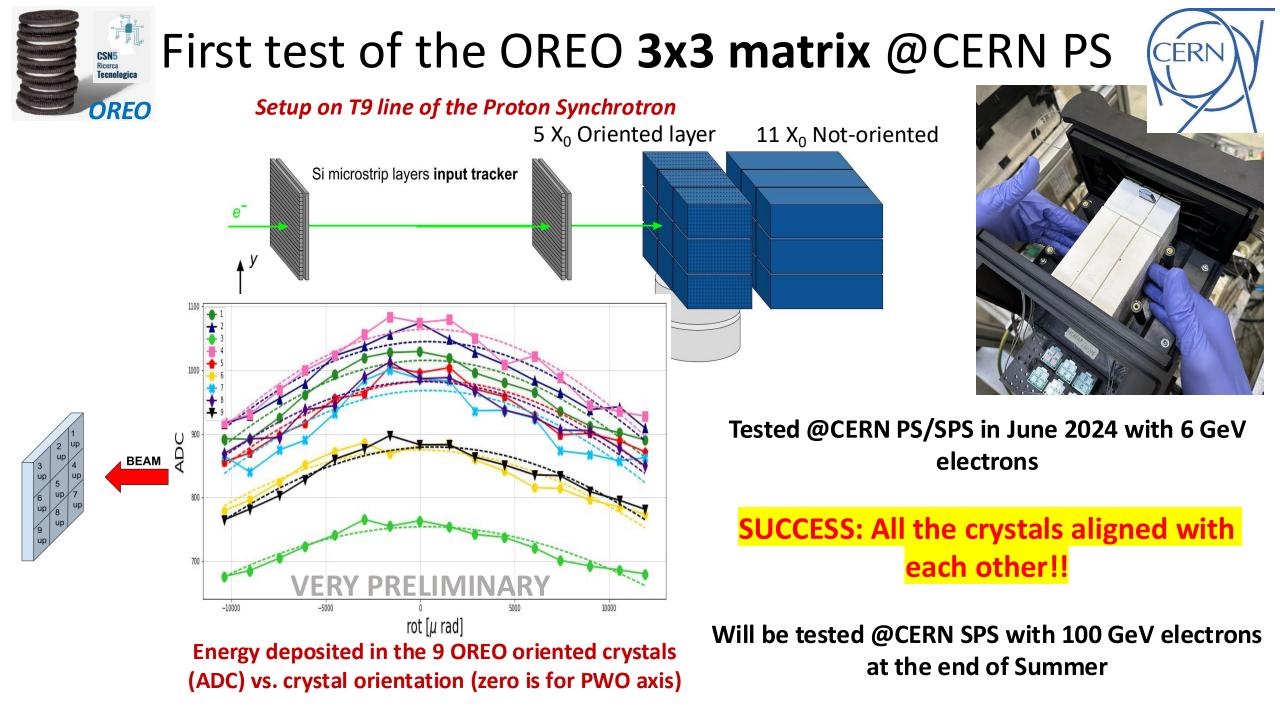

2024: Construction of the OREO prototype **3x3 matrix of ultrafast PWO (PWO-UF)**


A newly developed PWO-Ultrafast is a candidate for the HIKE Small Angle Calorimeter Scintillation decay decreased down to the subnanosecond (0.7 ns) M. Korjik et al., NIM A, 1034 (2022) 166781

PbWO₄

100]




Orientation control: handling system based on motorized optomechanical components (Thorlabs) and autocollimator laser

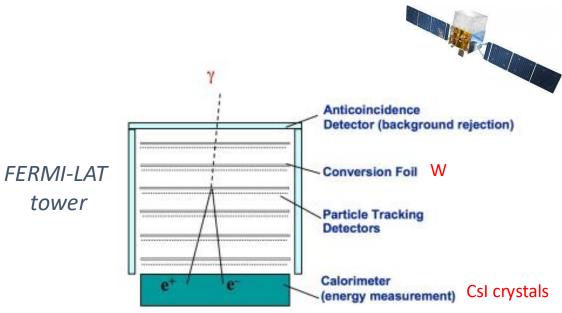
Crystals were coated with a reflective paint and the glued together.

Misalignment < 0.3 mrad (< Θ_{max})

Readout: SiPM matrix, each coupled to one of the three crystals

Application of the OREO technology

forward-geometry accelerator-based experiments


fixed-target collider forward region

- > improved shower containment
 ⇒ energy resolution
- $\succ \quad \text{higher } \gamma \text{ efficiency} \Rightarrow \text{ideal for } \gamma \text{ vetoes}$
- better γ/hadron discrimination ⇒ ideal for γ/n in small-angle calorimeters on neutral hadron beamlines
- in dark matter search, to realize compact active beam dump or target with an increased sensitivity to light dark matter. Interest by the POKER collaboration with NA64++ @SPS
- Longitudinally segmented e.m. calorimeters (as for HIKE – NOT APPROVED)

HE Astroparticle Physics

pointing a telescope towards a source, thus measuring the spectrum of γ-rays with energy larger than 100 GeV can be completely contained in a quite compact volume, reducing the necessary weight and cost.

Collaboration with Fermi-LAT and ASI researchers

OREO in DRD6 Calorimetry OREO

Work Package 1: Sampling calorimeters with fully embedded electronics

CSN5 Ricerca Tecnologica

Task/Subtask	Sensitive Material/ Absorber	DRDTs	Target Application	Current Status
Task 1 1: Highly	pixelised electromagnetic sec	tion		
Subtask 1.1.1: SiW-ECAL	Silicon/ Tungsten	6.2	e e collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed
Subtask 1.1.2: Highly compact calo	Solid state (Si or GaAs)/ Tungsten	6.2	e e collider forward part	Prototypes with non-optimised sensors, Sensor optimisation and data transfer studies ongoing
Subtask 1.1.3: DECAL	CMOS MAPS/ Tungsten	$6.2, \ 6.3$	e e collider central detector. Future hadron collider	Prototypes with non-optimised sensors, Sensor optimisation ongoing
Subtask 1.1.4: Sc-Ecal	Scintillating plastic strips/ Tungsten	6.2	e e collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed
Task 1 2: Hadroni	ic section with optical tiles			
Subtask 1.2.1: AHCAL	Scintillating plastic tiles/ Steel	6.2	e e collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed
Subtask 1.2.2: ScintGlassHCAL	Heavy glass tiles/ Steel	6.2	e e collider central detector	Material studies and specifications for prototypes
Task 1 3: Hadroni	ic section with gaseous reado	out		
Subtask 1.3.1: T-SDHCAL	Resistive Plate Chambers/ Steel	6.2	e e collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed
Subtask 1.3.2: MPGD-HCAL	Multipattern Gas Detectors/ Steel	6.2, 6.3	collider central detector	Small prototype for proof-of-principle, Lateral and longitudinal extension envisaged
Subtask 1.3.3: ADRIANO3	Resistive Plate Chambers +Scintillating plastic tiles/ Heavy Glass	6.1, 6.2, 6.3	e e collider central detector BSM searches in MeV-GeV range	RPC, Scintillating Tiles advanced status, R&D on heavy glass needed

OREO

as a new subtask in WP3 Task 3.1 homogeneus EM CAL

(a final decision by the WP3 Board is expected in a week)

Interest by different groups working in future colliders: Cerenkov ECAL, RADiCAL...

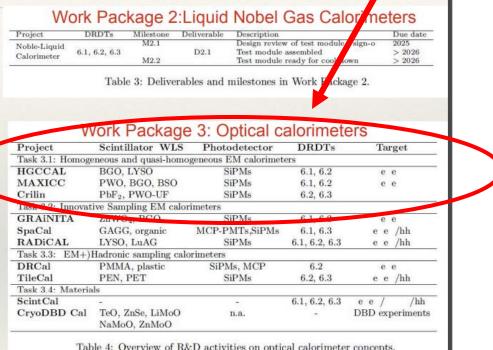


Table 4: Overview of R&D activities on optical calorimeter concepts.

Table 1: Table summarising the projects in Work Package 1, their grouping into tasks and their status and plans.

Jim Brau

DRD6 Collaboration Meeting at CERN, April 9-11, 2024

10

2025 OREO activities, requests and FTE

• 2025 – additional year

- Full characterization of OREO with the PS&SPS beam @CERN (not possible in the 2024 week assigned)
 - Test with secondary mixed beams
 - possibly test of transverse development of the shower also with different crystal size (FROM HIKE SAC R&D) and configuration
- Final MC package in Geant4
- FTE INFN-MIB 2025
 - Michela Prest (RL) 50% (come 2024)
 - Alessia Selmi 100% (come 2024)
 - Giosuè Saibene 20% (nuovo)
 - Erik Vallazza 35% (come 2024)
- Solo richieste di missioni: 2 mesi-uomo al CERN