

Computing@CSN5: applications and innovations at INFN Imaging algorithms for in-vivo BNCT dosimetry

DIPARTIMENTO INTERATENEO DI FISICA

D. Ramos Lopez, N. Ferrara, A. Didonna, G. Pugliese, G. Iaselli

Politecnico di Bari

dayron.ramos@ba.infn.it

Dutline

- State of art of BNCT
- **Part1:** Dose monitoring by Single Photon Emission Computational Tomography (SPECT)
 - SPECT project
 - Simulation and reconstruction algorithm development
- Part2: Dose monitoring by Compton imaging
 - Compton imaging principles
 - Simulations and classical tomography with iteratives algorithms Novel approach by Deep Learning (DL) models
- Summary and future

Boron neutron capture therapy

Boron Neutron Capture Therapy (BNCT) is an innovative hadrontherapy with high selectivity over cancer tissue based on the neutron capture reaction $^{10}B(n, \alpha)7Li$

*Skwierawska, D. et. al. Clinical Viability of Boron Neutron Capture Therapy for Personalized Radiation Treatment. Cancers 2022, 14, 2865.

Treatment duration ≈30-90 min

Dosimetry on BNCT

- Main nuclear interactions that contribute to the BNCT total dose delivery:
- **D**total =
 - Therapeutic dose from ¹⁰B(n, α)⁷Li (σ =3837 b) DB
- From ¹⁴N(n,p)¹⁴C reactions (Ep=630 keV, σ =1.9 b) + **D**_p due to thermal neutron
- Due to epithermal and fast neutron elastic **+ D**_n scattering daily with H nuclei
- From ${}^{1}H(n,\gamma){}^{2}H$ (E=2.2 MeV, σ =0.33 b) & $+ D_{\nu}$ reactor background

 \rightarrow Therapeutic boron dose as main dose contributor.

Dosimetry on BNCT

Nowadays dose estimation in BNCT:

- by blood test before, meanwhile and after irradiation, and
- Monte Carlo simulations to estimate all dose delivery contributes and neutron capture rates

Dose monitoring by SPECT

SPECT system

System based on BeNEdiCTE (Boron Neutron CapTurE) detector: Gamma ray detection module based on a LaBr₃(Ce+Sr) scintillator crystal readout by Silicon Photomultipliers and compact electronics with ASICs and FPGA.

- Founded by INFN CSN5
- "SPOC: SPect for Online boron dose verification in bnCt" and PRIN-2024 PNRR*
- Bari unit → Development of BNCT-SPECT dedicated tomography reconstruction

* Collaboration with UNIPV and POLIMI, and INFN sections

Monte Carlo simulations

- Monte Carlo simulation performed in ideal conditions (no background from facility) for first data availability
- Pure irradiated boron gamma source
- Layout based on experimental setup at Nagoya

Polimi pinhole collimator: Pb **Scintillator crystal:** LaBr₃ (5 x 5 x 2 cm³) **SiPM:** 8x8 array (5 x 5 x 0.2 cm³) Human head: G4_TISSUE_SOFT_ICRP 1 modules \rightarrow 4 modules \rightarrow 16 modules

Detector projections: 3 spheres 2.5 mm radius, centered 15 mm apart from the center in the same plane

Tomography reconstruction

Based on PyTomography libraries with the PyTomography iterative method: Ordered Subset Expectation Maximum(OSEM) on GPU-accelerated

$$\lambda(\text{new})_{j} = \frac{\lambda(\text{old})_{j}}{\sum_{D_{n}} \sum_{D_{m}} \sum_{i \in S_{L}} C_{ij(nm)}} \times \sum_{D_{n}} \sum_{D_{m}} \sum_{i \in S_{L}} C_{ij(nm)} \left(\frac{Y_{i(nm)}}{\sum_{K} C_{ik(nm)} \lambda(\text{old})_{k}} \right),$$

where $\lambda = \text{image variable}$, $C_{ij} = \text{system matrix}$, $Y_i = \text{Count}$ number of photon, $D_n = \text{GPU}$ domain length (horizontal thread number), and $D_m = \text{GPU}$ domain length (vertical thread number).

Collimator resolution function $R_{coll} = \left(\frac{x}{f}\right) \sqrt{R_d^2 + \left(\frac{f+x}{x+\frac{CH}{2}}\right) * d_e^2}$ $R_d = 3.0 \text{ mm, intrinsic resolution}$ f = 15 cm, distance collimator-detector x = 15 cm, distance collimator-source $d_e = 5 \text{ mm, pinhole diameter}$ CH = 48.04 mm, channel length CH = 48.04 mm, channel length CH = 48.04 mm, channel length CH = 48.04 mm, channel length

Preliminary tomography

- iterations: 50, subsets: 3
- Pixel side: 0.39 mm
- Spheres reconstructed with ~ 2.5 mm radius in agreement with simulated configuration

Tomography reconstruction

Algo. validation with Vials Tomography reconstruction

Simulated Polimi dataset describing a more realistic treatment conditions adapted to LENA set-up

Dose monitoring by Compton imaging

Compton imaging principles

Principle

$$cos(\theta) = 1 - m_e c^2 \left(\frac{1}{E_a} - \frac{1}{E_\gamma}\right)$$

where $E_\gamma = E_s + E_a$

 \rightarrow Compton event: the position of the source is confined in the Compton cone and found by overlapping them

• Single stage Compton imaging or "True events"

good events don't include multiscattering Compton

- Main advantages: 1) Reconstruction noiseresolution **2**) Detection sensitivity gain of the order of 30 – 600 with respect to mechanically collimated systems
 - Complex reconstruction by classical algorithms, high computational cost

Backward projection example

Preliminary simulation set-up

Detector simulated inspired in **CZT sensor by Due2Lab**

- Room-temperature gamma-ray spectroscopic
- Sub-millimetre spatial resolution and excellent energy resolution (around 1% FWHM at 661.7 keV)

Abbene, L.; Principato, F.; Buttacavoli, A. and et al.: Potentialities of High–Resolution 3–D CZT Drift Strip Detectors for Prompt Gamma–Ray Measurements in BNCT. Sensors, 22, 1502 (2022) ¹³

10 mm

- Detector: CZT crystal stack (5 mm thickness each), 60
- mm from the source
- Phantom material: Air, soft tissue
- Simulated sources: 5-points like and spheric 478 keV gamma distributions

9

🌙 6 mm

Tomography FOV: cube 120 mm side centered with source and covering the entire phantom.

MLEM reconstruction method validation

Maximum Likelihood Expectation **Maximisation** (MLEM) → Iterative method to reconstruct the most probable source distribution

$$\lambda_j^n = \frac{\lambda_j^{n-1}}{S_j} \sum_{i=1}^N \frac{t_{ij}}{\sum_k t_{ik} \lambda_k^{n-1}}$$

- λ^{n_j} = calculated amplitude of pixel *j* at the nth iteration
- s_j = sensitivity, i.e. the probability that a gamma ray originating from pixel *j* is detected anywhere
- *t_{ij}* = imaging response matrix, i.e. the transition probabilities generated by the measured events(first estimation: based on back-projection, λ_0)

On Air phantom

Good resolution in x and y profiles, slightly worse in z direction (stretching effect) No image interference when phantom is added

Tumor-to-healthy 2D boron ratio study

On Tissue phantom, T/N = 5.0

On Tissue phantom, T/N = 2.0

- Two different ratios: ideal case (T/N = 5) and (T/N = 2) extreme case (clinical values are T/N>3)
- Both distributions resolute. \rightarrow More iterations needed to solve the image in z (≈ 250)

Iteration methods and novel approach

- Limitation for online dose measurements: MLEM works only postirradiation, computational times ≈24-36 min
- New approach to go from the backprojection image to the tomography dose by using Deep Learning

Training **Deep Learning** model with back-projection and tomography labels sets to make **tomography reconstruction**

Improved simulations

3 new configurations to improve the 3D imaging reconstruction (reduce stretching) long z-axis):

- single module placed at a distance of 60 mm from cylinder axis,
- four modules (2 frontal and 2 at $\pm 60^{\circ}$),
- six modules (4 frontal and 2 at $\pm 60^{\circ}$)

Improved simulations

20 different tumor region shapes to obtain a suitable quantity of data for the training phase of deep neural network algorithms

U-Net model variants

U-Net and improved versions used for image denoising*:

(a) classical U-Net

(b) dual frame U-Net

(c) tight frame U-Net with Haar filter bank

- The input images are the results of the tenth iteration (~ 4-6 min) of MLEM algorithm
- The models were impletented in 3-D variants

*Framing U-Net via Deep Convolutional Framelets: Application to Sparse-view CT Yoseob Han and Jong Chul Ye, Senior Member, IEEE

		NMSE	PSNR	SSIM		
- 0.6	Standard U-Net	0.031803	36.119379	0.754417		
- 0.4	Dual frame U-Net	0.029113	36.396008	0.726286		
	Tight frame U-Net	0.011953	40.615813	0.853548		

Summary and Future

- dose tomography within Boron Neutron Capture Therapy
- founding for a prototype)
- (\approx 4-6 min using Compton imaging)

What's next?

- Development of Deep Learning algorithms to be applied to SPECT reconstruction
- learned prior algorithm optimization, other deep learning techniques (GANs, DIP, ...)

There is a possibility to exploit SPECT and Compton imaging approaches for boron

Compton imaging pros: dynamic FOV, no collimation is needed, less system complexity Fine tuning by using experimental data is needed (SPECT ongoing, Compton imaging \rightarrow

The use of Deep Learning has proved the possibility to reduce reconstruction times

Approaches to reduce artifacts and improve reconstruction, more detailed MC simulation, unrolled

Politecnico di Bari

DIPARTIMENTO **INTERATENEO DI FISICA**

Istituto Nazionale di Fisica Nucleare Sezione di Bari

Tumor Monitoring DL model

- Matlab pipe-line for segmentation of images
- Use of Convolutional Neural Network model with a Residual Unet Architecture (ResNet), widely used for segmentation

Test metrics: accuracy and sensitivity $Accuracy = \frac{TP}{TP + FP}$

Sensiti*vity* =
$$\frac{TP}{TP + FN}$$

Resnet U-net architecture

Property	Value
Layers	206×1 Layer
Connections	227×2 table
InputNames	1×1 cell
OutputNames	1×1 cell

Model performance performance

Normalized back projections

Case 1: Spheric source in Air

in Tissue (T/N=2)

	Accuracy	Sensitivi	
case 1	79.56%	99.87%	
case 2	4.83%	100%	
case 3	19.68%	100%	
case 4	3.81%	100%	

Case 2: Spheric source

Case 3 Spheric source in Tissue (T/N=5)

Case 4: 5 point-like source in air

List-mode MLEM with single-view camera

Poor localization of the source in the z direction with single-view camera, although singleview reconstructions could be integrated with multi-view using image fusion techniques

Δx

Jataset

- reconstructions
- For each of the 71 original images, 4 roto-translations of the tumor source were considered (71x5) images)
- (71x5x42 = 14910 images)
- (2520 images)

Starting from 20 different tumor source geometries, 71 original 3D images were obtained considering different T:N ratios (3:1, 4:1, 5:1, ∞:1). Input: 10th iteration MLEM reconstructions, output: 60th iteration

For each of the images, 41 images were obtained by adding four different levels of white Gaussian noise

Distributed 70:10:20 among the training set (11130 images), validation set (1260 images) and test set

Training phase and evaluation

- Evaluation: $NMSE = \frac{\|f^* \hat{f}\|_2^2}{\|f^*\|_2^2}$ PSNR = 1

Network	n_{te}	Best epoch	Tr. NMSE	Val. NMSE
U-Net	56	39	0.03396	0.02865
Dual frame U-Net	53	50	0.03280	0.02571
Tight frame U-Net	52	48	0.01102	0.01113

Networks were trained using ADAM algorithm with learning rate 0.001 and NMSE loss function

$$10 \log_{10} \left(\frac{\|f^*\|_{\infty}^2}{MSE} \right) \qquad SSIM = \frac{(2\mu_{\hat{f}}\mu_{f^*} + c_1)(2\sigma_{\hat{f}f^*} + c_2)}{(\mu_{\hat{f}}^2 + \mu_{f^*}^2 + c_1)(\sigma_{\hat{f}}^2 + \sigma_{f^*}^2 + c_2)}$$

Prediction time: \approx 4-6 min (BNCT treatment duration: \approx 30-90 min, MLEM algorithm: \approx 24-36 min) min