

#1 Update on ... Initial look at <u>alpha tracks</u> for directional & head-tail determination

David Marques and PMT Working Group

Technical / Analysis meeting 05-06-2024

PMT Signal basic properties – Resume

periment G S

Let's resume all the information:

- 1. Time over threshold gives me the alpha ΔZ
 - Together with camera XY angle \Rightarrow theta angle
- 2. The position of the Bragg peak tells me angle theta signal in Z
 - (Towards cathode or GEMs)
- 3. Relative amplitudes between PMTs give me the quadrant position in X-Y
 - Useful for **basic association** cluster-waveform
- Skewness of Bragg peak (within the waveform) difference between PMTs gives me the direction of the Analyser class (directionality) gives me Angle in X-Y (phi) and the ΔXY
 Could be confirmed / tested against PMT Bragg peak skewness method set plays a smaller role
 - Also gives a hint of the X Y angle, but this is easier to get with the camera

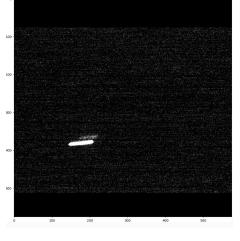
PMT Signal basic properties – Resume

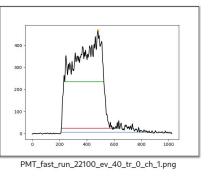
Let's resume all the information:

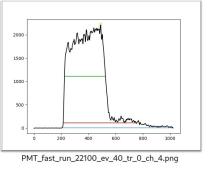
- 1. Time over threshold gives me the alpha ΔZ
 - Together with camera XY angle \Rightarrow theta angle
- 2. The position of the Bragg peak tells me angle theta signal in Z
 - (Towards cathode or GEMs)
- 3. Relative amplitudes between PMTs give me the quadrant position in X-Y
 - Useful for **basic association** cluster-waveform

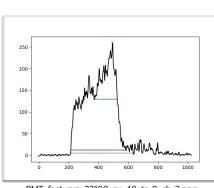
Reconstructed info:

- ΔZ
- Theta angle
- ΔXY
- Phi angle
- Signal of theta +
 phi == Head-tail
 U

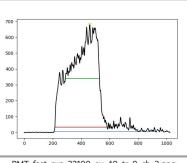

3D reconstruction


4. Skewness of Bragg peak (within the waveform) difference between PMTs gives me the direction of the Partic Analyser class (directionality) gives me Angle in X-Y (phi) and the ΔXY


- Could be confirmed / tested against PMT Bragg peak skewness method
- Also gives a hint of the X Y angle, but this is easier to get with the camera


PMT Signal – Examples

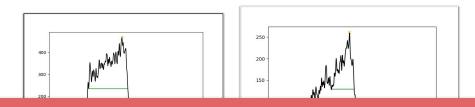
Run 22100, ev 40



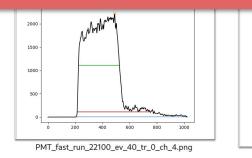
PMT_fast_run_22100_ev_40_tr_0_ch_2.png

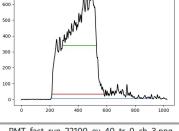
PMT_fast_run_22100_ev_40_tr_0_ch_3.png

- Bragg peak on the right ⇒ moving towards cathode.
 - Leftwards or rightwards? ⇒ Skewness higher for PMTs 2 and 3, moving **rightwards**


<<<<< Last time example >>>>>

GS

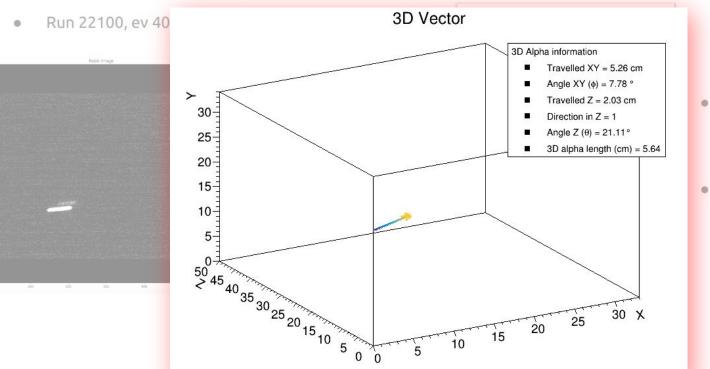

PMT Signal – Examples


Run 22100, ev 40

Rebin Image

Now we perform some magic and...

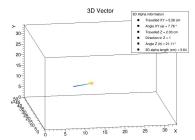
PMT_fast_run_22100_ev_40_tr_0_ch_3.png


Bragg peak on the right \Rightarrow moving towards cathode. Leftwards or rightwards? \Rightarrow Skewness higher for PMTs 2 and 3, moving **rightwards**

<<<<< Last time example >>>>>

S G

PMT Signal – Examples



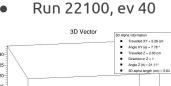
- Bragg peak on the right ⇒ moving towards cathode.
 - Leftwards or rightwards? ⇒ Skewness higher for PMTs 2 and 3, moving **rightwards**

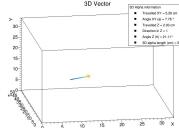
<<<<< Last time example >>>>>

 Read reco-files directly after official reconstruction (we start with camera since it's more likely to *not* see the signal)

CAM Reco data file openend: reco_run22100_3D.root PMT Reco data file openend: reco_run22100_3D_pmt.root

Run 22100, ev 40

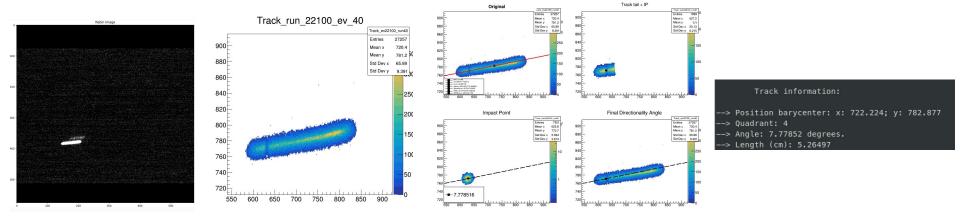

GS

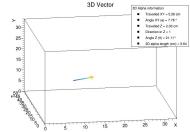

S

Read reco-files directly after official reconstruction (we start with camera since it's more 1. likely to *not* see the signal)

CAM Reco data file openend: reco_run22100_3D.root PMT Reco data file openend: reco_run22100_3D_pmt.root

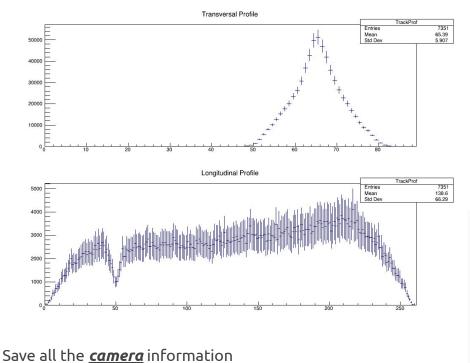
- 2. Apply some basic cuts
 - if (sc integral [sc i] /sc nhits [sc i] > 25 && sc length [sc i] > 100 && sc width [sc i] > 50) { //Alpha cut from 0



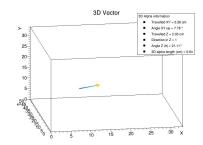

 Read reco-files directly after official reconstruction (we start with camera since it's more likely to *not* see the signal)

CAM Reco data file openend: reco_run22100_3D.root PMT Reco data file openend: reco_run22100_3D_pmt.root

- 2. Apply some basic cuts
 - 0 if (sc_integral [sc_i] /sc_nhits [sc_i] > 25 && sc_length [sc_i] > 100 && sc_width [sc_i] > 50) { //Alpha cut from
 Giorgio
- 3. Run analyser class (Flaminia base, Samuele directionality, Atul's ML, Davide comments ...)

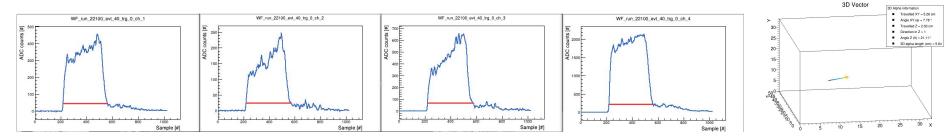


GS


4. (Optional) Save the track's profiles

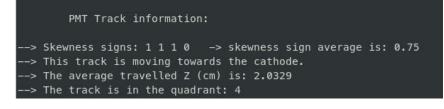
• Run 22100, ev 40

GS


S

5.

6. Look at waveforms


6.1. Retrieve:

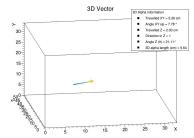
6.1.1. ToT (*different from the one of reco) \Rightarrow average travelled Z

6.1.2. Calculate integral in first and second half \Rightarrow Majority gives me theta signal

6.1.3. Get alpha quadrant in XY \Rightarrow Retrieved by checking with PMT sees the stronger signal

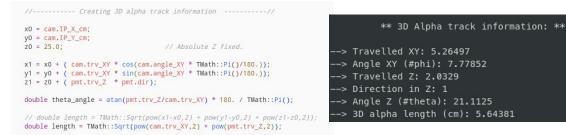
6.2 Save all the information

Run 22100, ev 40

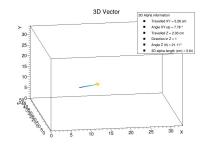

- 7. Combined analysis
 - 7.1. Only for 1-to-1 matched tracks (tested for multi-trigger events)

Matched alpha in quadrant: 4; in trigger: 0

G S

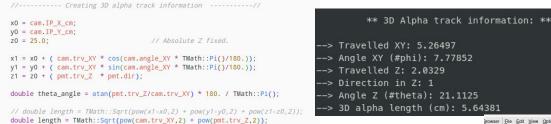

S

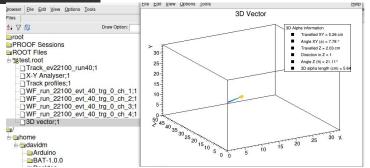
- 7. Combined analysis
 - 7.1. Only for 1-to-1 matched tracks (tested for multi-trigger events)


Matched alpha in quadrant: 4; in trigger: 0

7.2. Calculate all the remaining variables through geometry

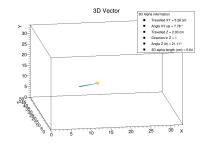
Run 22100, ev 40


GS


- 7. Combined analysis
 - 7.1. Only for 1-to-1 matched tracks (tested for multi-trigger events)

Matched alpha in quadrant: 4; in trigger: 0

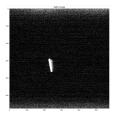
7.2. Calculate all the remaining variables through geometry

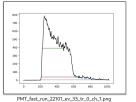


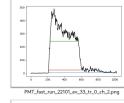
7.3 Feed all the information to a 100 line script to create a 3D vector in ROOT and put everything in a file.

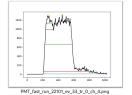
• Run 22100, ev 40

GS

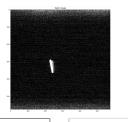





Some other

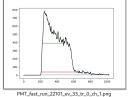

examples

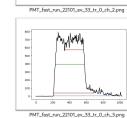
• Run 22101, ev 33



PMT_fast_run_22101_ev_33_tr_0_ch_3.png

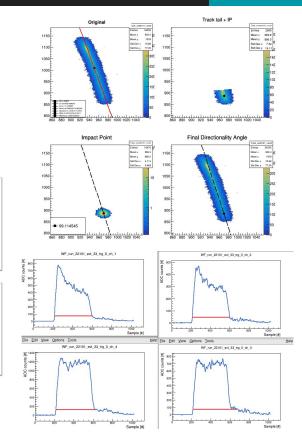
PMT reconstruction & analysis


• Run 22101, ev 33


300

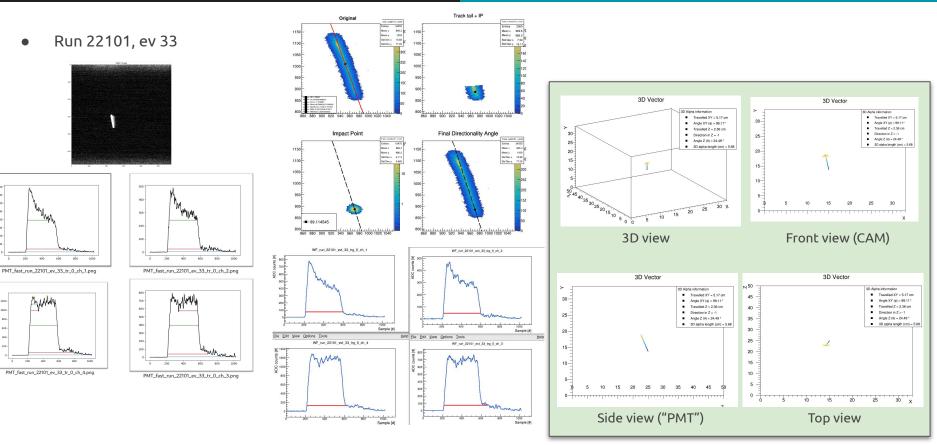
200

100



200 400 600

1MM


Mr.Mummen

800

•

700 -

600 -

500 -

400

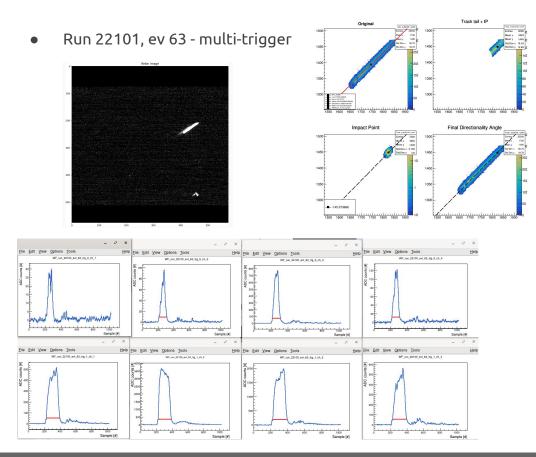
300 -

205

1200 -

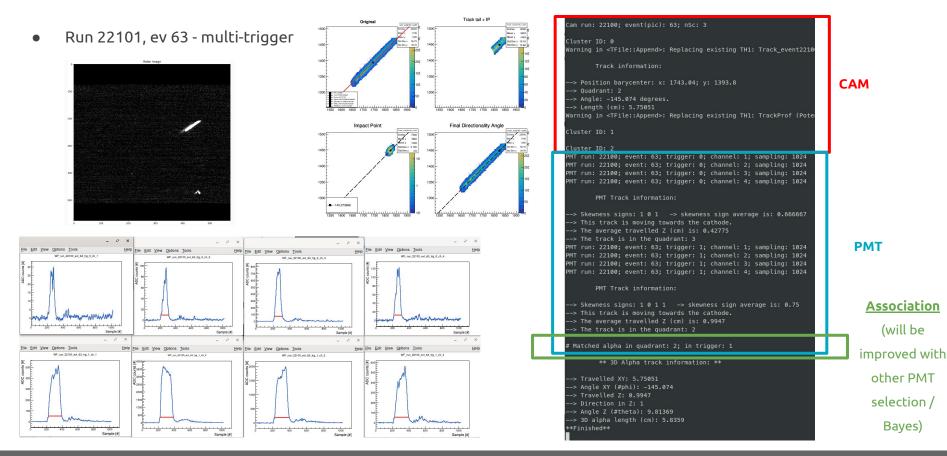
1000 -

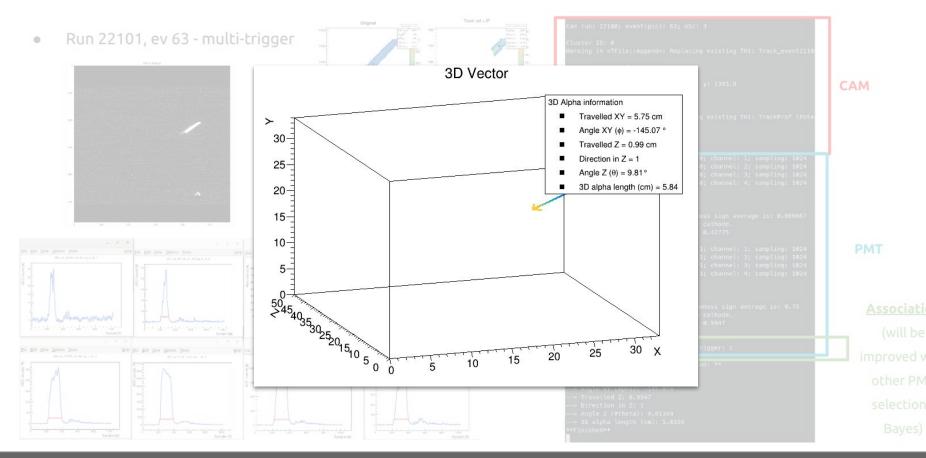
ECO -


660-

400 -

200 -


200



PMT reconstruction & analysis

PMT 3D reco – Conclusions

1. <u>Missing (?) features</u>

- Color gradient is fake ⇒ Worth to associate it to longitudinal ionization profile?
- Electron cloud not plotted ⇒ Worth to take 2D transversal profile and create a 3D cylinder around main vector?
- ToT doesn't take into account minimum signal temporal width -> travelled Z slightly overestimated
- Improve association \Rightarrow Using BAT?
- Improve theta signal calculation \Rightarrow Also probably using BAT
- Get some basic PMT Alpha cuts to allow PMT-only analysis (?)
- Optimize Analyzer code (cross-check parameters, increase speed)

2. Upcoming (?) analysis:

- **Comparison with simulation** ⇒ Not available for alphas, neither from the PMT side nor camera (digitization too slow (?))
- Statistical analysis. What do we expect?
 - Angle signal Higher rate towards GEMs than towards cathode (cause cathode is bigger/higher mass)
 - Sense (left/right and up/down) Higher rate towards *center* from material radioactivity
 - All this on top of flat background from Radon/gas random emission
- What else?

