Multiscale modeling for the study of intra-cell dynamics following FLASH irradiation

Valentina Tozzini Istituto Nanoscienze CNR and Lab NEST-SNS PI, INFN PI

Outline

- \checkmark Multi-scale modeling in nano-bio-physics and molecular biology
- \checkmark FLASH effect: phenomenology and focus on the time and size scales
- \checkmark Triggering steps: the ROS production
- \checkmark Subsequent steps: to the macro-scale
- \checkmark A 'holistic' approach: integration AI driven

Finanziato dall'Unione europea NextGenerationEU

SPOKE1

Radioterapie e diagnostiche avanzate in oncologia

Responsabile scientifico: Leonida Gizzi

SPOKE LEADER

· Consiglio Nazionale delle Ricerche (CNR)

Partner affiliati

- · Università di Firenze (UNIFI)
- · Università di Pisa (UNIPI)
- · Istituto Nazionale di Fisica Nucleare (INFN)

Sub-project 2

Molecular mechanisms, in vitro validation and radiobiological effect modelling of ultra-high dose rate

INFN

multi-scale simulations Subjects **Constructed** Subjects **Subjects** Subjects **Subjects** Subjects **Subjects** Subjects **Subjects** Subjects **Subjects** $(s_i : \text{organism}, \text{organism})$ state (normal/cancerous), "Flash modifying factors" $F_{S_i}(\lbrace p_j \rbrace)$ Measured effects: survival, markers, ROS, endpoints, cognitive, structural… "normalizatio Irradiation parameters (p_i: \dot{D} , D , \dot{D}_p , ν , radiation type, ...) Advanced statistical models $+$ ML Prediction of effects on tissues models/FF optimization Data storage, sorting, … Molecular mechanisms of FLASH effect simulation

M1.2.1 Developed and implemented multi-scale procedure for the in silico simulation of the UHDR (FLASH-RT)

M1.2.2 Radiobiological effects at UHDR vs. CONV and radiation parameters

M1.2.3 Developed and implemented a database for sharing, elaborating and combining data from experiments and simulations

Multi-Scale modeling of bio-processes

 \checkmark accuracy/trasferability

INFN

 \checkmark Target/input data

Biological processes are inherently multi-scale Continuum/ \rightarrow Multi-scale modeling is needed to simulate them grid models Multi-scale modeling Particle models = Use different resolution/models/ m representations for modeling the Reduce resolution resolution different stages of a processmm Spatial coarse graining \checkmark Reduce/hide degrees of freedom uce 1 μm V Use collective variables Network, kinetic models Parameters coarse graining nm Interactions have increasing empiricism Time averaging \checkmark Strategy for fitting parameters fs ps ns μs ms sec hours Months/years **Increase** (regression/ML) erpiricism

Time coarse graining

- \checkmark Increase the time step of motion integration
- \checkmark cut off high frequencies
- \checkmark Use stochastic/enhanced sampling methods, statistical averages

Workshop Computing@CSN5, Bari sept 14-17 2024

Multi-Scale modeling of bio-processes

"Parameters" coarse graining

Interactions have increasing empiricism

- \checkmark Strategy for fitting parameters (regression/ML)
- \checkmark accuracy/trasferability
- \checkmark Target/input data

nm

mm

Increase empiricism

Workshop Computing@CSN5, Bari sept 14-17 2024

Reduce resolution

 \checkmark Reduce/hide degrees of freedom

Spatial coarse graining

 \checkmark Use collective variables

- \checkmark Increase the time step of motion integration
- \checkmark cut off high frequencies
- V Use stochastic/enhanced sampling methods, statistical averages

Time averaging

Multi-scale modeling radiation damage

TIFPA

Time and space dynamics of FLASH

Phenomenology and definitions

Time and space dynamics of FLASH

Starting from the beginning... First steps of ROS generation

- interaction with biomolecules
- ü **Time-size scales**: up to μsec and μm

INFN

ü **Method:** combine two "complementary" approaches

Reactive atomistic molecular dynamics

Combining Monte Carlo & Molecular dynamics

Combining Monte Carlo & Molecular dynamics

Reactive atomistic molecular dynamics (RAMD) MC NO Starting space

- μm ü **Integration procedure:** reactive MD FFs **force driven** $M_i \ddot{\mathbf{R}}_i = -\nabla_i U(\{\mathbf{R}_i\}) - M_i \gamma_i \dot{\mathbf{R}}_i - \mathbf{F}^{\mathcal{S}}_i$ trajectory based
- \checkmark Input: Interactions $U(\{R_i\})$, box of water molecules, + other molecules of interest in starting state
- ü **Time/space scales:** fs to μs, nm to μm
- ü **Output: Trajectories of each particle,** reactions evolution and diffusion, **kinetic constants** for new species (e.g. DNA)

Workshop Computing@CSN5, Bari sept 14-17 2024

MC and MD are complementary!

MC and MD are complementary! Interfacing MC with MD

Interfacing MC with MD

MC and **MD** are implemented in different codes (TRAX-CHEM and LAMMPS)

An interface is currently under construction to: **(Lorenzo Castelli, Emanuele scifoni, Lorenzo Petrolli, Manuel Micheloni)**

- \checkmark Exchange configuration/trajectory data
- \checkmark Calculate cross sections and other parameters from MD to give in input to MC
- \checkmark Calculate particles distribution from MC to give in input to MD
- \checkmark Use other kind of more fundamental MD (e.g. ab initio) to optimize the interactions in reactive MD

These tasks are aided by **NN and ML algorithms**

Example benchmark:

water radiolysis

Example benchmark: water radiolysis

+0.5

-0.5

How does the reactive FF works with the radical species?

 $M_i \ddot{\mathbf{R}}_i = -\nabla_i U(\{\mathbf{R}_i\})$

ü **Forces** to evolve atomic species are calculated from a unique **interaction potential accounting for reactivity** (formation and breacking of bonds)

ü **Charges on each atom/ion/radical must dinamically evolved** at each time step (fractional charge account for bonds polarization

⇒ **An accurate method to evolve the charge is essential!**

Water radiolysis

- \checkmark Preliminarily consider a reduced number of chemical species
- ü Create a **water box** (10-100 nm)
- ü Run **long simulations** (μsec overall) in at room conditions
- ü Calculate the **pair distribution functions** and **diffusion coefficients**

The structure of water

radial distribution functions g(r) (probability of finding particles at distance r) are similar in the three methods and compare fairly well with the experimental data

> The water diffusivity is better reproduced by CGeM, generally overestimated by the other methods

Workshop Computing@CSN5, Bari sept 14-17 2024

Ions and radical diffusion Ions and radical diffusion

Diffusion coefficient is less good

ü In **reasonable agreement** only with **CGeM**

ü Largely overestimated with **other methods**

Ions and radical diffusion

OH* and OH- diffusion is correlated with proton hopping $OH^* + H_2O \rightarrow H_2O + OH^*$ OH* $OH^- + H_2O \rightarrow H_2O + OH^-$ The hopping probability is related to the charge dynamics +0.5 +0.4 $+0.5$ +0.4 +0.4 $OH[•]$ Water17 (QEq) $OH^ -0.5$ $+0.4$ -0.8 -0.8 $CHON (QE₀)$ -0.5 $CGeM$ $\begin{array}{c}\n\text{Hopping} \\
\text{equation:}\n\end{array}$ • Qeq produces too fast and fractional charge transfer ⇒ **too fast hopping** Qeq is not able to distinguish ions and radicals • Missing discrete nature of the electronic charge! $30[°]$ 30 CGeM reincludes explicit electron degrees priori **CGeM** reincludes explicit electron degrees and freedom and and

What's ongoing, what's next

 \checkmark The "atomistic" simulations must be included in a more complete platform including the other stages of simulations

What's ongoing, what's next

 \checkmark The interface is a part of the multi-scale simulation platform...

What's ongoing, what's next

… which is part of a general analysis and modeling platform of **FLASH effect…**

Summary

- ü **Computer modeling** is a valuable tool to investigate the mechanistic determinants of the FLASH effect, but **multi-scale methods** must be used
- \checkmark A comprehensive platform is under construction to combine the different methods and explore the different possible determinants, from the role of oxigen to that of differential damage repair mechanism
- ü At the atomistic level, **Monte Carlo** and **Molecular Dynamics** are complementary methods and must be combined to explore the physical and chemical phases of the radiobiological cascade up to the micro-scale
- \checkmark The larger scales (sub-cell and intra-cell biochemical cascade) must be explored with **coarse grained models** and **kinetic network** models
- \checkmark The tasks of analysis, interfacing and parameter optimization and **effect prediction** are aided by **machine learning** techniques

Thank you for your attention … AND aknowledgements

CPFR Valentina Tozzini Istituto Nanoscienze CNR and Lab NEST-SNS PI Lorenzo Castelli UniTn and SNS Emanuele Scifoni TIFPA INFN Trento Igor Bodrenko NANO-CNR PI Susanna Monti ICCOM-CNR PI Manuele Micheloni UniTn Lorenzo Petrolli UniTn Luca Bellucci NANO-CNR PI Margherita Bini SNS-CNR Pi

Centro Pisano per la radioterapia FLASH

Fabio Di Martino Fabiola Pajar Simone Capaccioli

