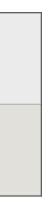


CYGNO status and plans June 2024

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

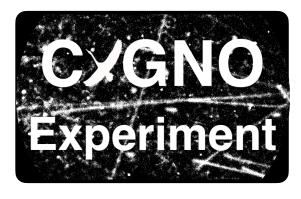

European Research Council Established by the European Commi

LIME: Runs 1-4


	Time slot	Number of pictures	Event rate	Number of events
RUN 1: No-shielding	3 November - 15 December	4 10 ⁵	35 Hz	4 10 ⁶
RUN 2: 4 cm Cu shielding	15 Feb - 15 March	4.5 10 ⁵	3.5 Hz	5 10 ⁵
RUN 3: 10 cm Cu shielding	5 May - 16 November	1.6 10 ⁶	1.5 Hz	7.3 10 ⁵
RUN 4: 10 cm Cu + 40 cm water shielding	30 November - 31 March	2 10 ⁶	1.0 Hz	6 10 ⁵

Special data takings

AmBe for Nuclear Recoils	2-6 August	2 10 ⁵	0.04 Hz of NR	2.5 10 ³ NR
²⁴¹ Am for Electron Recoils	7-16 November	7 10 ⁵	50 Hz	106



PHASE 0: GANTT

LIME D	ATA TAKING	COVID-	-19 dealyed	task							
	TACK	IST	FALLATION (202	1)	COMMISSIONI	NG AND OPERA	ATION (2022)		OPERATION (2023)	-202
WBS ID	TASK	1-4	5-8	9-12	1-4	5-8	9-12	1-4	5-8	9-12	1-4
3	Project Installation & Opration										
3.1	LNGS site preparation										
3.2	Copper bars refurbishment										
3.2.1	Test and defintion of workshop place								issue issue		
3.2.2	Administrative tasks										
3.2.3	Transportation and cut										
3.3	Transportation of LIME								Stem Stem		
3.4	Installation of LIME										
3.5	Commissioning Run 0 sta	rted with	7 month	s delay G					S VS		
3.6	Data Taking (55Fe, AmBe, background) Run	1 1 1 1	1 1 1	1 1 1 1					3 3 3 S S S S S S S S S S S S S S S S S		
3.7	Shield Istallation 6 cm Cu									· · · · · · · · · · · · · · · · · · ·	
3.8	Data Taking (background+calibration)	Run 2	started v	with 7 moi	nths delay				fo fo		
3.9	Shield Istallation 10 cm Cu								O C	_	
3.10	Data Taking (background+calibration)	Ru	n 3 starte	ed with 8 r	nonths del	ay C					
3.11	Shield Installation 10 cm Cu + 40 cm H ₂ O										
3.12	Data Taking		Ru	n 4 will st	art with 9 <mark>n</mark>	nonths d	elay	0			

Run4 started 9 months later than it was expected in 2020;

W.r.t. the real t0 (due to the civil works in the experimental site) so far **2 months** of delay were accumulated in about **20 months of operations**;

LIME PLANS

With the end of RUN4 in March 2024, LIME data taking for PHASE_0 is considered closed;

sensitivity, 3D reconstruction of events, muons counting;

In April 2024 we took some "technical runs" to study the effects of gas filters, gas gain, drift fields;

The water shielding was then removed and in May 2024 a new run (RUN5) has started:

- this data taking is intended to measure the flux of underground neutrons, in the framework of PRIN "Zero Radioactivity"
- very preliminary simulation demonstrated a promising sensitivity of LIME to them with the possibility of detecting few tens of neutrons per months, allowing the perform a competitive measurement in 6 months;
- a more effective evaluation of the sensitivity based on the measurement in RUN3 in RUN4 is now starting;
- good exercise to tune and test simulation and analysis algorithms for NR, propaedeutic to DM search...

- Several different analyses are ongoing: radon contamination, NR sensitivity from AmBe events, low energy ER

Plans for 2024

PROJEC	TTITLE	INFN						
PROJEC	T MANAGER							
		CONS	TRUCT	ION, TE	ST & IS	TALLAT	ION (2	2024)
WBS ID	TASK	1-	4		5-8		9-'	12
WP1	Physics							
1.1	solar neutrino sensitivity							
1.2	dark matter sensitivity							
1.3	physical parameters PHASE 2							
WP2	Data Analysis							
2.1	reconstruc/background v0							M2.1
2.2	reconstruc/background v1							
2.3	detector analisys PHASE 1							
WP3	Detector Simulation					·		
3.1	valdete PHASE 0 results							
3.2	Montecarlo for PHASE 1							M3.2
3.3	estimation for PHASE 2							
WP4	Detector Design and Construction							······
4.1	executive layout infrastructure							
4.2	executive layout of the detector							
4.3	procurements of components					M4.3		
4.4	install infrastructure						D4.1	
4.5	install detector							D4.2
4.6	commissioning & calibration							
4.8	decommissioning							
WP5	Auxiliary Services							
5.1	validating gas system							
5.2	validating DAQ v0							
5.3	validating DAQ v1							D5.2
WP6	Research and Development							
6.1	validating large GEM							
6.2	validating sensors and lens					D6	.2	
6.3	validating field cage component	D6.1						
6.4	validating R&D for PHASE 2							
WP7	Management							
7.1	ERC-FRP3							
7.2	ERC-FRP4							
7.3	CSN2 Progress Report				M7.4	4		
7.4	ERC-SRP2							
7.5	CSN2 Final Report							

Davi

Activities foreseen:

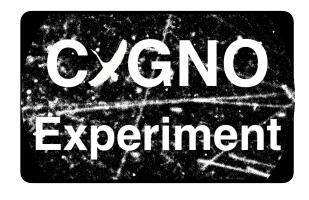
- Full **LIME data analysis** (M2.1 31/12)
- Full **GEANT4 simulation** of CYGNO-04 (M3.2 31/12);
- **Tenders** for CYGNO-04 realisation (M4.3 31/08);
- Installation of the infrastructure (D4.1 30/10) and then of the **detector** (D4.2- 31/12);
- Validation of last components and ancillaries: field cage (D6.1 -28/02), new optics (D6.2 - 30/09) and DAQ V1 (D5.2 - 31/12)

In general, the running of LIME is now way less demanding than in the past, requiring a lighter shifts sharing scheme

Main part of the **person-power moved** to data analysis and simulation and studies for the CYGNO04 realisation.

TDR CYGNO04 GANNT

WBS	TASK			PROCUREMENT (2				& ISTALLATI					MMISSIONI										ONING (202	
	Dhusiaa	1-		5-8	9-12	1-4		-8	9-12	1-4		5-8	9-1		1-4		5-8		9-12		1-4	5-	-8	9-12
WP1	Physics		cor	nmis	einn	ina	activ	/itv/ f	for C	YC	INC	$) \cap A$	att	tha	he	air	nnin		f 2	202	5			
1.1	solar neutrino sensitivity	-	COI	111113	31011	ing	activ	vityi				704	a			'y"			<u>ר ר</u>	.02	J			
1.2	dark matter sensitivity		0.									_				M.1.2						D1 1		
1.3	physical parameters PHASE 2	_	Sta	art of	data	a tak	ind	In A	uaus	st 2	02'	b ar	nd a		202	6								
WPZ	Data Analysis		0.00						9.9															
2.1	reconstruc/background v0		Do	0000	nino	ionir		f OV		\bigcirc		+bc	fire	ot b		of	000							
2.2	reconstruc/background v1		De	comr	IIISS		IG O		GIV	$\mathbf{O}\mathbf{O}^{\prime}$	4 II I			SUL	ian	OI	204	27				D2 1		
2.3	detector analisys PHASE 1 Detector Simulation			İİİİ	i	. i i		i	ii							i				-		02.1		
WP3									I I I						1				1 1		1 1			
3.1	valdete PHASE 0 results				M3	.1						•••••••••••••••										•••••••		
3.Z	Montecarlo for PHASE 1 estimation for PHASE 2								M3.	f												D2 1		
3.3				ll	<u> </u>				<u> </u>													D3.1	l	
WP4	•														1						1 1			
4.1	executive layout infrastructure		M4.1	·····					oooo			••••••••••••										•••••••		,
4.2	executive layout of the detector			M4.	2			M4.3																
4.3	procurements of components install infrastructure								D4.1			•										••••••		
4.4	install detector								D4.1															
4.6	commissioning & calibration			······	•		•					M	1.4 ->	DA	ТА	ТА	кі	NG				•••••••		
4.8	decommissioning																· · · ·			_		D4.3		
WP5	*	<u> </u>	<u> </u>	lll.	.iii	ii	.il	.iii	<u>i</u> ii	II	I	.lll.	<u> </u>	<u>i</u>	<u>i</u>	<u>i</u> <u>i</u>	<u></u>	<u>i i</u>	<u> </u>					
5.1	validating gas system		D5.1																					
5.2	validating DAQ v0			••••••••••••••••••••••••••••••••••••••	M5	.1	•		······			•••••••••••••••••												
5.3	validating DAQ v1								D5.2															
WP6		<u> </u>						.iii	ii.	ii.	i	.ll.	l	i	ii	i		i.	II	i		ii	ll	
6.1	validating large GEM			M6.	1																			
6.2	validating sensors and lens			······				D6.2				•												
6.3	validating field cage component					D6.1																		
6.4	validating R&D for PHASE 2						÷	÷														D6.3		
6.5	validating radioativity detctors components			<u>.</u>				M6.2	2															
6.6	validating handling of detctors components			¢					D6.4		·····	· · · · · · · · · · · · · · · · · · ·	0		òò				·····			••••••		·····
WP7	Management																							
7.1	ERC-FRP3			M7.1										M	17.2									
7.2	ERC-FRP4	+		\$*************************************	· • • • • • • • • • • • • • • • • • • •				¢	••••••••••				·····										·····
7.3	CSN2 Progress Report			M7.3				M7.4				M7.5					M7.6					I	M7.7	,
7.4	ERC-SRP2													D) 7.1									
7.5	CSN2 Final Report				•				QQQQQQQ															D7.
					<u>-</u>									k.	<u>.</u>									


TDR CYGNO financial plan and CSN2 proposal

In **2022**, according to the operation schedule presented in the **TDR**, we presented the financial plans for the **quinquennium 23-27**

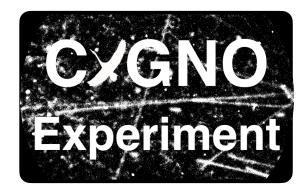
A total of **525 k€** in **5 years**, including 200 k€ for travels

La commissione giudica positivamente il TDR di Cygno-04 notando che, in quanto progetto finanziato ERC, ha un profilo di rischio più alto di quello normalmente accettato per un progetto di commissione 2. Richiede che il TDR venga aggiornato appena siano disponibili i risultati ottenuti dal run underground del prototipo LIME (performance, stabilità temporale, background model) e dai test previsti per il prossimo anno su catodo, field cage, ecc.

La commissione approva il piano finanziario proposto dalla collaborazione CYGNO che prevede, da parte della Commissione, un contributo massimo di 120 k€/anno (inclusivo di ogni voce di spesa). L'approvazione si riferisce per il momento ai due anni previsti per la costruzione: 2023 e 2024. Quando sarà disponibile il TDR aggiornato secondo le richieste sopra menzionate, la Commissione procederà alla discussione del piano di spesa previsto per gli anni 2025-2027 che servirebbe a sostenere i costi di operazione del dimostratore.

INFN - CSN2	2023	2024	2025	2026	2027
Gas Bottle	10	5	15	15	0
Gas Recovery	10	0	20	20	0
Consumables	10	20	20	10	20
R&D	50	50	30	20	0
Tot w/o Travels (k€)	80	75	85	65	20
Travels - Shift	30	20	20	30	0
Travels - Installation	10	30	30	0	30
Tot Travels (k€)	40	50	50	30	30
Tot (k€)	120	125	135	95	50

Collaboration structure

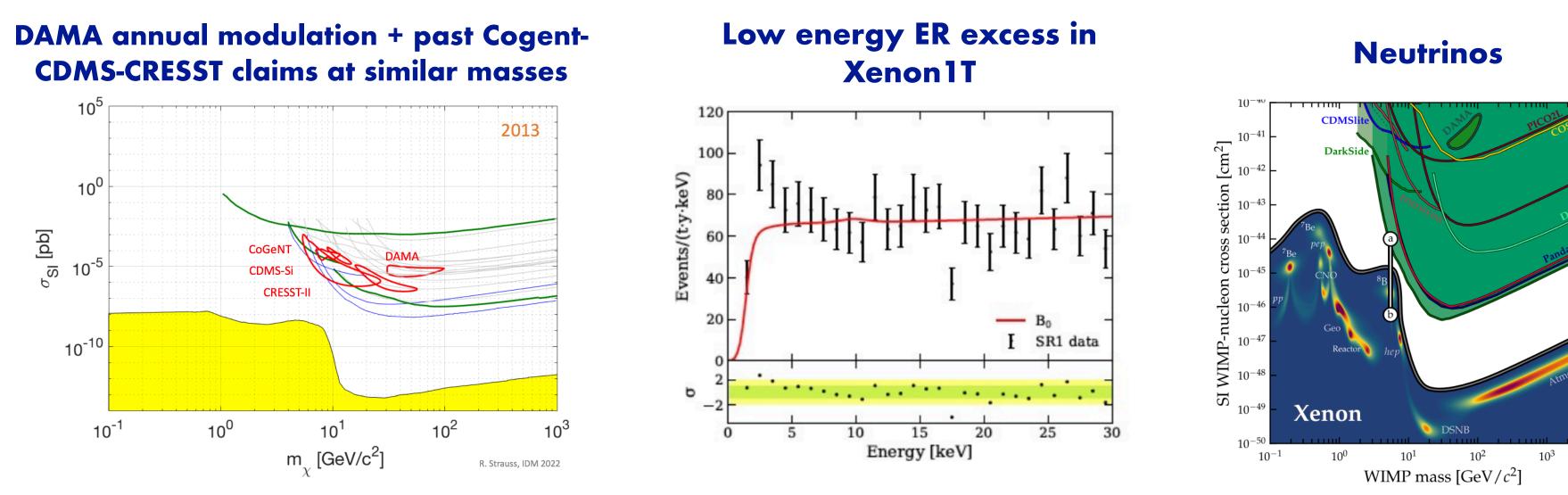

background and to evaluate detector systematics and uncertainty

implementation of the detector, the shielding and infrastructures.

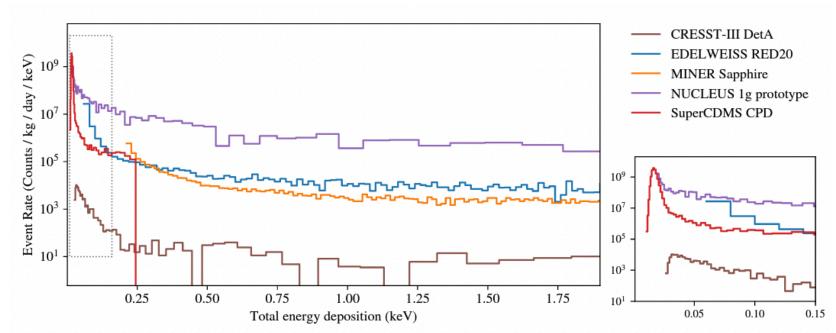
DAQ and computing.

and the study needed to enhance the performance for PHASE 2

WP7 Management: management of the project and interactions with CSN2, LNGS, ERC



- WP1 **Physics**, E. Baracchini GSSI, is in charge of studying the discovery potential and physics cases of the project
- WP2 **Data Analysis**, G. Dho INFN-LNF: is in charge of developing reconstruction software and analyzing data
- WP3 **Detector Simulation**, G. D'Imperio INFN-RM1: is in charge to develop fast and full simulation of the detector
- WP4 Detector Design and Construction, G. Mazzitelli INFN-LNF: is in charge of the design, construction and
- WP5 Auxiliary Services, A. Messina INFN-ROMA1: is in charge of all Axillary System: Gas System, HV and LV,
- WP6 Research and Development, D. Pinci INFN-ROMA1: in charge of the development ongoing for PHASE 1



i.e. many things can look like a signal if you don't know where they are coming from

The unexplained Low Energy Excess (LEE) in many low threshold detectors (SciPost

Phys.Proc. 9 (2022) 001)

Once a DM signal is effectively found by any experiment, a directional experiment will be needed to confirm the Galactic origin of the signal and eventually perform DM astronomy

Once experiments reach the Neutrino Fog, a directional experiment will be needed to continue DM searches beyond it

APPEC 2020 Report & Recommendations

Directional detectors aiming at reconstructing the direction and energy of the WIMP-induced nuclear recoil offer an unambiguous way of confirming the Galactic origin of a WIMP signal. Several efforts worldwide, including European-led projects are underway, and while, due to technological challenges and significantly lower target masses, currently lagging behind conventional WIMP detectors in terms of sensitivity, in the future they may offer some other potential advantages, e.g., of reaching down below the neutrino floor. It is vital to pursue and support this effort as a longer term investment in the field that, after a detection of a DM signal, may be most effective in exploring a new window on the Universe in terms of "DM astrononomy".

Recommendation 4. European participation in DM search programmes and associated, often novel, R&D efforts, that currently do not offer the biggest improvement in sensitivity should continue and be encouraged with view of a long-term investment in the field and the promise of potential interdisciplinary benefits.

L. Roszkowski. APPEC feedback meeting. 2 Feb 2021

4.6.5.1 R&D program

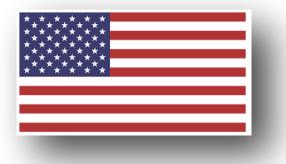
The **CYGNUS** proto-collaboration has been formed, evolving from the workshop series of the same name. It gathers most of the groups working on directional DM detection in the world and is carrying out R&D to determine the optimum configuration for a large target mass directional detector [356]. The

Conceived as a modular and multi-site observatory, there are proposals for CYGNUS detectors in labs in Australia, Italy, Japan, the UK and the USA. Expectations for SD WIMP-proton interaction sensitivity are very promising, for instance, with a 1000 m³ detector of He:SF₆ and taking data for 6 years, cross sections for SD interaction at the level of 10^{-43} cm² could be reached for $m_{\chi} \sim (10-100)$ GeV/ c^2 [356]. CYGNO, working at LNGS, has already operated some prototypes with He/CF₄ using GEMs, CMOS cameras and PMTs [357] en route to building a detector of 1 m³, and nuclear recoils from a neutron gun with measurable direction and sense have been registered in the LEMOn prototype.

APPEC recommends to continue and encourage European participation in directional DM search as a long-term investment

APPEC recognise the CYGNUS effort and explicitly cite only CYGNO among its participants




A multi-site, multi-target Galactic Recoil **Observatory at the ton-scale to probe** Dark Matter below the Neutrino Floor for **both SI and SD couplings and measure** solar Neutrinos with directionality

arXiv:2008.12587

CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos

S. E. Vahsen,¹ C. A. J. O'Hare,² W. A. Lynch,³ N. J. C. Spooner,³ E. Baracchini,^{4, 5, 6} P. Barbeau,⁷ J. B. R. Battat,⁸ B. Crow,¹ C. Deaconu,⁹ C. Eldridge,³ A. C. Ezeribe,³ M. Ghrear,¹ D. Loomba,¹⁰ K. J. Mack,¹¹ K. Miuchi,¹² F. M. Mouton,³ N. S. Phan,¹³ K. Scholberg,⁷ and T. N. Thorpe^{1,6}

More than 50 members and growing Steering group:

Elisabetta Baracchini (GSSI/INFN, Italy) **Greg Lane (Melbourne, Australia)** Kentaro Miuchi (Kobe, Japan) Neil Spooner (Sheffield, UK) Sven Vahsen (Hawaii, USA)

CYGNUS proto-collaboration vision

CYGNUS COLLABORATION MEETING

Italian and INFN leadership in CYGNUS management since its start

Italian and INFN leadership in CYGNUS detectors developments (see next slides)

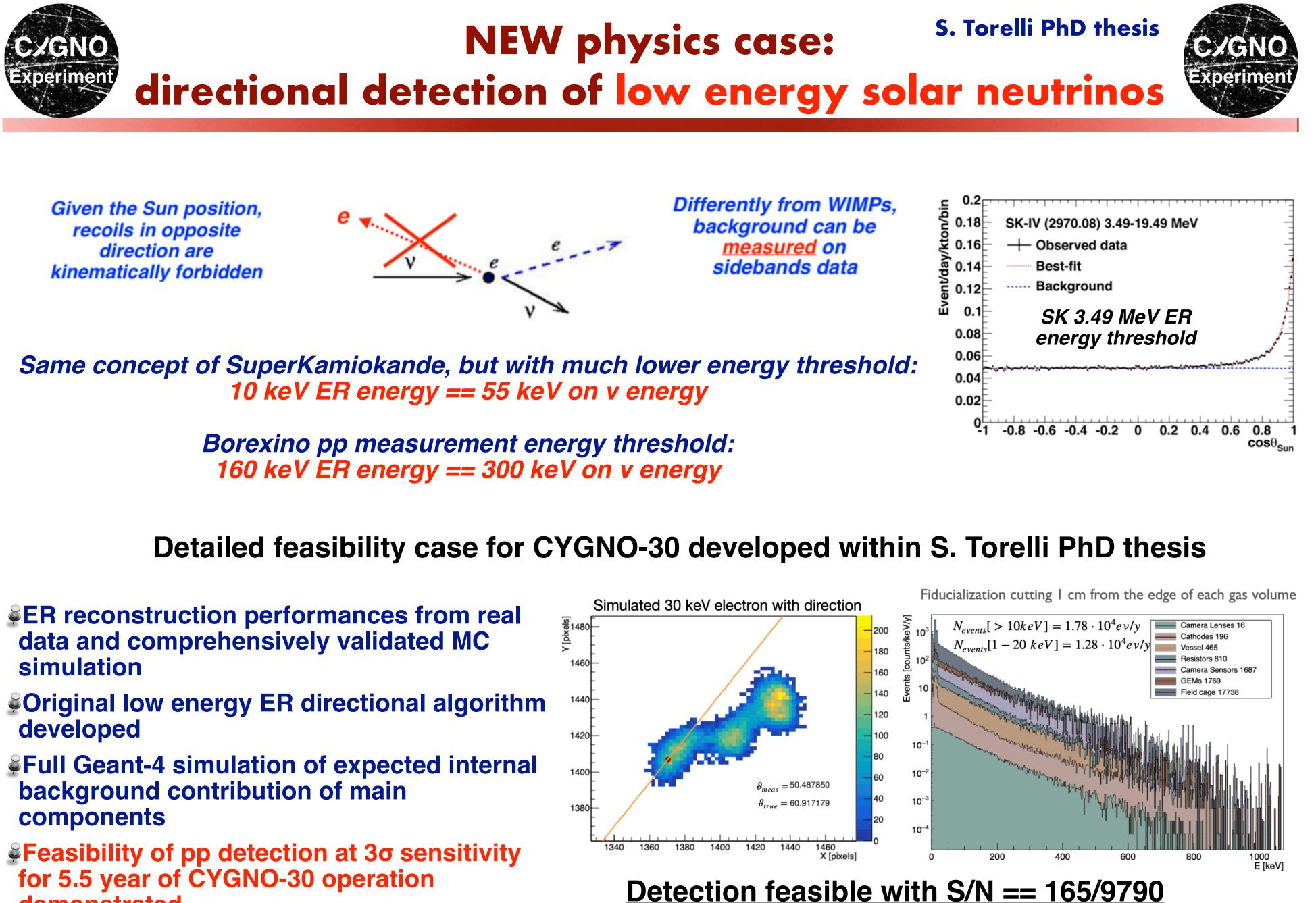
Where CYGNO stands in the context of directional DM searches

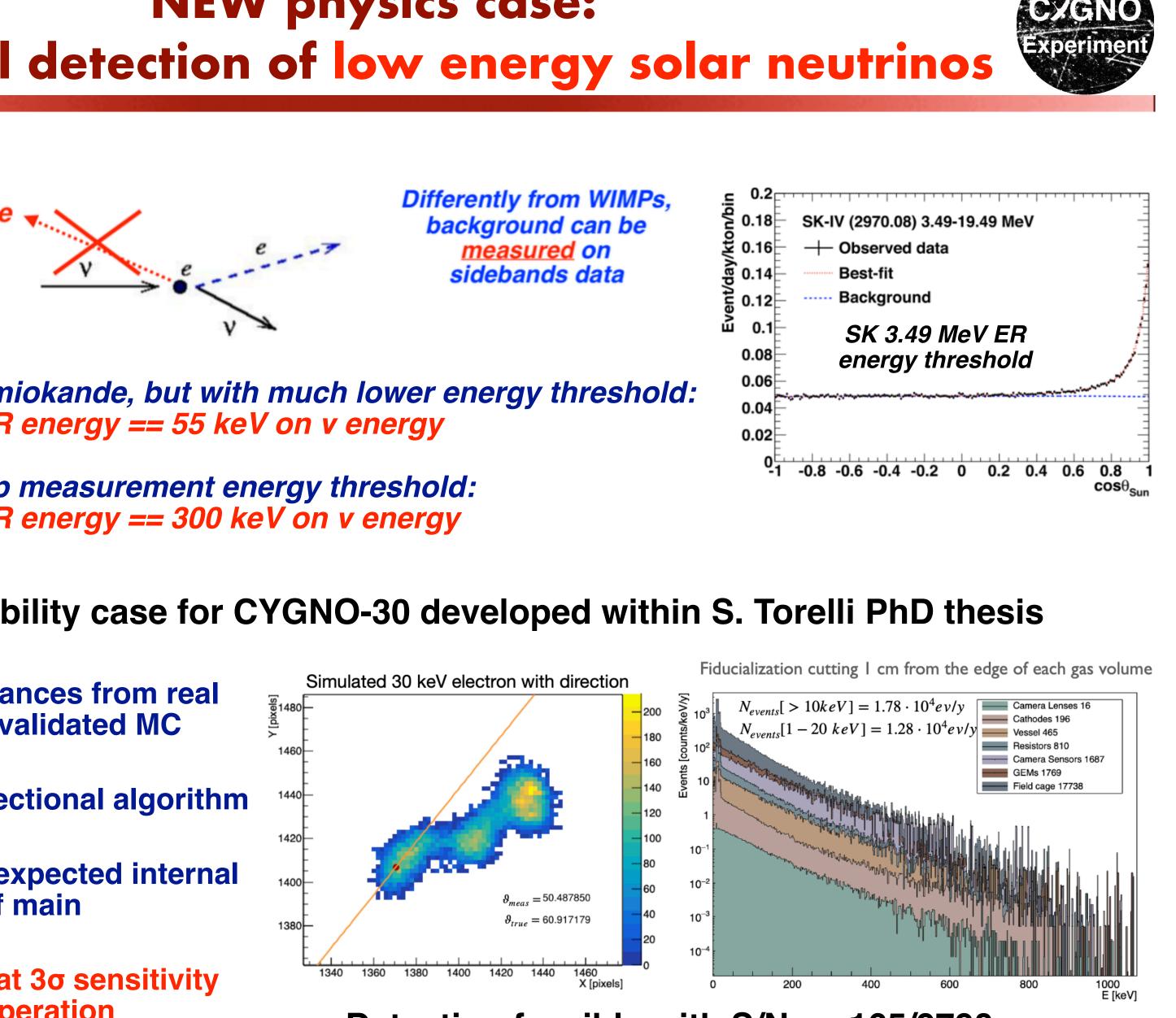
	Drift length [cm]	Amplification + Readout	Gas Mixture	Gas Pressure [mbar]	Volume [L]	Energy Threshold [keV]	Active Mass [gr]
DRIFT	50	MWPC	73% CS ₂ + 25% CF ₄ + 2% O ₂	55	800	20	33
NEWAGE	40	1 GEM +muPIC	CF₄	100	37	20	11.5
MIMAC	25	Micromegas	70% CF ₄ + 28% CHF ₃ + 2% C ₄ H ₁₀	50	5.8	2	1.2
CYGNO- 04	50	3 GEMs + sCMOS + PMT	60% He + 40% CF₄	1000	400	1	600

Table 2: Summary of the main characteristics of all the existing gaseous directional Dark Matter search TPCs installed underground, compared to CYGNO-04.

	Exposure	Exposure for SD searches	Energy threshold	Reference
DRIFT II-d	3.5 kg days	0.96 kg days	20 keV _{ee}	Astropart. Phys. 91 (2017) 65-74
NEWAGE 3b	3.2 kg days	3.2 kg days	50 keV _{ee}	PTEP 2023 (2023), 10 113F01
LIME Run4	2.6 kg days	2.0 kg days	1 keV _{ee}	See D. Pinci slides
CYGNO-04 (1 year)	203 kg days	190 kg days	1-0.5 keV _{ee}	See D. Pinci slides

DRIFT and NEWAGE data reported for the latest and most sensitive limits published, no MIMAC undeground limit exists




As from our TDR

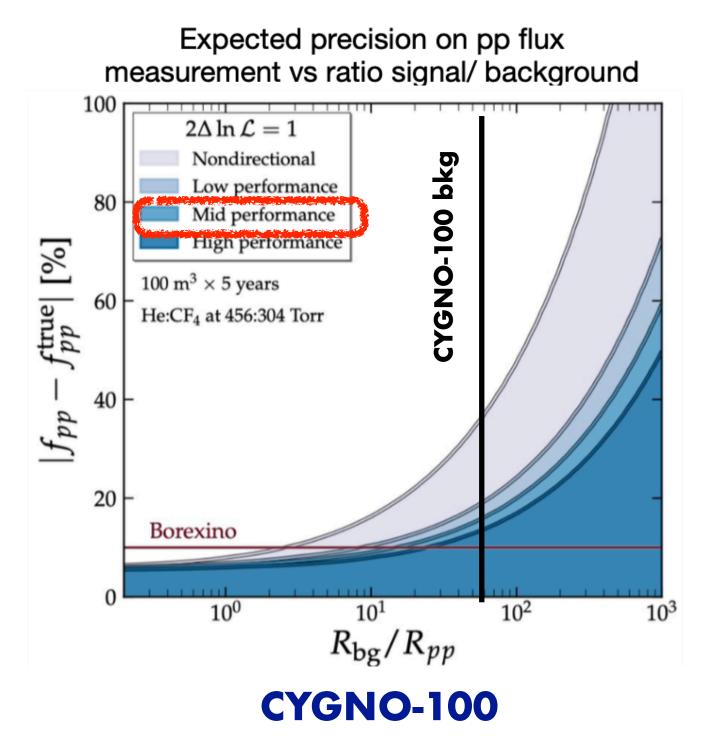
Largest active mass (of a factor 20) Lowest energy threshold Highest gas pressure Longest (with DRIFT) drift distance

Valid also for LIME! (except for active mass, but see below..)

CYGNO WP1 Report - CSN2 Referees Meeting 27 June 2024 - E. Baracchini

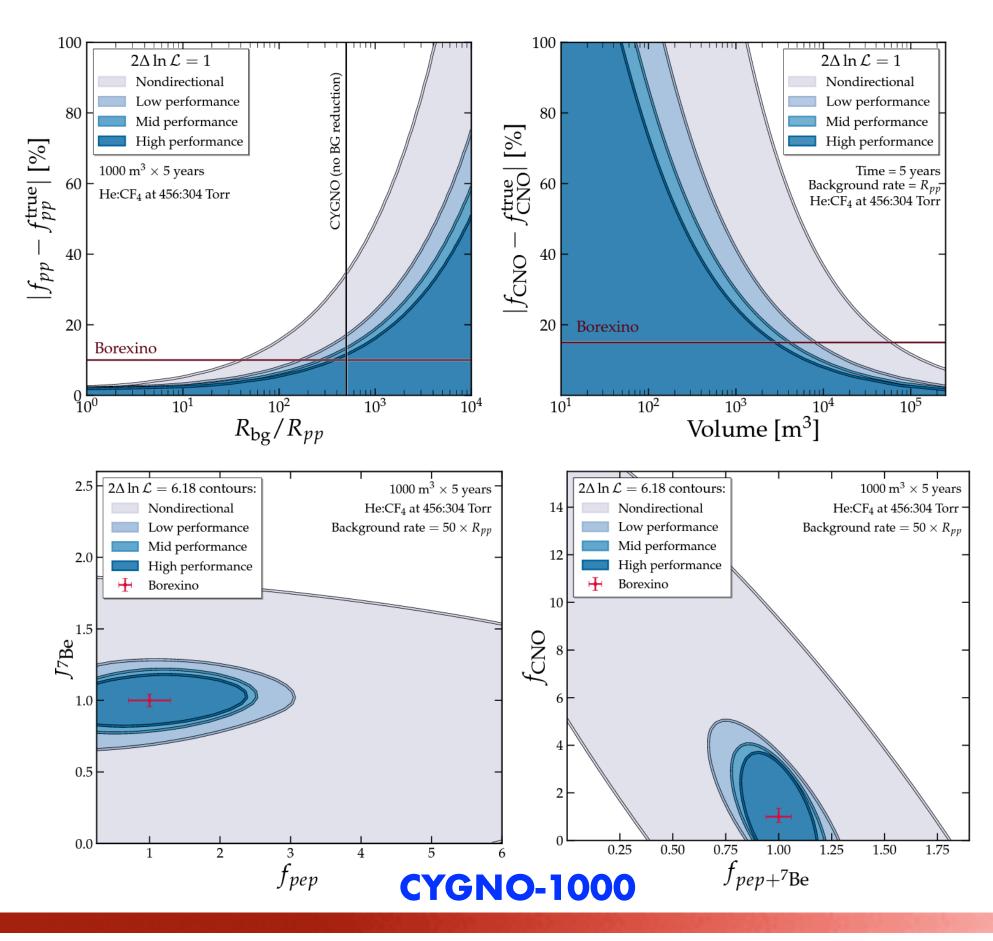
for 5.5 year of CYGNO-30 operation demonstrated

CYGNO WP1 Report - CSN2 Referees Meeting 27 June 2024 - E. Baracchini



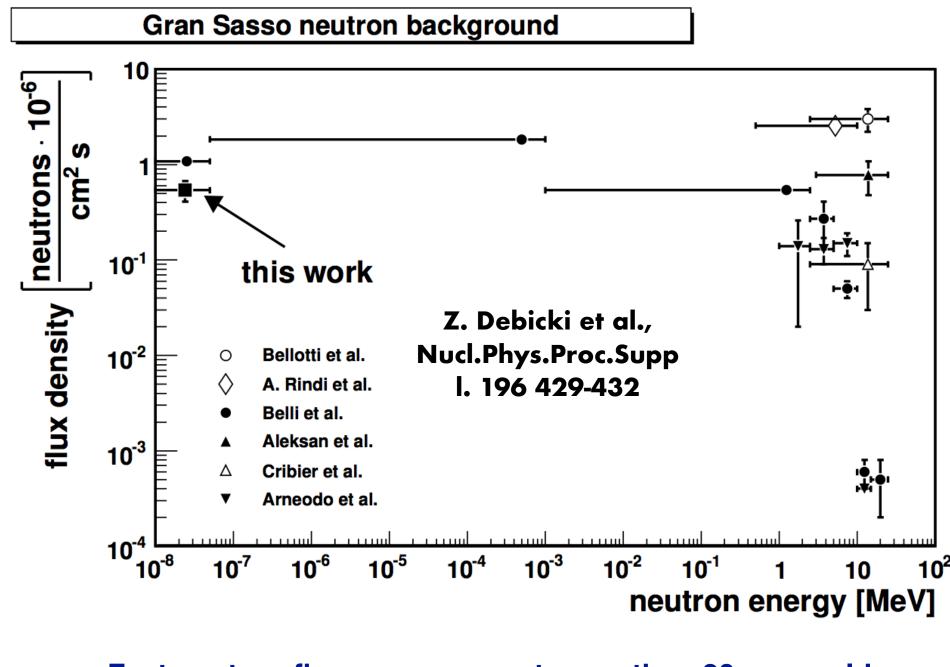
CYGNO-100 and CYGNO-1000 (i.e. CYGNUS) potentialities for solar neutrinos spectral measurements

arXiv:2404.03690v1


Chiara Lisotti,^{1, a} Ciaran A. J. O'Hare,^{1, b} Elisabetta Baracchini,^{2, 3} Victoria U. Bashu,⁴ Lindsey J. Bignell,⁴ Ferdos Dastgiri,⁴ Majd Ghrear,⁵ Gregory J. Lane,⁴ Lachlan J. McKie,⁴ Peter C. McNamara,⁶ and Samuele Torelli^{2,3}

CYGNO approach used as benchmark also for CYGNUS

CYG ν S: Detecting solar neutrinos with directional gas time projection chambers



CYGNO WP1 Report - CSN2 Referees Meeting 27 June 2024 - E. Baracchini

Fast and thermal neutron measurements varying widely

Fast neutron flux measurement more than 20 years old

With 6 months of data taking in Run5, LIME fullfils the goals of PRIN2017 and will be able to provide additional (and more precise..) measurement of LNGS underground neutron flux

Why LIME Run5?

Very poor knowledge of actual underground natural neutron spectrum shape (and also intensity..)

All techniques (except for Arneodo et al.) use indirect measurement through ³He or **BF**₃ counters

Arneodo et al. measurement showed harder spectrum than others, but affected by large instrumental and spectrum deconvolution systematics

NOTA BENE: an harder spectrum would require a smaller neutron shielding (i.e. reduced costs) for every LNGS underground experiments (including tonscale active or under construction).....

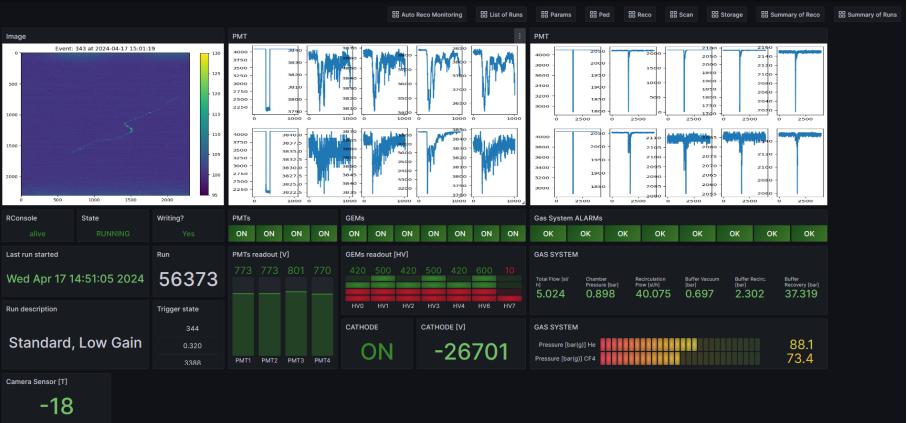
WP2: WHAT WE LEARNT I: STABILITY OF OPERATION AND MONITOR

event searches

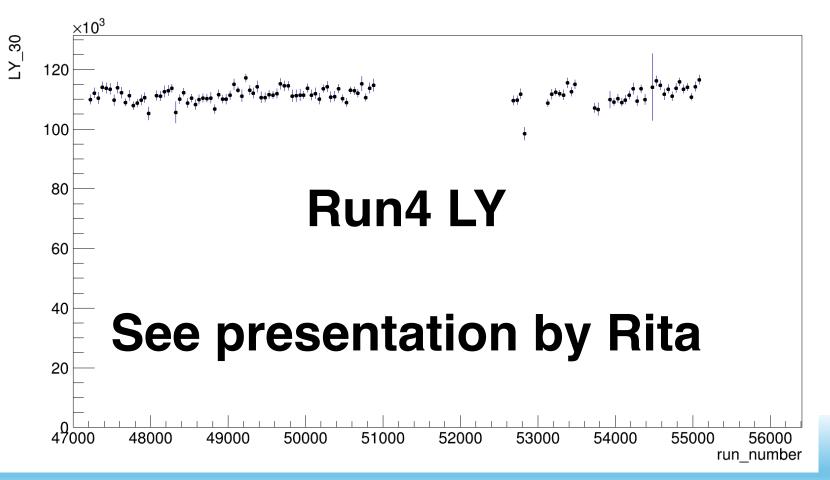
No in person shifter was required anymore

(except for gas bottle changes)

Automation of reconstruction algorithm allows continuous monitoring of various variables in close-to real time and check quality of data (Run4 had 95% duty cycle) Standard, Low Gair

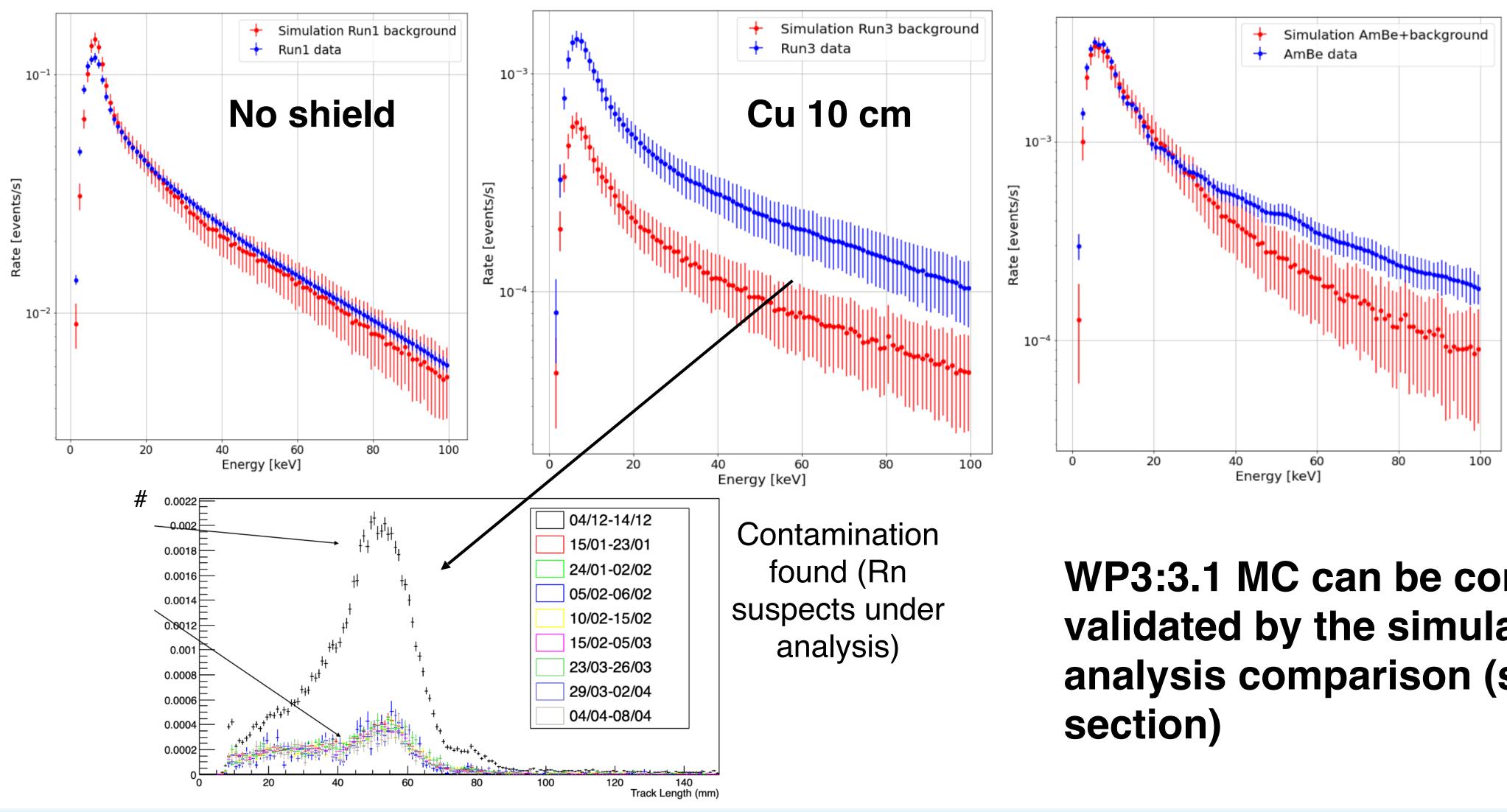


Correction for light yield variation with time allowed to estimate the stability of the detector and performing first physics analyses


G.Dho

WP2:2.1 The data of background is coherently and continuously reconstructed

LIME underground data proved to be fundamental to test our understanding of the detector in a realistic environment for rare


WP2: WHAT WE LEARNT II: SIMULATION + ANALYSIS WORKS

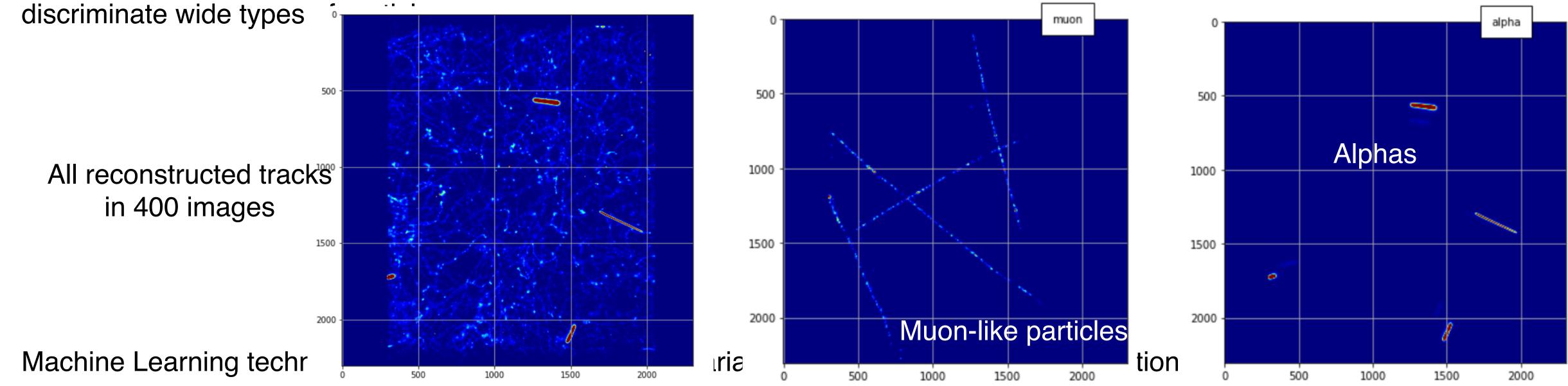
The analysis and study of the data-MC comparison showed extremely good results

Run1

G.Dho

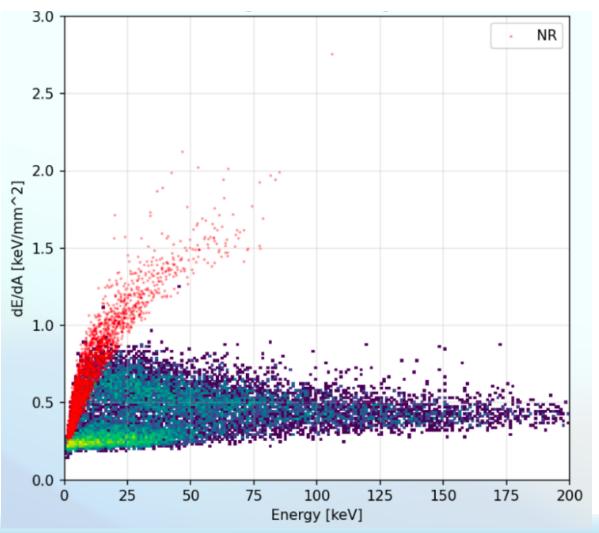
Run3

AmBe


Run4 undergoing

AmBe simulation excellently matches data when AmBe contribution dominates

WP3:3.1 MC can be considered validated by the simulation and the analysis comparison (see WP3

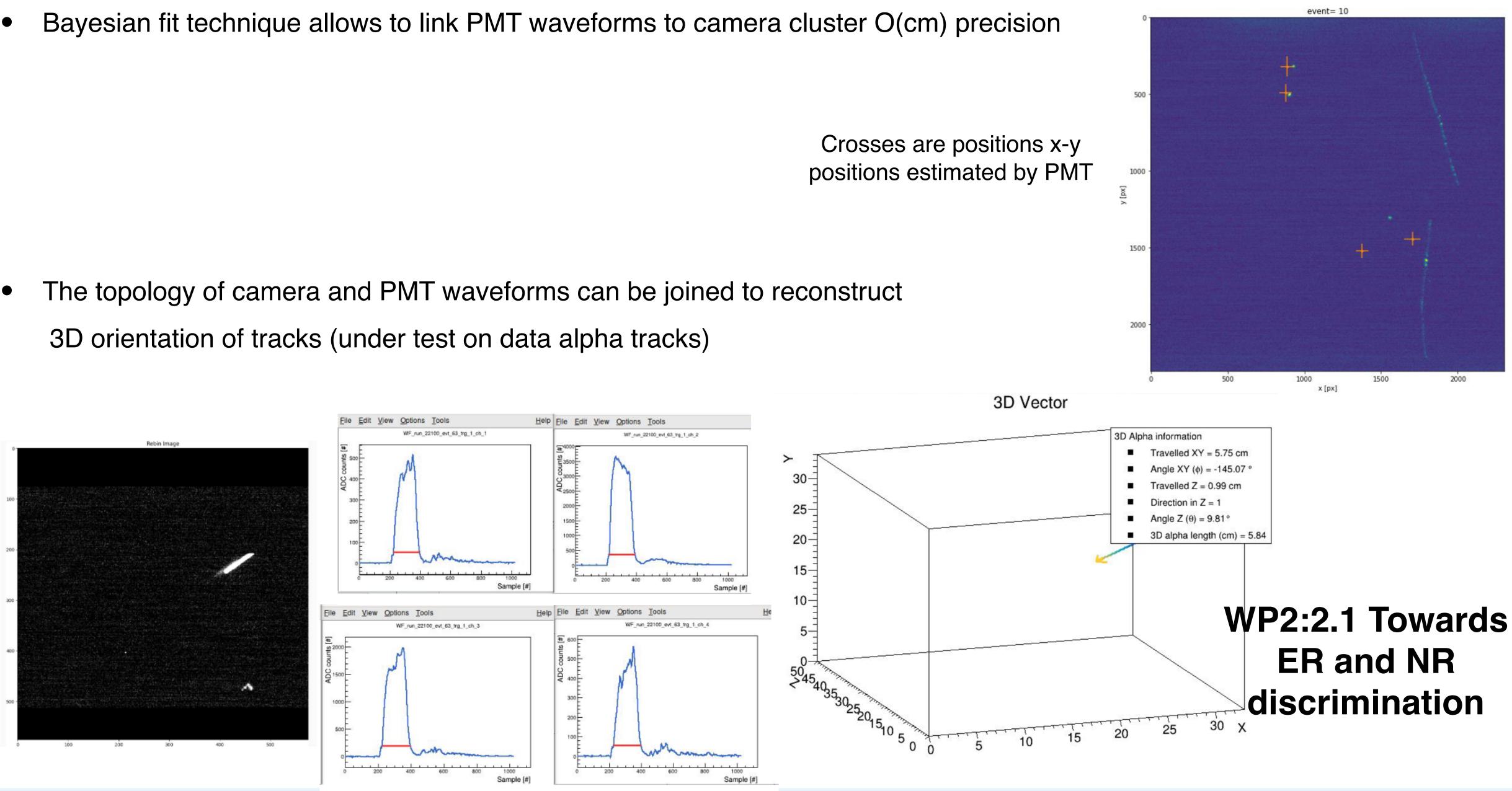

WP2: WHAT WE ARE LEARNING I: PARTICLE DISCRIMINATION

Large statistics and low occupancy provided by LIME, simple variables of clusters (density, length..) can be used to

samples to get NR-ER discrimination

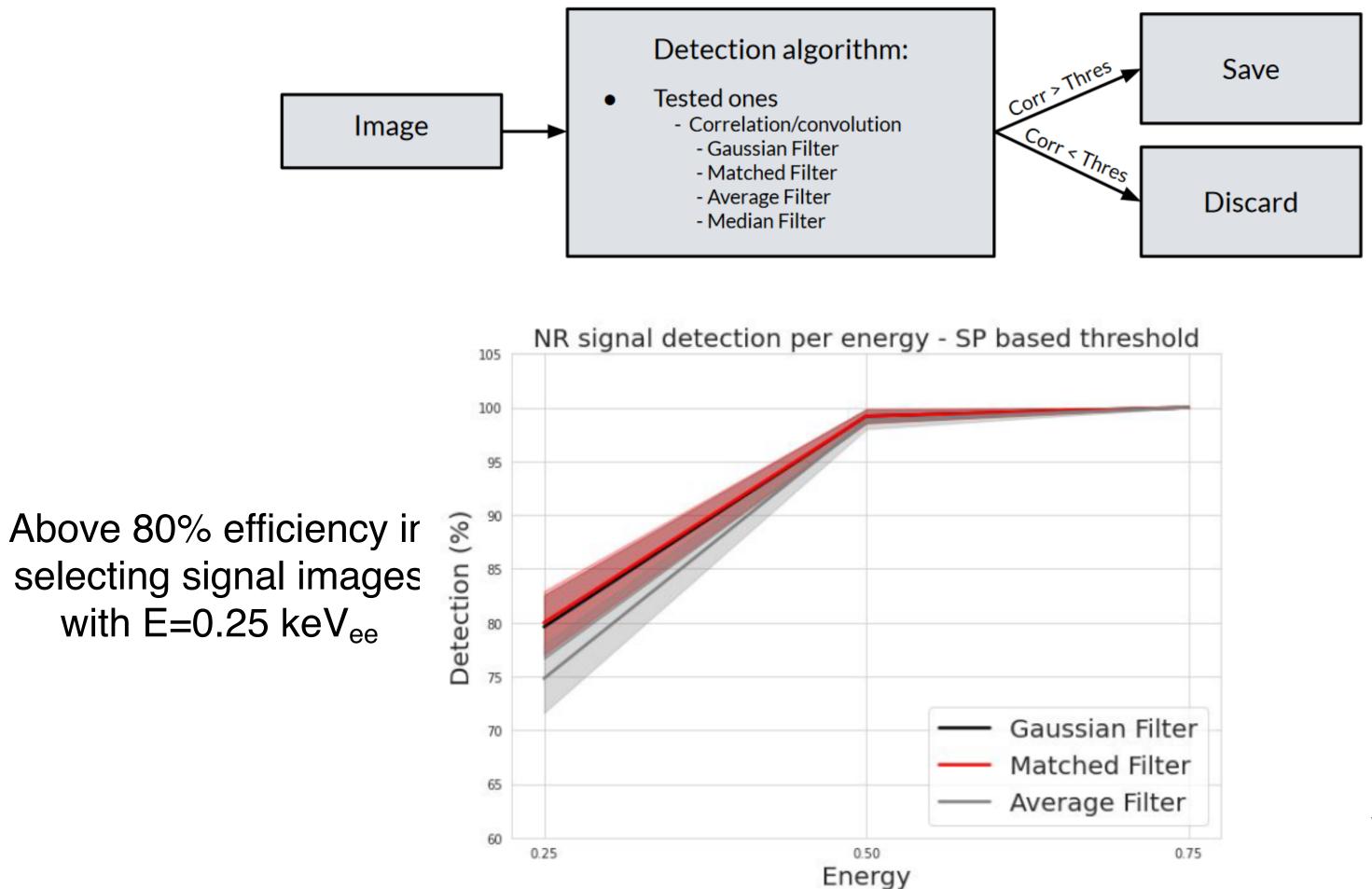
Trained only on simulated pool of data

G.Dho


Parameters and ML structure selection on going

WP2:2.1 Towards ER and NR discrimination

WP2: WHAT WE ARE LEARNING II: 3D RECONSTRUCTION


3D orientation of tracks (under test on data alpha tracks)

G.Dho

WP2 LOOKING FORWARD: IMAGE AND SIGNAL SELECTION

which pixels contain relevant information

G.Dho

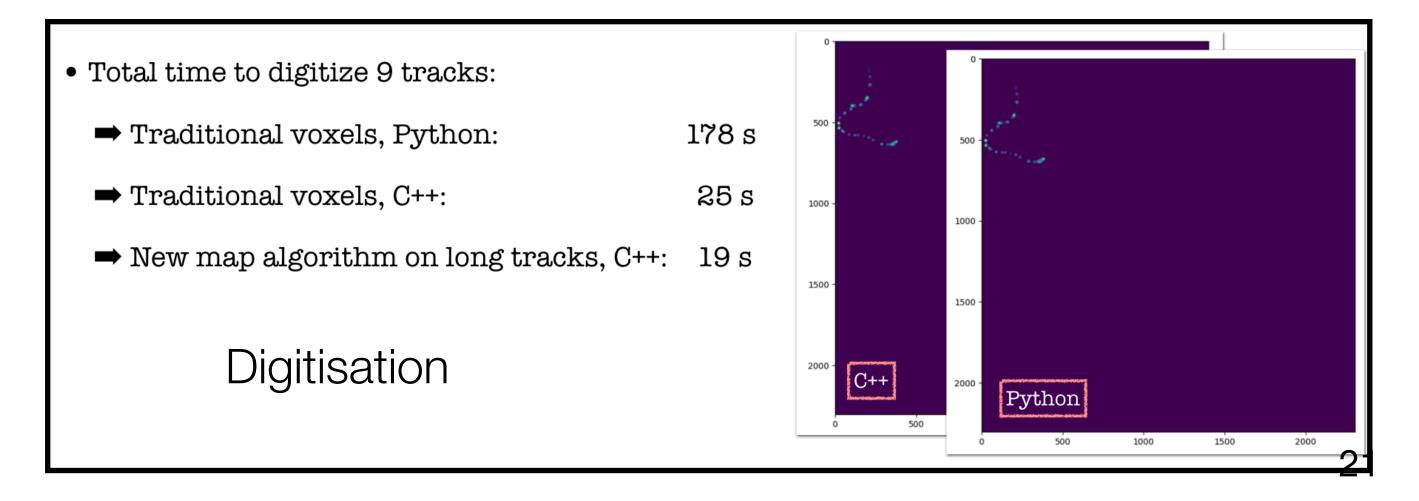
Machine learning techniques are under study on simulated data to improve image selection (when an image has signal) and

WP2:2.2 Towards Multicamera analysis

WP3: Detector simulation

Milestone M3.1 Dec 2023: validation of the PHASE_0 results

Software able to reproduce detector response and main background components. Still under evaluation the contribution of Radon in order to properly quantify it;

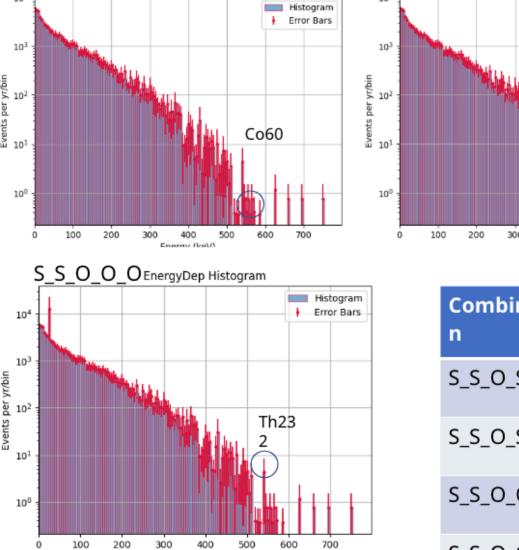

Milestone M4.1 Dec 2024: Montecarlo for PHASE 1

Simulation and digitisation underwent several optimisation to speed them up by a factor 10;

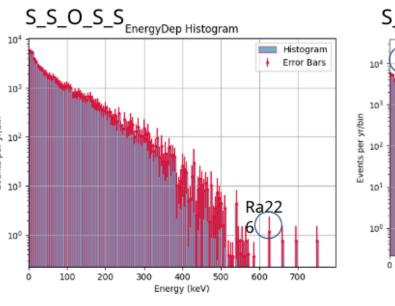
the full simulation of radioactivity background in the apparatus is about 5 times faster

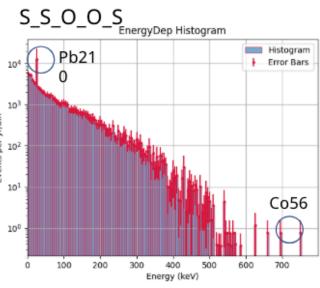
Montecarlo

WP3: Detector simulation

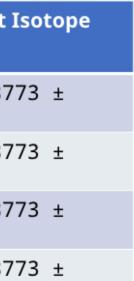

Milestone M4.1 Dec 2024: Montecarlo for PHASE 1

A first estimation of background in CYGNO04 was done with preliminary designs in the past years;


- **optimised** detector **copper** shielding configuration;
- the contribution of external background, copper shielding already **fully simulated**;
- as soon as CYGNO04 design is frozen, the detector CAD will be **imported in GEANT4** and the contribution of each part will be evaluated.
- One **month** of computing time should be enough;
- about the effect of radon contamination in the sensitive volume;

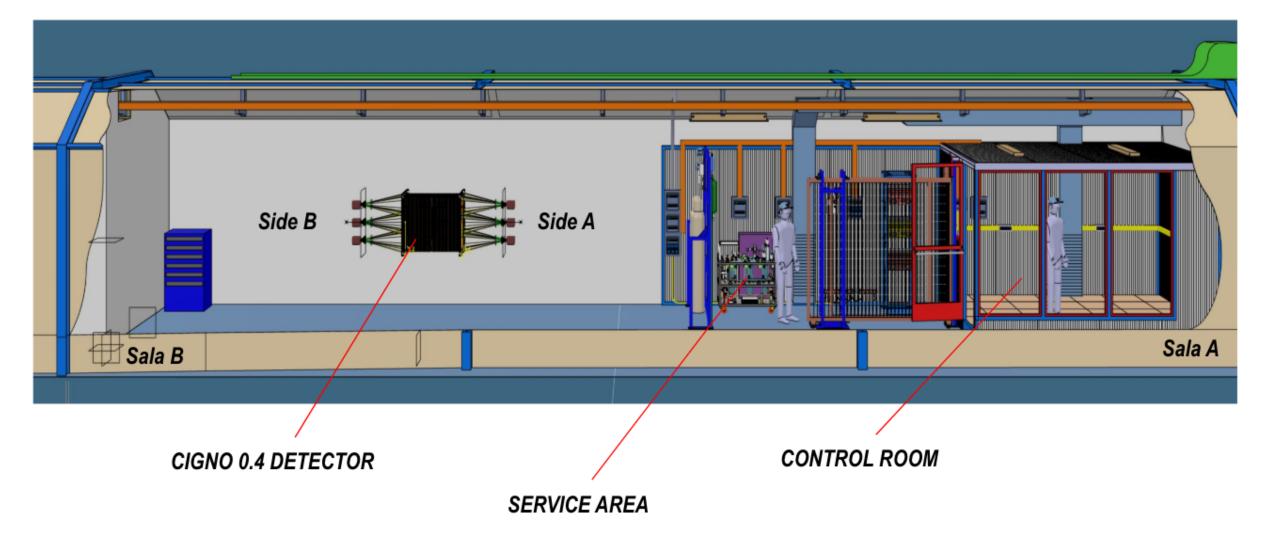


S_S_O_S_O EnergyDep Histogram


Energy (ke\

Combinatio n	Events per year with uncertainty	Dominant
S_S_O_S_O	96132.25 ± 2142.6	U238: 287 1787
S_S_O_S_S	96349.5 ± 2152.7	U238: 287 1787
S_S_O_O_O	96422.5 ± 2145.2	U238: 287
S_S_O_O_S	96639.86 ± 2155.4	U238: 287

- new C++ code will allow to digitise also alphas and high energy releases and thus provide info



WP4: Detector Design and Construction

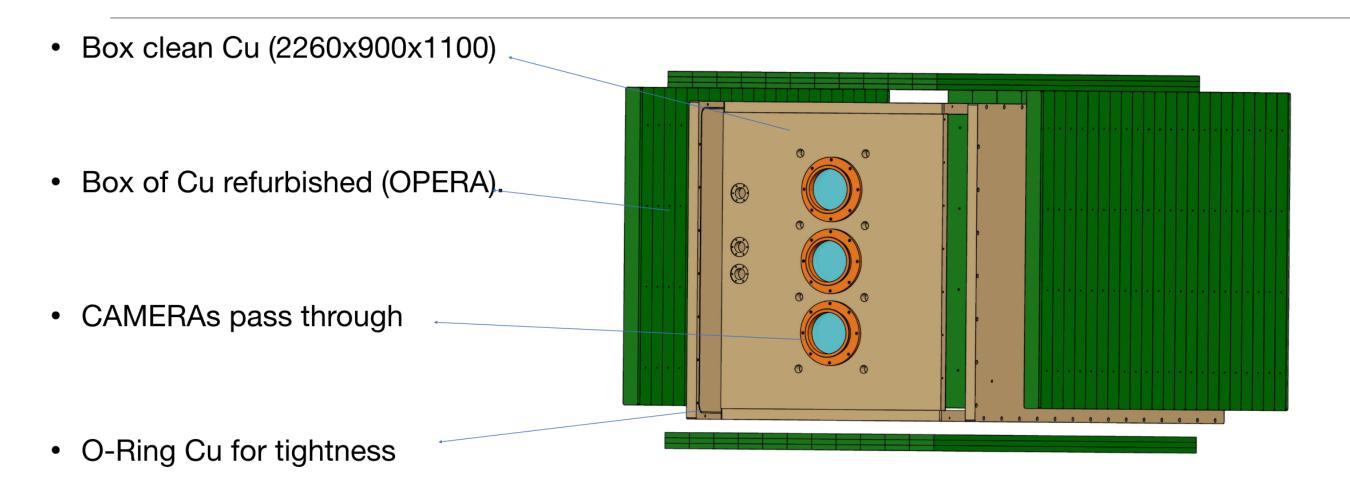
GENERAL SETUP SALA ''F" - CIGNO 0.4 DETECTOR


- POSIZIONAMENTO DETECTOR
- **GESTIONE SPAZI**
- **IMPIANTISTICA**
- ETC.

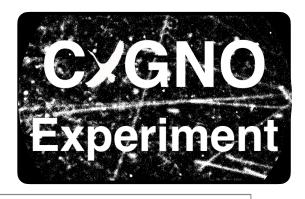
Material procurement and preparation by the **company in July**;

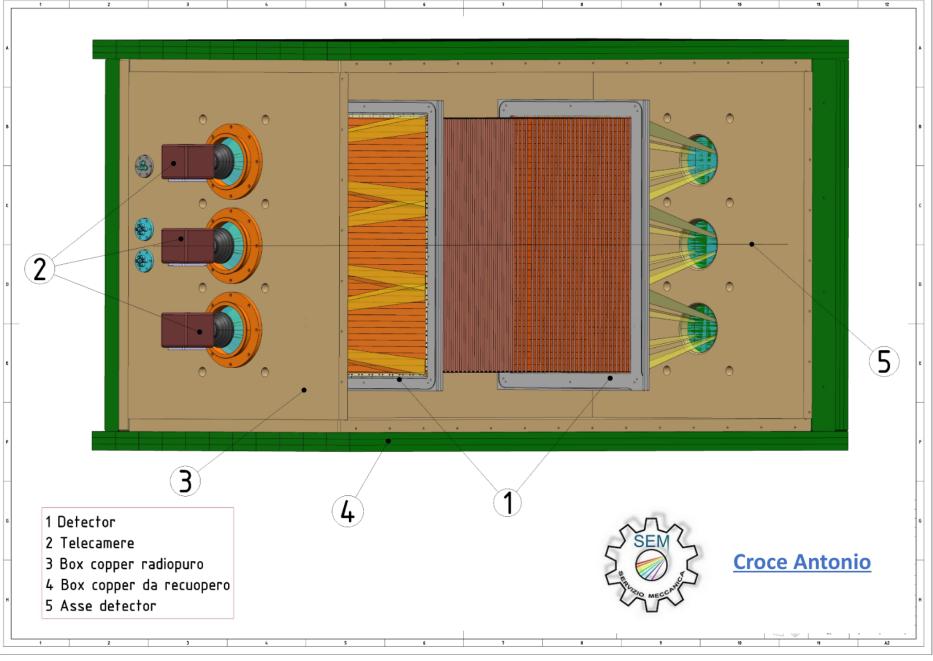
Works are then expected to start after the summer with a duration of 1-2 months;

Hall-F is then expected to be ready by the end of 2024;

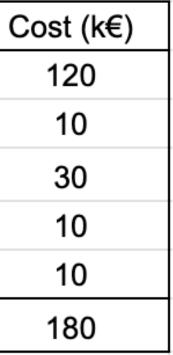

Infrastructure installation (D4.1)

- Final designs produced in November 23
- (Very) long **iteration** between GSSI (commissioner of works) and LNGS lead to an official agreement in March 24;
- Final designs translated in **executive** designs in the meanwhile and tender expected to be **issues in the next weeks**;


WP4: Detector Design and Construction



Detector Design (M4.2)


- Based on the optimisation of copper shielding scheme, the demonstrator designs are being developed: 4 tons of radio-pure copper for the internal layer and 7 tons for the external one;

- Feed through and optical windows still under study;
- Cathode and field cage almost finalised (Giorgio an
- Internal **PMMA gas vessel still to be finalised**;
- Final layout of the detector foreseen after the summer (October 24);

	Item	Cost
	4 Ton of radiopure Copper	120
	Copper precision machining	10
nd Alex slides);	7 Ton of "OPERA" Copper refurbishing	30
$\mathbf{H}(\mathbf{G},\mathbf{G})$	High Voltage Feed Through	10
	Optical windows	10
	Tota	I 180

WP5 Auxiliary Services

DAQ

- Finalise automatic procedure to handle calibration runs
- Develop a custom module to handle timing, trigger, and busy signals, and to monitor rates and deadtime. First version used successfully in LIME;
- Acquiring and testing USB3 PCIe cards to readout 6 cameras and additional digitizers
- Working on a new DAQ software to readout the cameras in continuum mode. This should reduce by a factor 10 the dead time of the camera readout;

Gas system

- From LIME data we evaluated an efficiency larger than 90% of the recirculation system in filtering radon from gas;
- From this number, the activity expected to be produced by external radon entering through a gas leak to be 1300 ev/y/sccm in CYGNO04;

WP6: R&D for PHASE1

Material scrutiny

up the test procedure;

In the past years, several materials were scrutinised: LIME-copper, LIME-PMMA, different cameras, sensors, PMT, lenses;

Recently we tested (we are testing): different Field Cages foils and ultra-clean GEM;

As soon as CYGNO04 design is frozen, we'll contact companies for the final purchase and for **material samples** for radioactivity measurements;

Cleaning the handling procedures to be used are discussed with STS team and colleagues from other experiments;

A new PhD student is working with **Special Technics Services** (STS) for the data analysis to **speed**

WP6: R&D for PHASE1

Large area GEM

- The 50x80 cm² GEM were bought at CERN and underwent an high voltage validation at LNF (M6.1);
- All of them resulted to be **good**;
- A similar GEM, is going to be tested by STS for the radioactivity measurements (M6.2);

Field cage and Cathode (D6.2)

- Different field cage structures were tested at LNF on the GIN prototype (see Giorgio's slides); **One** of them was already **tested** by TST and **another** is **under test**;

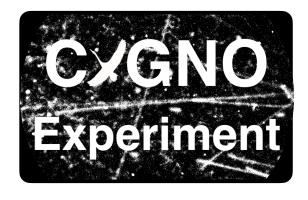
ow radioactive optics (D6.3).

- The mechanical design and tolerance analysis is completed;
- By July we will have the final report and samples of semi-finished material for radioactivity test

WP7: Management

Since July 2023, the Steering Committee composed by the leaders of the different Working Packages and Local Responsible started to operate with the goal of overseeing to the smooth progress in the work of the CYGNO collaboration through its goals;

In April, Giovanni Mazzitelli resigned from his roles of Technical Coordinator, RAE and GLIMOS because of an irreconcilable difference of opinion about the project management

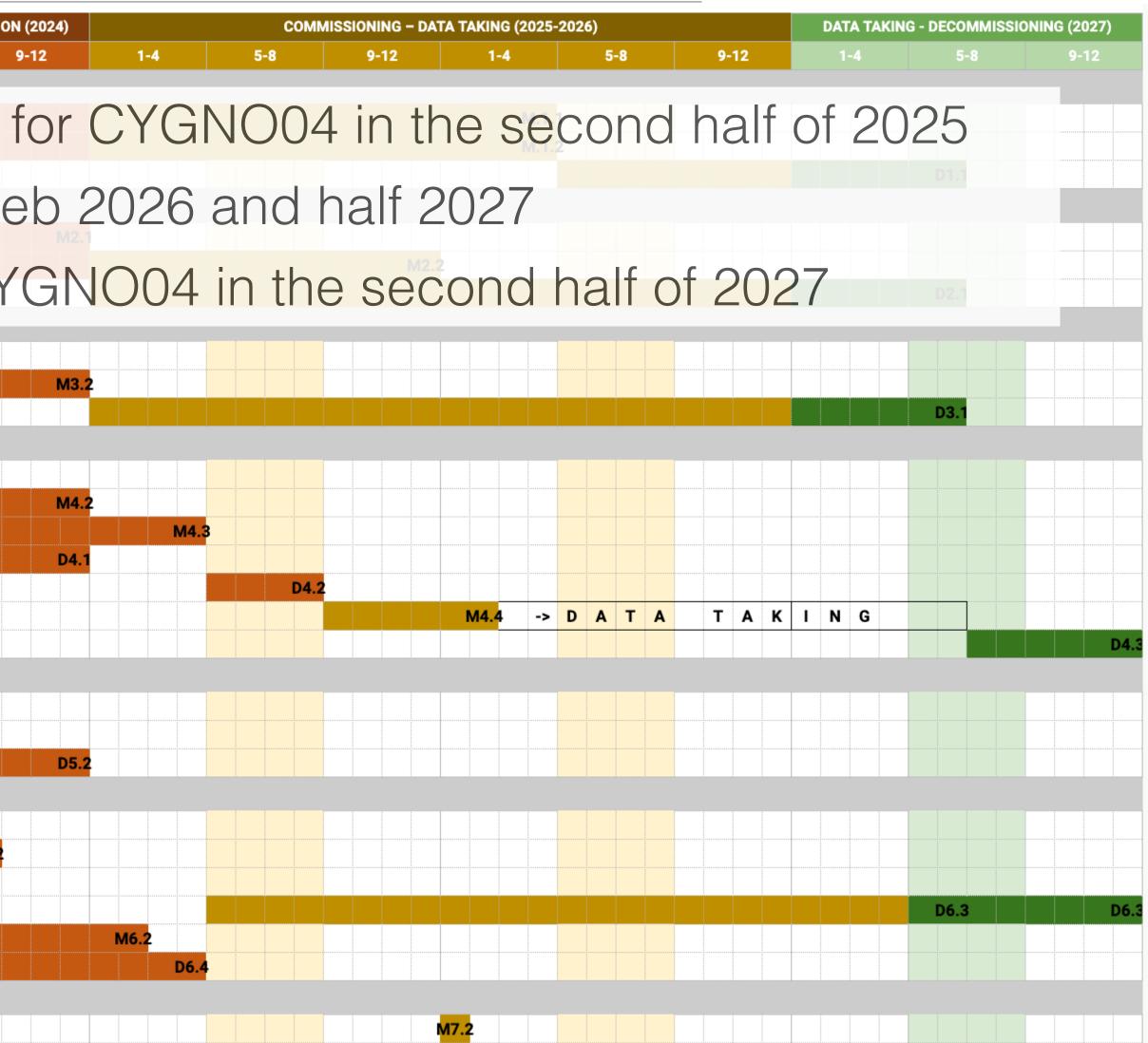

Since April 2024, Fabrizio Petrucci (RomaTRE University) is the new Project Coordinator of the CYGNO

With this role he is **coordinating** the **steering committee** operation, working in close contact with the SPs, and the coordinators of the WPs, acting as an **interface** to ensure a **smooth communication** among the different coordinators;

A separate role for a **SC Coordinator** can be **foreseen** in the future;

Andrea Messina is the new **coordinator** of the **Publication** Committee;

D. Pinci is the **resource manager**;

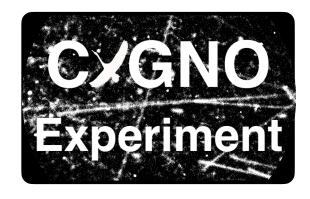


Tentative updated CYGN004 GANNT

WBS ID	TASK		DESIGN 1-4		CUREME		23) 9-12			NSTRI 1-4	UCTIO	ON, TI	EST & I 5-8	ISTALI	LATION
WP1	Physics														
1.1	solar neutrino sensitivity		\bigcap	om	mi	00		n	in		2	0	tiv	/it	
1.2	dark matter sensitivity					33		711		9	C		ιv	11	y I
1.3	physical parameters PHASE 2						_				_				
WP2	Data Analysis	_	St	art	\cap	\mathbf{C}	lat	a	12	ak	ir		y ii	\mathbf{n}	Fe
2.1	reconstruc/background v0					Ŭ						15	, ,,		
2.2	reconstruc/background v1													C	
2.3	detector analisys PHASE 1	_	De	eco	DM	IM	IIS	SI	Oľ		I(OT		ĴΥ
WP3	Detector Simulation														
3.1	valdete PHASE 0 results							M3.1							
3.2	Montecarlo for PHASE 1														
3.3	estimation for PHASE 2														
WP4	Detector Design and Construction														
4.1	executive layout infrastructure						M4.	.1							
4.2	executive layout of the detector														
4.3	procurements of components														
4.4	install infrastructure														
4.5	install detector														
4.6	commissioning & calibration														
4.8	decommissioning														
WP5	Auxiliary Services														
5.1	validating gas system		D5.	1											
5.2	validating DAQ v0							M5.1							
5.3	validating DAQ v1														
WP6	Research and Development														
6.1	validating large GEM					M6.1									
6.2	validating sensors and lens														D6.2
6.3	validating field cage component													D6.1	
6.4	validating R&D for PHASE 2			-											
6.5	validating radioativity detctors components														
6.6	validating handling of detctors components														
WP7	Management						÷								
7.1	ERC-FRP3				M7.	.1									
7.2	ERC-FRP4														
7.3	CSN2 Progress Report				M7.3								M7	.4	
7.4	ERC-SRP2														
7.5	CSN2 Final Report														

Richieste 2025

isk	Section	Item	C	Cost [k€]
Travels		shifts (TDR-M2.1/M3.1)		3
	LNF	meeting di analisi e di collaborazione		6
		installazione infrastruttura e detector CYGNO04 e coordinamento ai LNGS. TDR-D4.1/D4.2 e commissioning (2 persone, 5 volte al mese)		20
		shifts (TDR-M2.1/M3.1)		4
	RM1	CYGNO04 commissioning (2 persone, 2 volte al mese)		5
		meeting di analisi e di collaborazione		6
	RM3	CYGNO04 commissioning (1 persona, 2 volte al mese)		3
		meeting di analisi e di collaborazione		4
	LNGS	meeting analisi e meeting di collaborazione		5
			Tot	
Consumo	LNF	manutenzione apparati ai LNF/LNGS (sistema di gas, sensori ausiliari, tubi gas, connettori, ecc)		5
		consumo necessario per l'assemblaggio di CYGNO-04 ai LNF (TDR-D4.1/D4.2)		15
	RM1	studio e realizzazione ottica a bassa radioattività (TDR-D6.2)		30
		materiale per realizzazione e test sistema purificazione radon (TDR-D5.1)		5
			Tot	
Altri Consumi		acquisto gas per test overground e underground (TDR-M2.1/M3.1)		5
	LNGS	gas recovery per commissioning CYGNO04		10
		attività manutenzione e facchinaggio CYGNO04 (TDR-M2.1/M3.1)		5
	LNF	acquisto gas per test e commissioning CYGNO04		5
			Tot	
			Gran-Tot	136



Updated CYGNO04 Costs for CSN2

Based on the experience gained with the on-going R&D and the construction, commissioning and running of LIME, we expect:

- 10-20 k€/year of consumable for detector maintenance or construction;
- 50 k€/year of R&D before CYGNO-04 installation and 20/30 k \in /year for the last R&Ds toward PHASE 2;
- 30 k€/year of travels for the technical operation (installation, commissioning and decommissioning);
- 20 k \in /year of gas bottles for CYGNO-04;
- 20 k€/year of gas recovery for CYGNO-04;
- 20 k \in /year for shifts and commissioning;

Summed to the **185 k€ funded** in the past two years would provide **501 k€** in total for **5 years 2023-2027**.

INFN - CSN2	2025	2026	2027
Gas Bottles	10	20	10
Gas Recovery	10	20	10
Consumables	30	10	20
R&D	30	20	0
Tot w/o Travels (k€)	80	70	40
Travels - Shift	28	20	10
Travels - Installation	28	10	30
Tot Travels (k€)	56	30	40
Tot (k€)	136	100	80

Economic sustainability

Currently, from the ERC fundings, to cover the core costs of CYGNO04, there are **119 k**€ available at **INFN** and **490 k€ at GSSI** for a total of 609 k€

Part of the equipment needed for CYGNO04 was already bought and is currently being used and validated on LIME:

- high voltage system;
- gas system;
- DAQ and trigger;

According to the latest quotations received, the other costs expected for the construction of CYGNO04 is of **597 k€**, therefore an expense that can **be fully covered with ERC funds**

The **total value** of **CYGNO04** is of about **910 k€**.

Item	Cost (k€)
Gas Vessel	35
Readout: GEM. cameras, PMT	146
Cathode	17
Field Cage	13
Calibration	10
Copper Shielding	180
Water Shielding	85
Polietilene Base	20
DAQ	11
Electric Services	20
Cooling and Conditioning	25
Safety: fire detection, gas monitors	35
Total	597

Summary of CYGN004 Costs

YearINITIUM/ERCCYGNO/INFN20192054202020144202171962022409620231649020245289020257513620260902027080Tot 23-27767486Tot1099776		1		
202020144202171962022409620231649020245289020257513620260902027080Tot 23-27767486	Year	INITIUM/ERC	CYGNO/INFN	M
202171962022409620231649020245289020257513620260902027080Tot 23-27767486	2019	20	54	V
2022409620231649020245289020257513620260902027080Tot 23-27767486	2020	201	44	-
20231649020245289020257513620260902027080Tot 23-27767486	2021	71	96	a
2024 528 90 2025 75 136 2026 0 90 2027 0 80 Tot 23-27 767 486	2022	40	96	ť٢
20257513620260902027080Tot 23-27767486	2023	164	90	2
2026 0 90 2027 0 80 Tot 23-27 767 486	2024	528	90	
2027 0 80 Tot 23-27 767 486	2025	75	136	-
Tot 23-27 767 486	2026	0	90	
	2027	0	80	-
Tot 1099 776	Tot 23-27	767	486	ai E
	Tot	1099	776	E

ith the projections foreseen

the total INFN-CSN2 contribution to CYGNO/INITIUM tivity in **9 years of operations**, from the R&D phase to e demonstrator decommissioning will be **776 k€** (of these, 55 k€ for travels);

In average of 86 k€/year;

he contribution mainly for **material** and **instrumentation** Ind the realisation of the site and the **demonstrator** from **RC is 1099 k€.**

Conclusion

- 2024 is the year of **transition** from PHASE_0 to PHASE_1;
- activities on LIME are mostly ordinary maintenance of gas bottle and filters and light shifts;
- a lot of effort moved to data analysis and simulation to extract as more information as possible from the LIME data;
- focused **R&D** on GIN are leading the **final choice** about the detector **field cage** and **cathode**; - we are converging on the final designs for CYGNO04: shielding first, then the gas vessel and field cage and cathode;
- by the end of 2024 the site will be ready and we plan to start the commissioning of CYGNO04 in 2025;
- we formally ask to CSN2 the approval of the financial plan presented for the triennium 2025-27;

Phys. Lett. B 855 (2024) 138759

Secondary scintillation yield from GEM electron avalanches in He-CF₄ and He-CF₄-isobutane for CYGNO — Directional Dark Matter search with an optical TPC

F.D. Amaro^a, E. Baracchini^{b,c}, L. Benussi^d, S. Bianco^d, C. Capoccia^d, M. Caponero^{d,e}, D.S. Cardoso^f, G. Cavoto^{g,h}, A. Cortez^{b,c}, I.A. Costa^{i,j}, G. D'Imperio^h, E. Dané^d, G. Dho^{b,c}, F. Di Giambattista^{b,c}, E. Di Marco^h, F. Iacoangeli^h, H.P. Lima Júnior^f, G.S.P. Lopes^k, G. Maccarrone^d, R.D.P. Mano^a, R.R. Marcelo Gregorio¹, D.J.G. Marques^{b,c}, G. Mazzitelli^d, A.G. McLean¹, A. Messina^{g,h}, C.M.B. Monteiro^{a,,}, R.A. Nobrega^k, I.F. Pains^k, E. Paoletti^d, L. Passamonti^d, F. Petrucci^{i,j}, S. Piacentini^{g,h}, D. Piccolo^d, D. Pierluigi^d, D. Pinci^h, A. Prajapati^{b,c}, F. Renga^h, R. J.d.C. Roque^{a,*}, F. Rosatelli^d, A. Russo^d, G. Saviano^{d,m}, N.J.C. Spooner¹, R. Tesauro^d, S. Tomassini^d, S. Torelli^{b,c}, J.M.F. dos Santos^a

^a LIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal

b Gran Sasso Science Institute, 67100, L'Aquila, Italy

^c Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, 67100, Assergi, Italy

^d Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044, Frascati, Italy

e ENEA Centro Ricerche Frascati, 00044, Frascati, Italy

^f Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro 22290-180, RJ, Brazil

^g Dipartimento di Fisica, Universitá La Sapienza di Roma, 00185, Roma, Italy

^h Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185, Rome, Italy

¹ Dipartimento di Matematica e Fisica, Universitá Roma TRE, 00146, Roma, Italy

^j Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, 00146, Rome, Italy

- ^k Universidade Federal de Juiz de Fora, Faculdade de Engenharia, 36036-900, Juiz de Fora, MG, Brazil
- ¹ Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK

m Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Università di Roma, 00185, Roma, Italy

ARTICLE INFO

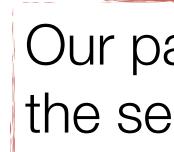
Editor: D.F. Geesaman

Keywords: Secondary scintillation Optical TPC Rare event detection Dark Matter Directional Dark Matter WIMP

ABSTRACT

CYGNO is an international collaboration with the aim of operating a 1 m³ optical time projection chamber (TPC) for directional Dark Matter (DM) searches and solar neutrino spectroscopy, to be deployed at the Laboratori Nazionali del Gran Sasso (LNGS). A He/CF₄ (60/40) mixture is used, along with a triple Gas Electron Multiplier (GEM) cascade to amplify the ionisation signal. The scintillation produced in the electron avalanches is read out using a scientific complementary metal-oxide-semiconductor (sCMOS) camera. This solution has proven to provide very high sensitivity to interactions in the few keV energy range. The inclusion of a hydrogen-based gas will offer an even lighter target, resulting in a more efficient energy transfer in a DM particle collision, and consequently, a lower detection threshold. Additionally, longer track lengths of light nuclear recoils are easier to detect with a clearer direction. However, the addition of such gas will contribute to quenching the scintillation, jeopardizing the TPC performance. In this work, we demonstrate the feasibility of adding 1% to 5% isobutane to the He/CF₄ (60/40) mixture by measuring the respective absolute scintillation yield output. The overall scintillation produced in the charge avalanches is not drastically suppressed by quenching due to the isobutane addition. The presence of Penning transfer from excited He atoms to isobutane molecules increases the number of electrons in the avalanches, partially compensating for the loss of scintillation due to quenching. For the highest applied GEM voltage, the total number of photons produced in the avalanche per keV deposited in the absorption region presents a decrease of only a factor of about three, from $2.30(20) \times 10^4$ to $8.2(4) \times 10^3$

* Corresponding authors.


E-mail addresses: cristinam@uc.pt (C.M.B. Monteiro), ritaroque@fis.uc.pt (R. J.d.C. Roque).

https://doi.org/10.1016/j.physletb.2024.138759

Received 20 September 2023; Received in revised form 24 May 2024; Accepted 24 May 2024

Available online 31 May 2024

0370-2693/© 2024 The Author(s). Published by Elsevier B.V. Funded by SCOAP3. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Our paper on the use of hydrogenated has mixtures for the search of light DM was published on Physics Letter B

