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Outline

% Spiking Neural Networks (SNNs)
> Our activities on simulation technology
% Synapse modeling and cognitive processes
> Short-term synaptic plasticity and Working Memory

> Structural synaptic plasticity and Learning
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Single-neuron modelling

Hodgkin-Huxley neuron, a semiempirical neuron model
which describes the membrane potential dynamics.

I optimal description of the neuronal dynamics
QI-E}B large-scale networks simulations are not efficient

Spiking neuron, a point-like neuron which emits spike
events.

3 can be employed in large-scale network simulations
ﬁm}i needs a threshold to describe the spike emission
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Large-scale models of spiking neurons

Cortical microcircuit: 77000 LIF neurons and 300M connections. It represents 1Tmm? of cerebral cortex.

Multi-area model: 4M LIF neurons and ~24B connections. It represents 32 areas of the macaque vision-related cortex.
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NEST GPU: a GPU-based simulator fFor SNN

NEST (NEural Simulation Tool) is one of the most reliable SNN simulators.
NEST GPU is the GPU-based simulator of the NEST Initiative.

We are able to exploit multi-GPU systems, with the possibility of simulating
millions of neurons and billions of synapses in a relatively low simulation time.

Optimization in progress to take advantage of the modern supercomputers,
like LEONARDO, with thousands of GPUs available.

NEST GPU is a result of active collaboration

oo . between:
neSt iy CPU-based simulator Uni Cagliari & INFN, Sezione di Cagliari
INFN, Sezione di Roma 1 (APE Lab)
n e S t : : INM-6, Jiilich Research Center
initiative Golosio et al., Appl. Sci., 13,9598, 2023

ne st :: gpu Tiddia et al., Front. Neuroinform., 16:883333, 2022

Golosio et al., Front. Comput. Neurosci., 15:627620, 2021
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NEST GPU: performance evaluation (1/2)

47
\mPORTANT

O
NEST GPU achieves below real-time
performances!

The cortical microcircuit model can be simulated on a single GPU.
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NEST GPU: performance evaluation (2/2)

The multi-area model has to be simulated on a MPI-GPU cluster.

Simulations performed with JUSUF@JSC (32 V100 GPUs employed). 50
Vs
*\ \mponTA‘“.
NEST GPU achieves state-of-art 40
performances!
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Synapses and plasticity

Synapses may change over time. This changes are known under the name of synaptic plasticity.

Synaptic
Functional plasticity plasticity
(changes at the level of a

single synapse)
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Synaptic theory of working memory

Working Memory (WM) is a cognitive process able to hold and
manipulate information for a short time. It is fundamental for Maintenance rehearsal
speech, visual and spatial processing. ( h—\j
It is observed in the prefrontal cortex (PFC) during delay response WORKING
— —

The Synaptic Theory of Working Memory posits that a ‘L W i

mechanism of short-term synaptic facilitation leads to
Unrehearsed Some information is

information maintenance in both synaptic and spiking form, with information is lost lost over time
spiking activity functional for synaptic facilitation upkeep.
Mongillo et al., Science, 319, 2008

LONG-TERM

activity-silent mechanism

short-term plasticity?

Working Memory  swmem—efp spiking activity +
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Nonselective Q
Inhibitory neurons @

Spiking model of working memory
N L

Raster plots of two selective populations (green and black dots=spikes).

Spiking activity is modulated by the background current (increases from
panel A to panel B).

STP variables — x (amount of neurotransmitters) and — u (probability of

release) averaged over the population targeted by the external stimulus. selective external input (cue)

small non-selective signal
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Structural synaptic plasticity

Activity-related changes Homeostatic changes

Structural plasticity describes the

mechanisms of connection creation,
consolidation and erasure (or pruning). high
activities
new spines

.« . dendrite
It can be activity-related or .
h omeosta tIC Fauth and Tetzlaff, Front. Neuroanat., 10:75, 2016 elongated

dendrite

In particular, synaptic pruning and ow
connection reorganization are acHvities
fundamental mechanisms for learning new spines

. . . . . (possibly silent)
and neural circuits optimization.

spines

Fauth and Tetzlaff, Front. Neuroanat., 10:75, 2016

Question: can we estimate the impact

of structural plasticity in learning? H H

Dendritic spines
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The firing rate-based model

Feed-forward rate-based network with two neuron igh rate regime 0 pContextual P,
populations.
Training

Low rate regime
- apattern and a contextual stimuli are injected into

the network

m

- structural plgstluty stablllggs cqnnectlons between e o
neurons at high rate (stabilization) T patterns : : Patterns
T mremmmm | W/ noise

- periodically, non-stabilized synapses are removed e e ]

and created again randomly (rewiring) Training Test

» Connections modified by
structural plasticity

TeSt —> Post-training connections
e e . . . —d CQntextuaI stimulus
- apatternisinjected into the network without the e s
. oding Igh rate) neurons
COﬂ teXtua I. Stl m U lUS Non-Coding (low rate) neurons

Tiddia et al., Phys. Rev. E (accepted), 2024
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Impact of synaptic rewiring

During test, we estimate the signal-difference-to-noise-ratio to evaluate the capability of the network of recognizing
the pattern using both C++ simulations and a theoretical framework.
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Outlook

Simulation technology for neuroscience is advancing to fully
exploit next era supercomputers

K/

% With NEST GPU, we can exploit clusters such as Th adi k yO U FO I yo ur

LEONARDO to perform very-large-scale simulations
E.g.: using 96 GPUs, we simulate ~22M neurons and

~240B synapses with RTF ~15 a tte n ti O n !

%  We are working towards the development of large-scale
models able to investigate the role of synaptic
processes in high-level cognitive processes
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NEST GPU: scaling test

Simulation time HPC Benchmark.

Scaling test of NEST GPU with LEONARDO: network A scale 20 model is simulated in each MPI process (1 per GPU)
with 225k neurons and 2.5B connections per GPU 14 ]
employed.
121
Connections are instantiated between neurons that
mainly belong to different blocks of the models (i.e., 101
GPUs).
E °
Average neuron firing rate: 8 Hz o
Using 96 GPUs: "
22M neurons "
243B synapses
RTF ~15 (i.e., a second of neural activity is 428 16 32 64 %
simulated in around 15 seconds) # MPI pocesses (and GPUs employed)



How to model short-term plasticity

Neurotransmitter
R, Replenishment

! Neurotransmitter
\ Replenishment

How can we model a synaptic mechanism?

Further

An example we worked on: short-term plasticity

Presynaptic Spike™
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Effects of STP on postsynaptic potential (PSP)

An example of synaptic facilitation
(ie.T, > T,). Neurotransmitters

recovers faster, whereas calcium
concentration decrease slowly.

STPvariables: — u — x -—-ux
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Working Memory Spiking Network Model

External inputs Excitatory neurons
Network of 10000 LIF neurons with exponential postsynaptic currents. \\F* Nonseloctive &
Neuronal (subthreshold) dynamics for a neuron : \ — g IMhbltOrY neuronse
dv;
T _V +an(](l(+1mh+luij)

dt

Contribution driven by synaptic connections:
(]1( xc

Tere—>— I'”+Zn],J Zd(f—fﬁi)—(),,)

(Hmh

Tinh—3; [l”h +ZQIIJZ t—f< (5

External background current (Gaussian white noise):

abs N &
Jij(t) = J,-(.A,- Jui j(t — i)z (¢ — 81 )

Excitatory neurons organized in 5 selective
populations. Neurons of the same selective
population have stronger J@bs),

Loat j(t — 87) = pteat + TeatGi Inh|b|t0fy‘neurons have non-specific
connectivity.




SDNR and memory capacity

Why do we calculate SDNR?

SDNR can be linked to the memory capacity by defining the
probability of correct recall of a learned pattern ( ¢ )!

Setting a threshold probability (e.g., 95%), we can derive SDNR,

From the SDNR threshold that we can estimate the memory
capacity as the maximum amount of patterns that can be stored
in the network having at least a SDNR equalto SDNRy,,
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