# Da HOLMES a

HOLMES+

<u>M. Faverzani</u> CdS MiB 8/7/2024

# Physics case

- Direct neutrino mass measurement is the only theory-unrelated method of accessing the neutrino mass
  - $\succ$  benchmark for  $\Lambda$ -CDM model
- KATRIN has reached  $m_v < 0.45 \text{ eV}$  [arXiv:2406.13516] and aims at 0.3 eV
  - > maximum size and complexity achievable with **spectrometers**
  - only way to increase sensitivity is through differential measurement and/or atomic tritium source
- other projects
  - > Project8:  $m_v < 150$  eV with cm3-scale apparatus
  - > QTNM
  - ➢ Ptolemy
- calorimetry
  - $\blacktriangleright$  HOLMES m<sub>v</sub> < 28 eV @ 90% CI
  - $\geq$  ECHo m<sub>v</sub> < 19 eV @ 90 CL

#### <sup>163</sup>Ho electron capture



<sup>163</sup>Ho decay via EC from shell  $\geq$  M1, with Q<sub>EC</sub> ~ 2.8keV

Proposed by A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

• calorimetric measurement of the Dy atomic de-excitation (mostly non-radiative)

• rate at the end point and v mass sensitivity depend on ( $Q - E_{M_1}$ ), where  $E_{M_1} = 2.05$  keV

•  $\tau_{1/2}$  ~ 4570 years: few nuclei are needed (2x10<sup>11 163</sup>Ho nuclei = 1 Bq)



#### **HOLMES** funding

- ERC AdG 2014
- since 2020 INFN CSN2

#### **ECHo** funding

• two DFG grants (mainly)

#### **HOLMES TES detectors**







<sup>64</sup> pixels/die

# Isotope embedding @INFN-Genova



# Isotope embedding @INFN-Genova



• Beam centering with high current footprint on Au plated silicon substrate both at the slit and at the array holder



- sputter target source efficiency (with <sup>nat</sup>Ho): ε ~ 0.2%
- most of the Ho deposits on the walls of the chamber before being ionized



- separation at the slit  ${}^{163}$ Ho from  ${}^{165}$ Ho and  ${}^{166m}$ Ho (in our solution:  ${}^{163}$ Ho/ ${}^{165}$ Ho/ ${}^{166m}$ Ho = 60/40/0.1) evaluated with simulations:
  - <sup>163</sup>/<sup>165</sup>Ho separated by 15 mm
    <sup>163</sup>/<sup>166m</sup>Ho separated by 22 mm

- single spot
  - integrated current to achieve 4 Bq/det peak activity (neglecting sputter)
  - $\blacktriangleright$  evaluation of <sup>163</sup>Ho activity on TES
  - ➢ beam profile
  - evaluation of <sup>163</sup>Ho activity effect on TESs





### First <sup>163</sup>Ho implant on TES array

- sputter target loaded with **12 MBq of**  $^{163}$ Ho (= 2.6 x 10<sup>18 163</sup>Ho atoms)
- <sup>163</sup>Ho beam current stable at  $\approx$  5 nA for 3 hours
- integrated current corresponds to  $\approx 3 \ge 10^{14}$  <sup>163</sup>Ho ions







### Full encapsulation @Milano-Bicocca



Ar ion beam (for sputtering)





<sup>163</sup>Ho (not implemented yet)

#### TES array

- 1  $\mu$ m layer to fully encapsulate the <sup>163</sup>Ho
- $\approx$  27 hours to complete the process
- soon will be integrated with the ionimplanter to compensate sputter and avoid oxidation



#### **TESs finalization**



Lift-off of the Au/Ho/Au layer

Au lift-off:  $\approx 2$  h acetone bath at 50°C













- ~ 350 Al wire bonding for electrical connections for 64 TESs
- ~ 20 Au wire bonding for TES chip thermalization







# <sup>163</sup>Ho implanted activity map – RUN1



# <sup>163</sup>Ho impact on TESs



- Ho heat capacity is dominated by Schottky anomaly
- peak at  $\approx 250 \text{ mK}$
- high activity manageable at  $T \leq 50 \text{ mK}$



- from HOLMES pulses decay time:
  c<sub>Ho</sub> = 3 J/K/mol
- ➤ bulk value 4.2 J/K/mol
- ➢ ECHo between 4 and 5 J/K/mol

# <sup>163</sup>Ho implanted activity map – RUN2

- 4 spots implantation
- $A_{\text{target}} = 2 \text{ Bq}$
- $A_{\text{measured}} = 0.27 \text{ Bq (avg)}$
- $A_{\text{measured}} = 0.6 \text{ Bq} \text{ (peak)}$
- not as uniform as expected





- 2.5 months measuring time
- preliminary calibration with fluorescence source
- physics runs calibrated with Ho peaks
- 6x10<sup>7</sup> events collected
- $\Delta E_{\rm FWHM} = 7 \text{ eV}$



- 2.5 months measuring time
- preliminary calibration with fluorescence source
- physics runs calibrated with –
  Ho peaks
- 6x10<sup>7</sup> events collected
- $\Delta E_{\rm FWHM} = 7 \text{ eV}$





experimental EC spectrum deviates from all theoretical predictions

- $\rightarrow$  phenomenological description of the EC spectrum
- shake-up peaks and shake-off spectra
- strongly asymmetric Lorentzians (Fano-like interference?) needed for assessing sensitivity of future <sup>163</sup>Ho experiments **end-point region is smooth and featureless**



preliminary Bayesian end-point analysis with phenomenological model  $m_{\beta} < 28 \text{ eV} @ 90\% \text{ CI}$ Q = 2848+11-6 eV (only stat error)



### HOLMES+

proposed activity for 3 years (CDR) in CSN2 aims:

- prepare for a 100 meV sensitivity experiment
- achieve sensitivity on  $m_v$  of a few eVs
  - → deployment of **256 HOLMES TESs** with and activity of  $\ge 1$ Bq
  - $\succ$  readout with the current cold readout scheme + new readout boards
- produce and deploy a small number (9-16) of low Tc TESs
  - $> T_c \le 40 \text{ mK}$
  - > A<sub>163Ho</sub>/det  $\approx$  30Bq
  - readout with new cold readout scheme + HOLMES readout boards
- improve the readout cost/channel
  - new readout boards
  - ➢ novel cold readout technique
- improve embedding efficiency
  - $\blacktriangleright$  heated cavity for atomization
  - $\succ$  different ionization process  $\rightarrow$  FEBIAD vs RILIS
- exploit and expand synergies with ECHo, NIST, Colorado School of Mines, LANL

# HOLMES+ aiming at nex-gen experiment



MC simulations based on one-hole approximation

<u>improvement on m<sub>v</sub></u> <u>sensitivity due to excess</u> <u>statistics yet to be</u> <u>quantified (with</u> <u>HOLMES at least a</u> <u>factor 2 better)</u>

 $5 \times 10^{16}$  events  $\sum_{90} (m_v) \propto \sqrt[4]{1/N_{ev}}$ 

#### HOLMES+: 256 + 16 TESs

simulations based on one-hole approximation



256 'old' HOLMES-style TESs

16 'new' HOLMES+ TESs

#### HOLMES+: TESs and cold readout



- low T<sub>c</sub> TESs developed and produced at INRiM with support of NIST
- Ti/Au bilayer
- sensor deposited on Si substrate → conductivity determined by e-ph
- absorber on SiN membrane to avoid leakage of energetic phonons

- novel technique demonstrated at NIST
- exploits non-linearity of superconductors (experience with DARTWARS, ICSC and NQSTI)
- more efficient usage of the bandwidth
- easy to fabricate
- possibility to integrate on the TES chip
- will be produced at FBK with support of NIST
- will be used to readout the  $9/16 \log T_c$  TESs



#### HOLMES+: readout and DAQ



Since HOLMES' proposal many new readout boards

Interesting the RFSoC 4x2

- Iow cost (educational/research)
- ➤ 5 GSPS, 14-bit ADC
- ▶ 9.85 GSPS, 14-bit DAC
- ➤ coupled with new IF board (2 GHz BW) → 256 channels HOLMES-style multiplexing
- $\blacktriangleright$  will be used to readout the 256 low activity TESs
- Synergy with ECHo: possibility to use their MPSoC boards and compare performances

# HOLMES+: ion implanter upgrade

#### Aim: improve the overall embedding efficiency

- 1. integrate the co-deposition chamber (currently @MiB) in the ion implanter
- 2. install the focus stage
- 3. upgrade the ion source
  - ▶ heated cavity for evaporation of Ho (and avoid deposition of Ho before ionization)
  - more efficient ionization technique: FEBIAD
    - o Forced Electron Beam Induced Arc Discharge Ion Source
    - o established technology
    - o low cost (~150 k€)
    - o less efficient than RILIS
  - ► RILIS
    - o Resonance Ionization Laser Ion Source
    - o used at Mainz with high efficiency with 70% efficiency
    - o expensive (~1M€)

HOLMES+ baseline: FEBIAD, leaving a possible future (post-HOLMES+) upgrade to RILIS

Collaboration with ECHo/Mainz and support from LNL (which will join the collaboration starting from 2026)

### HOLMES+ collaboration and synergies

#### European institutions:

- INFN units:
  - MiB
  - Ge
  - To (INRiM)
  - TIFPA (FBK)
- LNL support for 2025, will ufficially join the collaboration with FTE starting from 2026
- ECHo collaboration (including Mainz)

US institutions:

- NIST Boulder
- Colorado School of Mines (BeEST)
  - Kyle Leach will submit proposal to NSF in December (~200k\$/y)

#### HOLMES+ WPs

- WP1: Experimental set-up 76 k€
  - ≻ <u>INFN-MiB</u>
- WP2: Embedding system 190 k€
  ➤ <u>INFN-Ge</u>, INFN-MiB, INFN-To (INRiM)
- WP3: TES detectors 165 k€
  - ≻ <u>INFN-To (INRiM</u>), INFN-MiB, INFN-Ge
- WP4: KICS readout 95 k€
  - ≻ <u>TIFPA (FBK)</u>, INFN-MiB, INFN-To (INRiM)
- WP5: DAQ, data analysis and simulations 60k€
  ► <u>INFN-MiB</u>, all