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Outline
• State of art of BNCT

• Part1: Dose monitoring by Single Photon Emission Computational Tomography 
(SPECT)
o SPECT project 
o Simulation and reconstruction algorithm development

• Part2: Dose monitoring by Compton imaging
o Compton imaging principles
o Simulations and classical tomography with iteratives algorithms 
o Novel approach by Deep Learning (DL) models

• Summary and future

2



Boron neutron capture therapy 
Boron Neutron Capture Therapy (BNCT) is an innovative hadrontherapy with high
selectivity over cancer tissue based on the neutron capture reaction 10B(n, α)7Li

• Dose distribution: dD(x,y,z) ≈ n10B(x,y,z) Φ(x,y,z) dV
• Reaction products range < cell dimensions (≈ 10 µm) → high selectivity 
• Tumor-to-healthy boron concentration ratio (T/N) > 3*. 
• Treatment duration ≈30-90 min

3
*Skwierawska, D. et. al. Clinical Viability of Boron Neutron Capture Therapy for
Personalized Radiation Treatment. Cancers 2022, 14, 2865. 
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Dosimetry on BNCT

• Main nuclear interactions that contribute to the BNCT 
total dose delivery:

Dtotal = 
DB

+ Dp

+ Dn

+ D𝛄
From 1H(n,𝛄)2H (E=2.2 MeV, 𝛔=0.33 b) & 
reactor background

Due to epithermal and fast neutron elastic 
scattering daily with H nuclei

From 14N(n,p)14C reactions (Ep=630 keV, 𝛔=1.9 b) 
due to thermal neutron 

Therapeutic dose from 10B(n,⍺)7Li (𝛔=3837 b) 
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→ Therapeutic boron dose as main dose contributor.



Dosimetry on BNCT
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Nowadays dose estimation in BNCT:
• by blood test before, meanwhile and after

irradiation, and
• Monte Carlo simulations to estimate all dose

delivery contributes and neutron capture
rates

Proposal:
Development of an on-line boron dose estimation
algorithm by using Compton imaging and/or
Single Photon Emission Computational
Tomography (SPECT)
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Dose monitoring by 
SPECT 
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System based on BeNEdiCTE (Boron Neutron CapTurE) 
detector: Gamma ray detection module based on a 
LaBr3(Ce+Sr) scintillator crystal readout by  Silicon 
Photomultipliers and compact electronics with ASICs and 
FPGA.

SPECT system

Matrix of 64 FBK 
NUV-HD SiPM

4 16-ch GAMMA 
ASICs and FPGA-

based DAQ

LaBr3(Ce+Sr)
5cm x 5cm x 

2cm 

6.5 cm

6.2 cm6.2 cm

Geant4 
simulation

Implementation 
of classic 

tomography 
methods (OSEM)

Model validation 
with simulated 

and experimental 
data

Tomography 
improvement by 
Deep Learning 

tools 

• Founded by INFN CSN5
• “SPOC: SPect for Online boron dose verification in bnCt”

and PRIN-2024 PNRR* 
• Bari unit → Development of BNCT-SPECT dedicated 

tomography reconstruction
We are

here!

* Collaboration with UNIPV  and POLIMI, and INFN sections 



o Polimi pinhole collimator: Pb
o Scintillator crystal: LaBr3 (5 x 5 x 2 cm3) 
o SiPM: 8x8 array (5 x 5 x 0.2 cm3) 
o Human head: G4_TISSUE_SOFT_ICRP
o 1 modules → 4 modules à 16 modules

Monte Carlo simulations
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module 0

module 1

module 2

module 3

• Monte Carlo simulation performed in ideal conditions 
(no background from facility) for first data availability 
• Pure irradiated boron gamma source
• Layout based on experimental setup at Nagoya 

Detector projections: 3 spheres 2.5 mm radius, centered 
15 mm apart from the center in the same plane
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Based on PyTomography libraries with the 
iterative method: Ordered Subset Expectation 
Maximum(OSEM) on GPU-accelerated 

Tomography reconstruction
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Collimator resolution function

𝑅!"## =
𝑥
𝑓

𝑅$% +
𝑓 + 𝑥

𝑥 + 𝐶𝐻2
∗ 𝑑&%

𝑅$ = 3.0 mm, intrinsic resolution
𝑓 = 15 cm, distance collimator-detector 
𝑥 = 15 cm, distance collimator-source
𝑑& = 5 mm, pinhole diameter 
𝐶𝐻 =  48.04 mm, channel length Detection Crystal

x = 15 cm

f = 15 cm

CH = 4.8 cm

Vial

• iterations: 50, subsets: 3
• Pixel side: 0.39 mm
• Spheres reconstructed with ∽ 2.5 mm radius 

in agreement with simulated configuration

Preliminary tomography

central slide: 64 
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Algo. validation with Vials Tomography reconstruction

10 mm

• 6 projections (Polimi
dataset “ideal”)
• Difference angle: 60°
• Last resolution function 
• Energy range 465-490 keV
• Ideal projections

Two Vials

Simulated Polimi dataset describing a more realistic treatment 
conditions adapted to LENA set-up 

0° 180°

120°60°

beam 240°300°

Generated by 
symmetry

• iterations: 100, subsets: 3 by OSEM 
pytomography
• Pixel side: 0.32 mm
• Vials reconstructed with ∽ 10 mm distance

Reconstruction

XZ-PROJECTION

XY-PROJECTION

YZ-PROJECTION

Tomography reconstruction
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Dose monitoring by 
Compton imaging 



Compton imaging principles
• Principle

𝑐𝑜𝑠 𝜃 = 1 −𝑚!𝑐"
#
$!
− #
$"

where 𝐸% = 𝐸& +𝐸'

→ Compton event: the position of the source is 
confined in the Compton cone and found by 
overlapping them

• Single stage Compton imaging or “True 
events”
good events don’t include multiscattering

Compton
• Main advantages: 1) Reconstruction noise-

resolution 2) Detection sensitivity gain of the 
order of 30 − 600 with respect to mechanically 
collimated systems 

• Complex reconstruction by classical 
algorithms, high computational cost

Backward projection 
example
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Preliminary simulation set-up
• Detector: CZT crystal stack (5 mm thickness each), 60 

mm from the source
• Phantom material:  Air, soft tissue
• Simulated sources: 5-points like and spheric  478 keV 

gamma distributions

• Tomography FOV: cube 120 mm side centered with
source and covering the entire phantom.

Detector simulated inspired
in CZT sensor by Due2Lab
• Room-temperature gamma-ray 

spectroscopic 
• Sub-millimetre spatial resolution 

and excellent energy resolution 
(around 1% FWHM at 661.7 keV)

Abbene, L.; Principato, F.; Buttacavoli, A. and et al.: Potentialities of High-Resolution 3-D CZT Drift Strip Detectors for
PromptGamma-RayMeasurements inBNCT. Sensors, 22, 1502 (2022) 13



MLEM reconstruction method validation

Maximum Likelihood Expectation 
Maximisation (MLEM) → Iterative 
method to reconstruct the most 
probable source distribution 

𝜆!" =
𝜆!"#$

𝑠!
∑
%&$

' 𝑡%!
∑( 𝑡%(𝜆("#$

• λnj = calculated amplitude of pixel j at the nth 
iteration

• sj = sensitivity, i.e. the probability that a gamma ray 
originating from pixel j is detected anywhere 

• tij = imaging response matrix, i.e. the transition 
probabilities generated by the measured 
events(first estimation: based on back-projection, 
λ0)
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• Good resolution in x and y profiles, slightly 
worse in z direction (stretching effect) 

• No image interference when phantom is added 



Tumor-to-healthy 2D boron ratio study

• Spheric source in more realistic
conditions

• Two different ratios: ideal case (T/N =
5) and (T/N = 2) extreme case (clinical
values are T/N>3)

• Both distributions resolute.
→ More iterations needed to solve the
image in z (≈250)

On Tissue phantom, T/N = 5.0
I = 250I = 50BACK-PROJECTION

I = 250I = 50BACK-PROJECTION

On Tissue phantom, T/N = 2.0

15



Iteration methods and novel approach
• Limitation for online dose 

measurements: MLEM works only post-
irradiation, computational times ≈24-36 
min

• New approach to go from the back-
projection image to the tomography 
dose by using Deep Learning

Training Deep Learning
model with back-projection
and tomography labels sets
to make tomography
reconstruction

No availability of Compton
images databases within BNCT

Improve MC simulations
and built a more suitable
database

16



Improved simulations
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3 new configurations to improve the 3D imaging reconstruction (reduce stretching 
long z-axis): 
• single module placed at a distance of 60 mm from cylinder axis, 
• four modules (2 frontal and 2 at ±60°), 
• six modules (4 frontal and 2 at ±60°)

4 modules 6 modules



20 different tumor region shapes to obtain a suitable quantity of data for the
training phase of deep neural network algorithms

18

Improved simulations



U-Net model variants 

• U-Net and improved versions used for image 
denoising*:

(a) classical U-Net

(b) dual frame U-Net

(c) tight frame U-Net with Haar filter bank

• The input images are the results of the tenth 
iteration (~ 4-6 min) of MLEM algorithm

• The models were impletented in 3-D variants

19
*Framing U-Net via Deep Convolutional Framelets: Application to Sparse-view CT
Yoseob Han and Jong Chul Ye, Senior Member, IEEE



• Networks were trained using ADAM algorithm with learning rate 0.001 and NMSE loss function

• Evaluation:

20

Evaluation

Prediction time: ≈4-6 min



Summary and Future
• There is a possibility to exploit SPECT and  Compton imaging approaches for boron 

dose tomography within Boron Neutron Capture Therapy 
Compton imaging pros: dynamic FOV, no collimation is needed, less system complexity

• Fine tuning by using experimental data is needed (SPECT ongoing, Compton imaging → 
founding for a prototype)

• The use of Deep Learning has proved the possibility to reduce reconstruction times
(≈4-6 min using Compton imaging)
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What’s next? 
• Development of Deep Learning algorithms to be applied to SPECT reconstruction
• Approaches to reduce artifacts and improve reconstruction, more detailed MC simulation, unrolled 

learned prior algorithm optimization, other deep learning techniques (GANs, DIP, …)
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Thanks!
dayron.ramos@ba.infn.it

mailto:dayron.ramos@ba.infn.it
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Spares



Tumor Monitoring DL model

Resnet U-net architecture

Test metrics: accuracy and 
sensitivity

𝐴ccuracy =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Sensiti𝑣𝑖𝑡𝑦 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

• Matlab pipe-line for segmentation 
of images

• Use of Convolutional Neural 
Network model with a Residual U-
net Architecture (ResNet), widely 
used for segmentation

24



Model performance performance

Case 3 Spheric source 
in Tissue (T/N=5)

Case 4: 5 point-like 
source in air 

Case 2: Spheric source 
in Tissue (T/N=2)

Case 1: Spheric
source in Air

Normalized back 
projections

ResNet
segmentation

25



Poor localization of the source in the z direction with single-view camera, although single-
view reconstructions could be integrated with multi-view using image fusion techniques

26

List-mode MLEM with single-view camera



• Starting from 20 different tumor source geometries, 71 original 3D images were obtained considering
different T:N ratios (3:1, 4:1, 5:1, ∞:1). Input: 10th iteration MLEM reconstructions, output: 60th iteration
reconstructions

• For each of the 71 original images, 4 roto-translations of the tumor source were considered (71x5 
images)

• For each of the images, 41 images were obtained by adding four different levels of white Gaussian noise
(71x5x42= 14910 images)

• Distributed 70 : 10 : 20 among the training set (11130 images), validation set (1260 images) and test set 
(2520 images)

27

Dataset



• Networks were trained using ADAM algorithm with learning rate 0.001 and NMSE loss function

• Evaluation:

• Prediction time:≈4-6 min (BNCT treatment duration:≈30-90 min, MLEM algorithm:≈24-36 min) min

28

Training phase and evaluation


