A volte ritornano Buon Pomeriggio

Federico Mescia

Frascati, July 9th, 2024

A volte ritornano Buon Pomeriggio

Federico Mescia

- Mi presento:

- * 2007 <u>Art.23</u> @ LNF
- ✤ 2009 RTDB (Ramón y Cajal) @ UB
- 2013 Prof. Associato
- ✤ 2019 Prof. Ordinario @ UB
- 2024 Chiamata diretta @ LNF^{•••} Aho, vie[']

Frascati, July 9th, 2024

Eh mo' che?

Federico Mescia

"Establishing Thysics Beyond the Standard Model in the light of Data"

Beyond Standard Model: Why?

TWO UNEXPLAINED EXPERIMENTAL EVIDENCES in the SM

- 1. Baryon Antibaryon Asymmetry
- 2. Dark Matter

Beyond Standard Model: Why?

TWO UNEXPLAINED EXPERIMENTAL EVIDENCES in the SM

1. Baryon – Antibaryon Asymmetry **Violation of CP required!**

2. Dark Matter

In the SM, weak interactions violate CP but not enough!

→ New (heavy or light) particles carrying CPV.

Beyond Standard Model: Why?

TWO UNEXPLAINED EXPERIMENTAL EVIDENCES in the SM

1. Baryon – Antibaryon Asymmetry

The SM does not host a particle candidate for DM.

 \rightarrow A new particle as DM.

Bloise, Gatti, Giovanella, Miscetti, Palutan, Rotondo, Spadaro,Sciascia **(Lavoro in sede)**

Axion Theory?

 $\Box Axion \rightarrow pNGB of spontaneously <u>broken U(1)</u> with QCD anomaly$

$$\frac{\theta}{f_a} \frac{\alpha_s}{8\pi} GG \rightarrow \frac{a}{f_a} \frac{\alpha_s}{8\pi} GG + C_{\gamma} \frac{a}{f_a} \frac{\alpha}{8\pi} F_{\mu\nu} F^{\mu\nu} + C_f \frac{\partial_{\mu}a}{f_a} \overline{f} \gamma^{\mu} \gamma_5 f$$

$$\varphi = (f_a + \rho) e^{ia/f_a}$$
$$U(1)_{PQ}$$

The lighter the axion, the weaker are its interactions!

BUT the PQ solution suffers from some TH issues Which is the <u>origin</u> of U(1)? U(1) is broken, why not \$\ophi\$, \$\ophi^2\$, \$\ophi^3\$? Quantum Gravity is in odds with global symmetries U(1) must be an extremely good symmetry up to the Planck scale Peccei Quinn Quality Problem: UV completion of axion needed!

Solution to the PQ quality problem: PQ and Flavor?

The PQ symmetry arises **accidentally** at lowenergy **by a new gauge symmetries**, **G**?

> NOW, if SM quarks are charged under *G*, *G* is a flavor symmetry

Project Goal: determining **G** and its breaking pattern such as

(i) to predict an accidental U(1) symmetry origin of PQ ⁽ⁱ⁾
(ii) to protect the U(1) symmetry from UV-breaking sources PQ quality ⁽ⁱ⁾
(iii) to reproduce the fermion masses/mixing of the SM Flavor as gift

Solution to the PQ quality problem: Pati-Salam and Flavor?

Pati-Salam with gauged $SU(3)_R$ flavor

A suitable model with Pati-Salam vertical symmetry and SU(3)_R for horizontal (flavour) symmetry has been found! ⁽ⁱ⁾
 The PQ symmetry arises accidentally and highly protected!

Solution to the PQ quality problem: Pati-Salam and Flavor?

Pati-Salam with gauged $SU(3)_R$ flavor

	$SU(4)_c$	$SU(2)_L$	$SU(2)_R$	$SU(3)_R$	Generations	$U(1)_{\rm PQ}$
Q_L	4	2	1	1	3	+3/2
Q_R	4	1	2	3	1	+1/2
$ \Psi_R $	1	1	1	3	8	check!
Φ	1	2	2	3	≥ 1	+1
\sum	15	2	2	3	≥ 2	+1
		G. Lan	dini & Pl	D on-go	ing project	

- Gauge anomalies successfully cancelled out, but extra fields needed to cancel the SU(3) R anomalies
- Now time for a rich phenomenology: Dark Matter? Dark radiation? Flavor puzzle

My research priorities (2024)

2. Theory support to the FLASH proposal (with <u>RM1-laureando</u>, U. Sofia, G. Grilli di C.)

3. DM vs Flavour Physics: post anomaly era ⊗ (with KEK, Phd student@UB)

4. DM@collider (LHC, FCC) (with Pisa, RM3, <u>RM1-laureanda</u>) Rigranziamo le Università per continuare a fornire Frascatani

Daily physics discussions: Antonellis, Babusci, Bloise, Gatti, Giovanella, Miscetti, Palutan, Rotondo, Spadaro, Sciascia (Lavoro in sede)

Millicharged DM

The visible universe is governed by a rich spectrum of forces and particles.

• Generic to expect that dark matter couples to new long-ranged forces.

Millicharged DM deflected by "Electric field"

Induce and measure disturbances of the dark matter "fluid,"

A.Berlin, R. T. D'Agnolo, S. A. R. Ellis, P. Schuster and N.Toro, ``Directly Deflecting Particle Dark Matter," Phys. Rev. Lett. 124 19.

Millicharged DM deflected by "Electric field"

Tool (python/root) to simulate the deflection and detection phases

G. Grilli di Cortona, F. La Valle (RM1 laureando) & M.Navydenov,

- Tool tested for spherical electric field
- Tool ready for more realistic setup (discussing with D. Alesini per la configurazione finale)

Millicharged DM deflected by "Electric field"

Tool (python/root) to simulate the deflection and detection phases

G. Grilli di Cortona, F. La Valle (RM1 laureando) & M.Navydenov,

- Tool tested for spherical electric field
- Tool ready for more realistic setup (discussing with D. Alesini per la configurazione finale)

Future theoretical work: studying other mechanisms of DM production

My research priorities (2024)

3. DM vs Flavour Physics: post anomaly era ⊗ (with KEK, Phd student@UB)

4. DM@collider (LHC, FCC) (with Pisa, RM3, <u>RM1-laureanda</u>) Rigranziamo le Università per continuare a fornire Frascatani

Daily physics discussions: Antonellis, Babusci, Bloise, Gatti, Giovanella, Miscetti, Palutan, Rotondo, Spadaro, Sciascia (Lavoro in sede)

DM and Flavour Physics (MFV)

No-anomalies: No panic!

All interactions respect the MFV pattern

MFV hypothesis \rightarrow Stability of flavored dark matter

more details today at 16:30 on the talk of Shohei Okawa (KEK), "Multi-component Dark Matter from Minimal Flavour Violation", at the 15th International Workshop on Identification of Dark Matter 2024 @ L'Aquila

DM and Flavour Physics (MFV)

No-anomalies: No panic!

All interactions respect the MFV pattern

MFV hypothesis \rightarrow Stability of flavored dark matter

$SU(3)_Q imes SU(3)_{u_R} imes SU(3)_{d_R}$	Stable?		
(1, 1, 1)			
(3 , 1 , 1),(1 , 3 , 1),(1 , 1 , 3)	Yes		
$(ar{3},1,1),(1,ar{3},1),(1,1,ar{3})$	Yes		
$({f 6},{f 1},{f 1}),({f 1},{f 6},{f 1}),({f 1},{f 1},{f 6})$	Vos		
(3 , 3 , 1),(3 , 1 , 3),(1 , 3 , 3)	1 05		
$(ar{6},1,1),(1,ar{6},1),(1,1,ar{6})$	Ves		
$(\bar{3}, \bar{3}, 1), (\bar{3}, 1, \bar{3}), (1, \bar{3}, \bar{3})$			

- Applied for any spin and EW representation of χ
- Only the lightest flavored particle is stable
 - All heavier particles are unstable and rapidly decay away in a case
 - Is it possible that the heavier components are also long-lived to constitute part of DM?

more details today at 16:30 on the talk of Shohei Okawa (KEK),
 "Multi-component Dark Matter from Minimal Flavour Violation", at the 15th International Workshop on Identification of Dark Matter 2024 @ L'Aquila

DM under MFV hypothesis

Multi-component flavored DM

th

more details today at 16:30 on the talk of Shohei Okawa (KEK),
 "Multi-component Dark Matter from Minimal Flavour Violation", at the 15th
 International Workshop on Identification of Dark Matter 2024 @ L'Aquila

Grazie e alla prossima!

- Extensive Research Program: from Experiment to Fundamental questions of Physics
- Strong Background in QCD
- Explored Many Research Lines over the Years:
 - Heavy new particles (CPV/DM)
 @LHC/flavour (by loops)
 - Light particles (as GB)
 @astro/cosmo

Força, Equilibri, Valor i Seny