

Ministero dell'Università e della Ricerca







14<sup>th</sup> October 2024

# **Artificial Intelligence for BNCT: current applications and** future prospects

•This work was funded by the Italian National Institute for Nuclear Physics, CSN5 Young Researchers Grant AI\_MIGHT.

•This work was funded by the National Plan for NRRP Complementary Investments (PNC, established with the decree-law 6 May 2021, n. 59, converted by law n.101 of 2021) in the call for the funding of research initiatives for technologies and innovative trajectories in the health and care sectors (Directorial Decree n. 931 of 06-06-2022) - project n. PNC0000003 - AdvaNced Technologies for Human-centrEd Medicine (project acronym: ANTHEM). This work reflects only the authors' views and opinions, neither the Ministry for University and Research nor the European Commission can be considered responsible for them.



**PNC** Piano nazionale per gli investimenti complementari al PNRR Ministero dell'Università e della Ricerca





### Setareh Fatemi - setareh.fatemi@pv.infn.it







n

14<sup>th</sup> October 2024





# ALMIGHT PROJECT

Image Registration

> ROI individuation and automatic segmentation

#### **RESEARCH:** FAST TOOL TO CREATE A **DATABASE FOR TPS** IMPROVEMENT





#### **CLINICAL: SPEED UP & AID PHYSICIANS TO SEGMENT ROIS**





### **The Cancer Imaging Archive**



#### We chose the images with a corresponding RTSTRUCT

Francesco Morosato - Master Thesis @ UNIPV 16 December 2022

| GBM  | H&N  |
|------|------|
| 230  | 1934 |
| >103 | 171  |



# DEEP LEARNING MODEL nnUNet



Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.

14<sup>th</sup> October 2024



# IMAGE PREPROCESSING

### **Bounding Box Algorithm**





TRAIN SET (80

1547

TRAIN SET (80

184

14<sup>th</sup> October 2024



### **HEAD & NECK**

| %) | TEST SET (20 %) |  |
|----|-----------------|--|
|    | 387             |  |

#### **GLIOBLASTOMA** MULTIFORME

| )%) | TEST SET (20 %) |  |
|-----|-----------------|--|
|     | 46              |  |





**Predicted Volume** 

14<sup>th</sup> October 2024

# EVALUATION COEFFICIENTS

![](_page_7_Picture_5.jpeg)

![](_page_7_Picture_6.jpeg)

Ground Truth

![](_page_7_Picture_10.jpeg)

# COEFFICIENTS RESULTS

#### **HEAD & NECK**

![](_page_8_Figure_2.jpeg)

#### **GLIOBLASTOMA MULTIFORME**

![](_page_8_Figure_5.jpeg)

![](_page_8_Picture_8.jpeg)

# TREATMENT PLANNING SYSTEM

![](_page_9_Picture_1.jpeg)

### **INPUT: SEGMENTED** ROIS

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

14<sup>th</sup> October 2024

### **OUTPUT:** DOSIMETRIC CALCULATION

#### **GLIOBLASTOMA** MULTIFORME

![](_page_9_Picture_8.jpeg)

![](_page_9_Picture_11.jpeg)

![](_page_10_Picture_0.jpeg)

### **BODY+GTV+OAR**

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

14<sup>th</sup> October 2024

![](_page_10_Picture_5.jpeg)

![](_page_10_Figure_6.jpeg)

11

![](_page_10_Picture_9.jpeg)

## CT + GTV + OAR

![](_page_11_Figure_1.jpeg)

# **MCNP** Voxelized Geometry

![](_page_11_Figure_3.jpeg)

14<sup>th</sup> October 2024

12

![](_page_11_Picture_7.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_13_Figure_0.jpeg)

# DC=0.82 GMI=0.198, DI=0.152

![](_page_13_Picture_6.jpeg)

AI for BNCT

# **ISODOSE CURVES GROUND TRUTH**

![](_page_14_Picture_1.jpeg)

## **Isoeffective dose model**

González, S.J. and Cruz, G.A.S., 2012. The photonisoeffective dose in boron neutron capture therapy. Radiation research, 178(6), pp.609-621.

# **ISODOSE CURVES NN\_SEGMENTATION**

Minimum D Mean Dos Maximum **D** 

![](_page_14_Picture_6.jpeg)

|           | Manual Segmentation | AI Segmentation |
|-----------|---------------------|-----------------|
| Dose [Gy] | 23.33               | 23.12           |
| se [Gy]   | 28.03               | 28.39           |
| Dose [Gy] | 30.74               | 31.10           |

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

![](_page_14_Picture_12.jpeg)

![](_page_14_Picture_15.jpeg)

## **18** cases of GBM tumours studied with the TPS

![](_page_15_Figure_1.jpeg)

Ongoing: evaluation of the TCP as a figure of merit to compare the results of the dosimetric calculations on the "True" segmentation and on the NN segmentation

![](_page_15_Picture_6.jpeg)

![](_page_16_Picture_0.jpeg)

**Istituto Nazionale di Fisica Nucleare** 

- we opened a collaboration with Università della Campania Luigi Vanvitelli Radiation Oncology Department
- we are focusing on AI for the optimisation of the moderation system and for boron imaging
  - we are studying AI for image reconstruction for a real time imaging during treatment

![](_page_16_Picture_6.jpeg)

Ministero dell'Università e della Ricerca

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_10.jpeg)

## In synergy with PNC\_PNRR\_ANTHEM:

![](_page_16_Picture_12.jpeg)

![](_page_16_Picture_13.jpeg)

**PNC** Piano nazionale per gli investimenti complementari al PNRR Ministero dell'Università e della Ricerca

![](_page_16_Picture_15.jpeg)

![](_page_16_Picture_18.jpeg)