From GERDA to LEGEND: a view inside two high sensitivity probes on the neutrino nature and mass

.arge Enriched Germanium Experiment or Neutrinoless ββ Decay

Carla Cattadori, Francesco Salamida

ββ

GERDA

INFN & Università Milano Bicocca Università dell'Aquila & LNGS 25 Settembre 2020

Search for $Ov\beta\beta$ decay

Study the unknown neutrino properties

Observation of $0\nu\beta\beta$ decay will imply:

- neutrino has Majorana nature ٦.
- lepton number violation ($\Delta L = 2$) 2.
- 3. determination of v absolute mass (nuclear model dependent)

The half life of $Ov\beta\beta$ in case of light Majorana neutrino exchange:

$$\left(T_{1/2}^{0
u}
ight)^{-1} = G_{0
u} imes \left|M_{0
u}
ight|^2 imes \left(rac{m_{etaeta}}{m_e}
ight)^2$$

- Phase Space Integral: well known quantity
- Nuclear Matrix Element: most critical ingredient, produces uncertainty in the determination of $m_{\beta\beta}$ (quenching problem) **Neutrino Effective Mass:** estimated by measuring $T_{1/2}^{2y}$

Ovββ: choosing the technique

GERDA Experiment

- In 2004 Heidelberg-Moscow experiment sub-group claims the observation of $0\nu\beta\beta$ observation ($T^{0\nu}_{1/2}$ =1.19 10²⁵ y) [Phys. Lett. B 586, 3–4, 2004]
- In 2006 GERDA Collaborations borns with the aim to confirm/disprove the claim
- 16 institutions from Italy, Germany, Russia, Switzerland, Poland
- GERDA starts data taking 2010 and stopped in 2020

GERDA Setup

GERDA final setup

Semi-Coaxial detectors: 15.6 kg

- from previous experiments (HdM, IGEX)
- energy resolution: 3.6 keV (FWHM) Qββ

BEGe detectors: 20 kg

- produced for Phase II
- energy resolution: 3.0 keV (FWHM) Qββ
- improved Pulse Shape Discrimination with A/E (current-amplitude/energy)

Inverted-Coaxial detectors: 9.5 kg

- In production for LEGEND-200
- Excellent resolution and pulse shape discrimination performance
 [A. Domula et al., NIM A891, 106 (2018)]
- Lower surface to volume ratio

Final Phase II exposure

Energy Distribution and results

Statistical analysis

13 events are found in the whole data taking period in the fit range of 240 keV range around $Q_{\beta\beta}$ (excluding two γ -line regions). Only one event (we name it "primo") is within 3σ . **3 events are cut by refined alfa cut**

Excluding know *γ*-lines region → flatness hypothesys of Background verified

Phase II Frequentist analysis:

• Median Sensitivity $T^{0v}_{1/2}$ > 1.8 x 10²⁶ yr (90% CL)

• Best fit \rightarrow No signal T^{ov}_{1/2} > 1.5 x 10²⁶ yr (90% CL) B = 5.2^{+1.6}_{-1.3} x 10⁻⁴ ckky (68% CL)

• Phase II+ Phase I (127.2 kgyr) $T^{0v}_{1/2}$ > 1.8 x 10²⁶ yr (90% CL)

Phase II Bayesian analysis:

- Best fit →No signal
- Flat prior (0 ÷ 10⁻²⁴ 1/yr) T^{ov}_{1/2} > 1.4 x 10²⁶ yr (90% CL)

• Prior
$$\propto 1/S^{\frac{1}{2}}$$
 (0 ÷ 10⁻²⁴ 1/yr)
T^{Ov}_{1/2} > 2.3 × 10²⁶ yr (90% CL)
As prior gives higher probabilities to
low values of S

Comparison of Experimental Results

Design

Expos

Design

Tot.

004 claim of 3β evidence 9¹⁰²⁵ y) were e GERDA uld observe Devents

		M Isot. [kg]	Achi.vd Bl [cts/kevkgy]	Achi.vd FWHM [keV]	ure [kg·y]	Sensitivity (90%CL) [y]	Achieved Limit (90%CL) [y]	Limit (90%CL) [meV]
Gerda II - <mark>Gerda II</mark>	⁷⁶ Ge	31.0 31.0	10 ⁻³ 0.36 ·10 ⁻³	< 4 3.0-3.7	~100 103.7	> 10 ²⁶	1.8 · 10 ²⁶	90-150 <mark>80-182</mark>
Majorana Demonstrator	⁷⁶ Ge	27.1	<10 ⁻³ 4.7 ·10 ⁻³	< 4 2.5	26	>10 ²⁶ 4.8·10 ²⁵	2.7 · 10 ²⁵	200-433
n-EXO EXO 200 ult. EXO 200	¹³⁶ Xe	5000 200	1.7 ·10 ⁻³	73 112	100	1.9 · 10 ²⁵	1.1 · 10 ²⁵	10 50 170-490
<mark>KZ comb.</mark> Kam-Zen II Kam-Zen II	¹³⁶ Xe	348 348	3.0 ·10 ^{−4} 6.0 ·10 ^{−4}	265 265 285	138 126 29.6	5.6 ·10 ²⁵	1.07·10²⁶ 9.6·10 ²⁵ 1.3 ·10 ²⁵	50 -160
Cuore Cuore	¹³⁰ Te	206	10 ⁻² 1.38 ·10 ⁻²	5 7.0	1000 372.5	9.5 ·10 ²⁵ •• 1.7 ·10 ²⁵	3.2 ·10 ²⁵	50-190 75-350
CUPID CUPID-0	¹⁰⁰ Mo ⁷⁶ Se		3.5 ·10 ⁻³	20	5.29	5.0 ·10 ²⁴	3.5 ·10 ²⁴	311-638

 $T_{1/2}$

 $T_{1/2}$

m

GERDA